当前位置:首页 期刊杂志

含脂食品辐照标志物2-烷基环丁酮检测技术研究进展

时间:2024-08-31

张海伟 张雨露 费 晨 周裔彬

(安徽农业大学茶与食品科技学院 合肥 230036)

含脂食品辐照标志物2-烷基环丁酮检测技术研究进展

张海伟 张雨露 费 晨 周裔彬

(安徽农业大学茶与食品科技学院 合肥 230036)

对比分析欧盟标准EN1785: 2003方法,综述了近年来2-烷基环丁酮(2-Alkylcyclobutanones, 2-ACBs)在提取、净化与检测等方面的研究进展。采用乙腈溶剂直接萃取含脂辐照样品中的 2-ACBs→商品化固相萃取小柱净化→GC-MS检测是目前替代EN1785的潜力方法。固相微萃取、柱前衍生化及间接酶联免疫等方法具有快速、节约溶剂、低检出限等优点,但需要对操作条件进一步优化。

2-烷基环丁酮,辐照,含脂食品,检测技术

因此,2-ACBs作为探针化合物,可以用来鉴别含脂食品(肉及肉制品、奶制品、蛋制品、水产品、水果及坚果等)是否经过辐照处理[8-12]。欧盟标准委员会、国际食品法典委员会及我国先后制定了利用 2-ACBs鉴定含脂辐照食品的标准(CEN 1785, GB/T 21926-2008, NY/T 2215-2012)[13-15]。但是辐照食品中2-ACBs的含量非常少,其定量分析检测方法一直是研究的难点与热点。为了提高检测方法的实用性和适用性,如鉴别加工食品中添加的辐照食品成分、减少假阴性检测结果、确认未辐照食品中是否含有 2-ACBs、减少有机溶剂的使用及缩短分析时间等,需要对2-ACBs的检测方法进行改善和优化。本文在前人研究的基础上,分析了2-ACBs的产生机理,对多种2-ACBs定量检测方法的优缺点进行了综述,为2-ACBs的检测技术研究提供参考。

1 2-ACBs的产生机理

目前的研究理论认为,2-ACBs的产生是因为含脂食品接受辐照(γ射线、X射线和电子束)时,由于瞬间接受非常大的能量,脂肪酸和酰基甘油上的酰氧键发生断裂,形成烷烃、烯烃、醛、酯、内酯和含有四碳环的环状化合物——2-ACBs[1]。食品中主要脂肪酸及相应辐解2-ACBs类产物见表1[16]。

2-ACBs类化合物的碳原子数与前体脂肪酸相同,由于重排烃基链比前体脂肪酸少四个碳原子,酮基和烃基分别在碳环的1号和2号位上。如果已知脂肪中脂肪酸的结构,即可以推测形成 2-ACBs的结构。例如,16C脂肪酸—棕榈酸和18C脂肪酸—硬脂酸经过辐照后分别形成 2-DCB和 2-TCB。2-DCB和2-TCB的烃基链较短且是饱和的,相对于含有不饱和烷基链的2-ACBs更加稳定,且大多数含脂食品中,棕榈酸和硬脂酸是含量较高的饱和脂肪酸,所以一般常用其辐解物2-DCB和2-TCB鉴别含脂辐照食品[17-24]。

表1 环丁酮类辐照标志物与相应的前体脂肪酸Table 1 Irradiation markers-cyclobutanones and their precursor fatty acids

2 2-ACBs的检测

目前广泛使用的2-ACBs检测方法是欧盟标准EN1785: 2003(辐照含脂食品的鉴定-气相色谱-质谱(GC/MS)分析2-ACBs方法),此方法适用于受照剂量大于0.5 kGy和脂肪含量不低于1%的样品[12]。EN1785: 2003分析检测2-ACBs的步骤主要包括:(1)采用正己烷进行索式提取,将脂肪连同 2-ACBs一起提取出来;(2)采用弗罗里硅土层析柱,不同极性有机溶剂作淋洗液将2-ACBs与脂质分离;(3)真空旋转蒸发将 2-ACBs溶液浓缩并定容;(4)采用GC-MS进行检测。该方法具有分析时间(8~9 h)冗长,有机溶剂消耗量大(约500 mL),弗罗里硅土层析柱承载脂肪能力差(0.2 g脂肪/40 g弗罗里硅土)等缺点。当检测低剂量辐照食品或者少量的含脂辐照食品成分时容易造成假阴性的误判。针对这些问题,近些年对此检测方法优化的研究主要集中在加快检测速度、降低有机溶剂使用量和提高检测灵敏度等方面。2-ACBs主要分析方法流程示意图见图1。

2.1检测步骤

由图1可知,2-ACBs的定量分析方法主要有3种途径:(1)从含脂辐照食品中萃取包含2-ACBs的脂肪;利用层析柱分离纯化2-ACBs;GC-MS检测2-ACBs。(2)采用CO2超临界萃取(Supercritical fluid extraction, SFE)或固相微萃取(Solid-phase microextraction, SPME)方法直接从含脂辐照食品中萃取2-ACBs;GC-MS检测2-ACBs。(3)从含脂辐照食品中萃取包含2-ACBs的脂肪;利用层析柱分离纯化2-ACBs;将2-ACBs进行衍生化;GC-MS/HPLC-MS检测2-ACBs衍生物。3种途径各有优缺点:途径(1),不需要特殊昂贵的设备,一般分析实验室均能有条件完成检测,但分析时间冗长并消耗大量的有机试剂;途径(2),分析简便,不需要消耗大量有机试剂,但是提取条件需要优化,且方法的灵敏度和精密度不佳;途径(3),2-ACBs的检测灵敏度和可靠性大大提高,但是增加了分析步骤。在分析过程中,对于提取、净化与检测3个步骤又有不同的处理方法。

2.2提取

对2-ACBs的提取,一般采用正己烷将辐照食品中的 2-ACBs连同脂肪一起提取出来。欧盟EN1785:2003中使用的是传统索氏提取(Soxhlet extraction, SE)方法:样品经过粉碎或磨碎后与等量的无水硫酸钠混合,置于索氏提取装置中进行脂肪提取,正己烷经过沸腾-冷凝循环过程,脂肪连同2-ACBs样品得以收集。但是索氏提取的时间太长,一般需要 6~8 h,溶剂使用量较大。因此,缩短样品提取时间,减少有机试剂用量和废料的产生量等是优化提取方法的目标。

微波及超声波辅助可以显著加速索氏提取过程中的脂肪分离,将时间从6 h缩短到约1 h[25]。此方法已有文献报道,应用于烘焙制品[26]、橄榄[27]、鱼肉[28]和奶酪[29]中。自动索氏萃取是一种提取装置的商业替代设备,可实现自动化操作,分析时间比传统索氏装置快5倍以上,使用试剂较少。加速溶剂萃取方法(Accelerated solvent extraction, ASE)采用热的乙酸乙酯加压加速萃取辐照肉类和鱼肉中含有2-ACBs的油脂,萃取时间由6 h减少到约20 min,此方法已应用于辐照牛肉、猪肉、鸡肉和大马哈鱼肉上[30]。

直接溶剂萃取(Direct solvent extraction, DSE)是替代索氏提取的一种快速而有效的方法[31],已成功应用于辐照鸡肉、生鸡蛋及奶酪的脂肪提取。取磨碎后的含脂辐照食品与适量无水硫酸钠混合,混合物用35 mL溶剂(正己烷:正庚烷=9:1)震荡提取15 min,过滤即得到含有2-ACBs的萃取液。此方法萃取效率比索氏提取法低约45%,但可作为简单快速的方法定性鉴别辐照含脂食品。Hijaz等[32]进一步优化了此方法,选用乙腈替代正己烷+正庚烷作为直接萃取溶剂,结果表明,乙腈适合溶解2-ACBs而较少溶解脂肪,还进一步简化了净化步骤,且提取效率与索氏提取相当。

SFE可以省去先提取脂肪的步骤,直接从含脂辐照样品中萃取出2-ACBs,具有速度快、成本低、环保等优点[33-35]。含脂辐照样品一般需要预先冻干,磨碎,或者将提取出的脂肪样品再应用SFE方法萃取2-ACBs[5]。虽然SFE方法省去了大量有机溶剂的使用,但对 2-ACBs的回收率不高,约为60%~87%,而且SFE方法需要特殊的超临界流体萃取设备,大多数实验室并不具备这样的条件。

SPME是一种利用特殊纤维头萃取2-ACBs的新方法,具有快速、价格低廉、不使用有机溶剂等优点,而且不需要去脂、净化及浓缩步骤[36]。Blanch等[24]采用聚甲基硅氧烷纤维头,在40 ℃条件下萃取60 min,可以萃取得到干腌火腿切片中的2-DCB。Silvia等[37]建立了辐照碎牛肉 SPME定量萃取2-DCB的方法,LOD达到1.5 ppb,最低可以萃取得到吸收剂量为0.5 kGy碎牛肉中的2-DCB。

2.3净化

由于2-ACBs溶于脂肪内,脂类提取后,还需要进一步净化,才能采用 GC-MS检测。欧盟EN1785:2003中以弗罗里硅土(Florisil)作为层析柱内填充的分离纯化介质,但是弗罗里硅土承载脂肪的能力较差,如40 g Florisil只能承载0.2 g脂肪。如果能加大分析脂肪样品的质量将有利于分离出更多的2-ACBs,减少GC-MS检测产生的误差。近些年很多研究学者报道使用SiO2代替Florisil能大大提高脂肪的承载率,只需6 g SiO2就可以承载0.2 g脂肪,是EN1785方法中Florisil的5倍多[38-39]。

当使用SiO2析柱分离2 g脂肪时,先用300 mL正己烷进行洗脱,再用950 mL含有1%甲基叔丁基醚-正己烷混合溶液洗脱,最后的450 mL洗脱液含有2-ACBs,且不含甘油三酯。每个样品都需要1 250mL溶剂,相比较于EN1785方法使用的450 mL/样品,此方法使用了更多有机试剂且操作起来也不方便。

在净化之前将提取的样品去脂化,然后采用商品化的1 g硅胶小柱或自制硅胶小柱净化,能减少有机溶剂的使用量。含有2-ACBs的脂类先溶于乙酸乙酯或丙酮,然后加入适量的乙腈,充分混匀后置于-20 ℃环境下30 min,脂肪物质遇冷发生沉淀,冷冻离心除去固态脂类。上清液经氮气吹干后,复溶于1~2 mL正己烷,备硅胶小柱净化。此方法操作简便,不需要特殊设备,对2-DCB和2-TCB的回收率达到70%~88%,将有机溶剂使用量从1 250 mL减少至20 mL。此方法已成功应用于吸收剂量为1.0 kGy和2.6 kGy的牛肉、猪肉、奶酪、炸鸡肉等的鉴别[40]。

采用乙腈溶剂直接萃取含脂辐照食品样品中的2-ACBs,由于不会将脂肪同时提取出来,能显著简化净化步骤,减少有机溶剂的使用。SFE和SPME方法相对前几种提取方法,省去了净化与浓缩步骤,从样品中萃取2-ACBs后可直接进行GC-MS检测。

2.4检测

对2-ACBs的检测通常采用GC-MS联用仪,EN1785建议 MS条件为离子模式(Electron impact ionization, EI)离子源,选择监测离子(m/z 98, 112)。色谱柱选择使用短的(如12 m)非极性(100%二甲基聚硅氧烷)色谱柱,在实际应用中,更常使用的是25~30 m具有较小极性(如含有5%苯基,95%二甲聚硅氧烷)的色谱柱。Horvatovich等[41]报道使用更长(60 m)极性更强的色谱柱(OV-20,20%苯基,80%二甲聚硅氧烷)检测单不饱和2-ACBs,分离效果优于弱极性色谱柱(ZB-5)。质谱的化学电离(Chemical ionization, CI)模式与EI模式相比是更柔和的电离技术,因为在冲击分子时使用的能量较小,会产生更少的分子碎片。Horvatovich等[38]研究发现在检测分析多种2-ACBs时,与EI模式相比,采用CI模式能提高方法的灵敏度和选择性,能检测较低吸收剂量(如0.1 kGy)的辐照食品及非辐照食品中较低(<5%)的辐照成分。

为了提高2-ACBs检测的灵敏度和可靠性,可将净化后得到的2-ACBs先与五氟苯肼(Pentafluorophenyl hydrazine, PFPH)进行衍生化,然后再利用 GC-MS方法检测衍生化合物 PFPH— 2-DCB和 PFPH—2-TCB。Della等[42]报道将2-ACBs衍生化后检测,能得到更好的信噪比,最低检测限达到0.01 μg/g。

Ye等[43-44]研究将净化后的 2-ACBs与羟胺(Hydroxylamine, HA)进行衍生化,再采用液相色谱质谱联用(LC-MS/MS)方法进行检测。柱前与HA衍生化,给原本非极性的2-ACBs引入一个极性功能团,由此显著增强了MS的反应信号。与EN1785方法相比,衍生化与LC-MS/MS结合显著提高了检测方法的灵敏度,能够鉴别吸收剂量低至0.01 kGy的辐照样品。

赵月亮等[45-46]通过制备 2-DCB 多克隆抗体,建立 2-DCB 快速检测的间接酶联免疫法(Indirect enzyme-linked immunosorbent assay, ELISA);又通过生物素-链亲和素-生物素化ε亚基多克隆抗体的方式,构建基于 F0F1-ATPase 转子ε亚基调节的免疫旋转生物传感器,可以快速、超灵敏检测含脂辐照食品中的2-DCB。这两种方法摆脱了GC-MS的使用,最低检测限分别达到4×10-3和10-8μg/mL,回收率达75.1%~109.8%,而且经GC-MS法对该方法确证两种方法具有稳定的可靠性。但是要使这种方法得到广泛的应用,还需要对影响检测的因素如:孵育温度、F0F1-ATPase用量、荧光素/荧光素酶用量、启动与终止缓冲液用量等进行深入研究。

3 结论

传统索式提取方法消耗大量时间和有机溶剂,采用乙腈溶剂直接萃取含脂辐照样品中的2-ACBs,能显著节约萃取时间、减少大量有机溶剂的使用、简化净化步骤,值得进一步深入研究。自制硅胶柱或 Florisil层析柱过程较为复杂,性能易受人为影响,含有2-ACBs的脂质提取物经过脱脂处理后,采用商品化固相萃取小柱能够获得稳定可靠的结果。SPME提取方法操作简便,是集萃取、净化与浓缩为一体的无需溶剂的新方法,但鉴于 2-ACBs的挥发性质,此方法还需要对操作条件进行优化。柱前衍生化反应,虽然增加了操作步骤,但显著降低了检出限,适用于检测含脂量低和低剂量辐照的含脂食品。间接酶联免疫法与生物传感器方法,可以降低检测限且不需GC-MS,但是为了增大此类方法的适应性,需要对孵育温度、F0F1-ATPase用量等检测参数进一步优化。

2-ACBs由食品中的脂肪酸经过辐照后产生,但是2-ACBs产生的临界辐照条件如:吸收剂量、剂量率、辐照气氛及辐照温度等需要进行深入研究;而且食品中脂肪酸的含量与生成相应环丁酮含量并不呈现期待的比例关系[30],脂肪酸状态及脂肪酸在甘油酯结构中的不同位置对辐照产生2-ACBs的影响规律也缺乏深入的研究;为了充分利用 2-ACBs特异性的特征,需要对2-ACBs在贮藏和加工中的稳定性及某些特定非辐照食品中是否存在低含量的2-ACBs进行系统研究,而这些问题研究分析均需要快速、可靠、低检出限的2-ACBs定量分析方法作为技术支撑。

1LeTellier P R, Nawar W W. 2-alkylcyclobutanones from the radiolysis of triglycerides[J]. Lipids, 1972, 7(1): 75-76. DOI: 10.1007/BF02531273.

2Driffield M, Speck D, Lioyd A S, et al. Methods of analysis for 2-dodecylcyclobutanone and studies to support its role as a unique marker of food irradiation[J]. Food Chemistry, 2014, 146(1): 308-313. DOI: 10.1016/j. foodchem.2013.09.046.

3Andreas B, Franz U. Comparative evaluation of methods for the detection of 2-alkylcyclobutanones as indicators for irradiation treatment of cashew nuts and nutmeg[J]. Food Chemistry, 2016, 201: 52-58. DOI: 10.1016/j. foodchem.2016.01.032.

4Joong-Ho K, Young-Ju K, Tusneem K, et al. Effect of cooking on radiation-induced chemical markers in beef and pork during storage[J]. Journal of Food Science, 2012,77(2): 211-215. DOI: 0.1111/j.1750-3841.2011.02528.x.

5Variyar P S, Chatterjee S, Sajilata G, et al. Natural existence of 2-alkylcyclobutanones[J]. Journal of Agricultural and Food Chemistry, 2008, 56(24): 11817-11823. DOI: 10.1021/jf802391z.

6Chen S, Tsutsumi T, Takatsuki S, et al. Identification of 2-alkylcyclobutanones in nutmeg (Myristica fragrans)[J]. Food Chemistry, 2012, 134(1): 359-365. DOI: 10.1016/j. foodchem.2012.02.176.

7Leung E M, Tang P N, Ye Y, et al. Analysis of 2-alkylcyclobutanones in cashew nut, nutmeg, apricot kernel, and pine nut samples: re-evaluating the uniqueness of2-alkylcyclobutanonesforirradiatedfood identification[J]. Journal of Agricultural and Food Chemistry, 2013, 61(41): 9950-9954. DOI: 10.1021/ jf403500j.

8ZhaoYL,WangF,LiWM,etal. 2-dodecylcyclobutanone as an irradiation dose indicator to identify and estimate original dose in irradiated ground beef[J]. European Food Research and Technology, 2012,235(5): 901-906. DOI: 10.1007/s00217-012-1818-4.

9Gadgil P, Smith J S, Hachmeister K A, et al. Evaluation of 2-dodecylcyclobutanone as an irradiation dose indicator in fresh irradiated ground beef[J]. Journal of Agriculture and Food Chemistry, 2005, 53(6): 1890-1893. DOI: 10. 1021/jf048641r.

10 Stevenson M H, Hamilton J T. Irradiation detection[J]. Nature, 1990, 344(15): 202-203. DOI: 10.1038/344202b0.

11 Stewart E M, Moore S, Graham W D, et al. 2-alkylcyclobutanones as markers for the detection of irradiated mango, papaya, camembert cheese and salmon meat[J]. Journal of the Science of Food and Agriculture,2000, 80(1): 121-130. DOI: 10.1002/(SICI)1097-0010.

12 Chen S S, Morita Y, Saito K, et al. Identification of irradiatedprawn(Penaeusmonodon)using thermoluminescence and 2-alkylyclobutanonean alyses[J]. Journal of Agricultural and Food Chemistry, 2011, 59(1): 78-84. DOI: 10.1021/jf103439c.

13 CEN. European Standard (EN 1785), The Detection of irradiated foods containing fat-gas chromatography/mass spectrometric analysis of 2-alkylcyclobutanones[S]. London: British Standards Institution, 2003.

14 国家农副加工食品质量监督检验中心. GB/T 21926-2008 辐照含脂食品中2-十二烷基环丁酮测定气相色谱/质谱[S]. 北京: 中国标准出版社, 2008. China National Quality Supervision and Testing Center for Processed Food. GB/T 21926-2008 Study on Determination of 2-Dodecyclcobutanoes with Gas Chromatography-MassSpectrometry(GC-MS)in Irradiated Foods Containing Fat[S]. Beijing: Standards Press of China, 2008.

15 中国农业科学院农产品加工研究所. NY/T 2215-2012,含脂辐照食品鉴定 气相色谱质谱分析 2-烷基环丁酮法 [S]. 北京: 中国标准出版社, 2012. Institute of Food Science and Technology CAAS. NY/T 2215-2012 Determination of Irradiated Foods Containing Fat-Gas Chromatography/Mass Spectrometric Analysis of 2-Alkylcyclobutanones[S]. Beijing: Standards Press of China, 2012.

16 Crews C, Driffield M, Thomas C. Analysis of 2-alkylcyclobutanones for detection of food irradiation: current status needs and prospects[J]. Journal of FoodComposition and Analysis, 2012, 26(1-2): 1-11. DOI: 10. 1016/j.jfca.2011.11.006.

17 Horvatovich P, Miesch M, Hasselmann C, et al. Determination of monounsaturated alkyl side chain 2-alkylcyclobutanones in irradiated foods[J]. Journal of Agricultural and Food Chemistry, 2005, 53(15): 5836-5841. DOI: 10.1021/jf050161s.

18 Hijaz F, Smith J S. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays[J]. Journal of Food Science, 2010, 75(9): 156-160. DOI: 10.1111/j.1750-3841.2010.01869.x.

19 刘茜, 韩丽, 伊雄海, 等. GC-QqQ-MS/MS法检测油脂类功能食品中辐照标志物2-十二烷基环丁酮和2-十四烷基环丁酮[J]. 质谱学报, 2014, 35(5): 475-480. DOI: 10.7538/zpxb.youxian.2014.0032. LIU Qian, HAN Li, YI Xionghai, et al. Determination of 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone in irradiated fat-containing function food by GC-QqQ-MS/ MS[J]. Journal of Chinese Mass Spectrometry Society,2014, 35(5): 475-480. DOI: 10. 7538/zpxb.youxian.2014. 0032.

20 赵月亮, 王锋, 周洪杰, 等. 直接溶剂萃取/气相色谱-质谱检测辐照牛肉中的 2-十二烷基环丁酮[J]. 分析化学, 2012, 40(12): 1919-1923. DOI: 10.3724/SP.J.1096. 2012.20428. ZHAO Yueliang, WANG Feng, ZHOU Hongjie, et al. Determination of 2-dodecylcyclobutanone in irradiated beef by direct solvent extraction/gas chromatographymass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 40(12): 1919-1923. DOI: 10.3724/SP. J.1096.2012.20428.

21 张海伟, 王锋, 周洪杰, 等. 辐照剂量、贮藏时间及贮藏温度对辐照牛肉中 2-十二烷基环丁酮的影响[J]. 核农学报, 2008, 22(6): 816-819. ZHANG Haiwei, WANG Feng, ZHOU Hongjie, et al. Effects of absorbed dose, storage time and temperature on 2-dodecylcyclobutanone in irradiated beef[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(6): 816-819.

22 郑建飞, 徐刚, 吴明红, 等. 辐照猪肉产生的 2-十二烷基环丁酮剂量检测及其微波加热影响[J]. 核技术, 2009,32(5): 356-360. DOI: 10.3321/j.issn:0253-3219.2009.05. 008. ZHENG Jianfei, XU Gang, WU Minghong, et al. Detection of 2-dodecylcyclobutanone in irradiated pork and the microwave cooking effects[J]. Nuclear Techniques, 2009, 32(5): 356-360. DOI: 10.3321/j.issn: 0253-3219.2009.05. 008.

23 Kim K S, Lee J M, Seo H Y, et al. Radiolytic products of irradiated authentic fatty acids and triacylglycerides[J]. Radiation Physics and Chemistry, 2004, 71(1-2): 45-49. DOI: 10.1016/j.radphyschem.2004.04.073.

24 Blanch G P, Caja M D M, Flores G, et al. Identification of 2-dodecylcyclobutanone and linear-alkanes as irradiation markers in sliced dry-cured ham[J]. Food Chemistry, 2009,113(2): 616-620. DOI: 10.1016/j.foodchem.2008.07.046.

25 Priego-Capote F, Ruiz-Jimenez J, Garcia-Oimo J, et al. Fast method for the determination of total fat and trans fatty-acids content in bakery products based on microwave-assisted Soxhlet extraction and medium infrared spectroscopy detection[J]. Analytica Chimica Acta, 2004, 517(1-2): 13-20. DOI: 10.1016/j.aca.2004.04. 067.

26 Priego-Capote F, Castro M D. Focused microwaveassisted Soxhlet extraction: a convincing alternative for total fat isolation from bakery products[J]. Talanta, 2005,65(1): 81-86. DOI: 10.1016/j.talanta.2004.05.023.

27 Virot M, Tomao V, Colnagui G, et al. New microwave integrated Soxhlet extraction an advantageous tool for the extraction of lipids from food products[J]. Journal of Chromatography A, 2007. 1174(1-2): 138-144. DOI: 10. 1016/j.chroma.2007.09.067.

28 Pena T, Pensado L, Casais C, et al. Optimization of a microwave-assisted extraction method for the analysis of polycyclic aromatic hydrocarbons from fish samples[J]. Journal of Chromatography A, 2006, 1121(2): 163-169. DOI: 10.1016/j.chroma.2006.04.038.

29 Garcia-Ayuso L E, Velasco J, Dobarganes M C, et al. Accelerated extraction of the fat content in cheese using a focused microwave-assisted Soxhlet device[J]. Journal of Agricultural and Food Chemistry, 1999, 47(6): 2308-2315. DOI: 10.1021/jf981095f.

30 Obana H, Furuta M, Tanaka Y. Analysis of 2-alkylcyclobutanones with accelerated solvent extraction to detect irradiated meat and fish[J]. Journal of Agricultural and Food Chemistry. 2005, 53(17): 6603-6608. DOI: 10.1021/jf0506636.

31 Tewfik I. A rapid direct solvent extraction method for the extraction of cyclobutanones from irradiated chicken and liquid whole egg[J]. International Journal of Food Science and Technology, 2008, 43(1): 108-113. DOI: 10.1111/j. 1365-2621.2006.01399.x.

32 Hijaz F, Kumar A, Smith J S. A rapid direct solventextractionmethodfortheextractionof 2-dodecylcyclobutanone from irradiated ground beef patties using acetonitrile[J]. Journal of Food Science,2010, 75(6): T118-T122. DOI: 10.1111/j.1750-3841.2010. 01706.x.

33 张海伟.辐照冷却肉脂肪氧化控制及特异性辐解产物(2-十二烷基环丁酮)变化机制研究[D]. 北京: 中国农业科学院, 2008. ZHANG Haiwei. Study on control of lipid oxidation and mechanisms of 2-dodecylcyclobutanone in irradiated chilled meat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.

34 Horvatovich P, Miesch M, Hasselmann C, et al. Supercritical fluid extraction of hydrocarbons and 2-alkylcyclobutanones for the detection of irradiated foodstuffs[J]. Journal of Chromatography A, 2000, 897(1): 259-268.

35 Horvatovich P, Miesch M, Hasselmann C, et al. Supercritical fluid extraction for the detection of 2-dodecylcyclobutanone in low dose irradiated plant foods[J]. Journal of Chromatography A, 2002, 968(1-2): 251-255. DOI: 10.1016/S0021-9673(00)00810-4.

36 Caja M M, Castillo M L R D, Blanch G P. Solid phase micro extraction as a methodology in the detection of irradiation markers in ground beef[J]. Food Chemistry,2008, 110(2): 531-537. DOI: 10.1016/j.foodchem.2008. 02.024.

37 Soncin S, Panseri S, Rusconi M, et al. Improved determination of 2-dodecylcyclobutanone in irradiated ground beef patties by gas-chromatography-massspectrometry (GC/MS) coupled with solid-phase microextraction (SPME) technique[J]. Food Chemistry, 2012,134(1): 440-444. DOI: 10.1016/j.foodchem.2012.02.089.

38 Horvatovich P, Werner D, Jung S, et al. Determination of 2-alkylcyclobutanones with electronic impact and chemicalionizationgaschromatography/mass spectrometry (GC/MS) in irradiated foods[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 1990-1996. DOI: 10.1021/jf0524426.

39 张海伟, 王锋, 哈益明, 等. 辐解产物 2-十二烷基环丁酮的测定方法[J]. 中国农业科学, 2009, 42(3): 989-995. DOI: 10.3864/ j.issn. 0578-1752. 2009. 03.030 ZHANG Haiwei, WANG Feng, HA Yiming, et al. Study on control of lipid oxidation and mechanisms of 2-dodecylcy clobutanone in irradiated chilled meat[J]. Scientia Agricultura Sinica, 2009, 42(3): 989-995. DOI: 10.3864/j. issn. 0578-1752. 2009. 03.030.

40 Kitagawa Y, Okihashi M, Takatori S, et al. A rapid and simplemethodforthedeterminationof 2-alkylcyclobutanones in irradiated meat and processed foods[J]. Food Analytical Methods, 2014, 7(5): 1066-1072. DOI: 10.1007/s12161-013-9714-5.

41 Horvatovich P, Miesch M, Hasselmann C, et al. Determination of monounsaturated alkyl side chain 2-alkylcyclobutanones in irradiated foods[J]. Journal of Agricultural and Food Chemistry, 2005, 53(15): 5836-5841. DOI: 10.1021/jf050161s.

42 Sin W M, Wong Y C, Yao W Y. Application of pentafluorophenylhydrazineondetecting 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone in irradiated chicken, pork and mangoes by gas chromatography-mass spectrometry[J]. European Food Research and Technology, 2006, 222(5-6): 674-680. DOI: 10.1007/s00217-005-0188-6.

43 Ye Y, Liu H X, Horvatovich P, et al. Liquid chromatography electrospray ionization tandem mass spectrometric analysis of 2-alkylcyclobutanones in irradiated chicken by precolumn derivatization with hydroxylamine[J]. Journal of Agriculture and Food Chemistry, 2013, 61(24): 5758-5763. DOI: 10.1021/ jf401446n.

44 Chan W, Ye Y, Leung E M K. Rapid identification of γ-irradiated food by direct solvent extraction and liquid chromatography-tandem mass spectrometric analysis of 2-dodecylcyclobutanone: Application in surveillance of irradiated food[J]. Food Chemistry, 2014, 161: 312-316. DOI: 10.1016/j.foodchem.2014.04.034.

45 Zhao Y L, Ha Y M, Yue J C, et al. Development of a novel biosensor based on F0F1-ATPase for the detection of 2-dodecylcyclobutanone in irradiated beef[J]. Food Chemistry, 2015, 188: 320-324. DOI: 10.1016/j. foodchem.2015.04.142.

46 赵月亮. 含脂辐照食品检测鉴定的免疫分析技术研究[D]. 北京: 中国农业科学院, 2013. ZHAO Yueliang. Study on identification of irradiated food containing fat by immunoassays[D]. Chinese Academy of Agricultural Sciences, 2013.

Progress in studies on the detection technique of 2-alkylcyclobutanones in irradiated lipid-containing foods

ZHANG Haiwei ZHANG Yulu FEI Chen ZHOU Yibin
(School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, China)

Recent advances in extraction, purification and detection methods of 2-alkylcyclobutanones (2-ACBs)were reviewed through comparing analysis of the EU standard (EN1785: 2003). Using of direct extraction with acetonitrile, purification with commercial solid phase extraction columns and detection with GC-MS for 2-ACBs is probably the potential method which can be alternative of EN1785. The methods of SPME (Solid-phase microextraction), pre-column derivation and indirect ELISA (Indirect enzyme-linked immunosorbent assay) have many advantages including saving analyzing time and organic solvent, and lowering detection limit. However, the relevant operating conditions need to be further optimized.

2-Alkylcyclobutanones, Irradiation, Lipid-containing foods, Detection technique

CLC TS205, TL99

2-烷基环丁酮(2-Alkylcyclobutanones, 2-ACBs)类化合物质是含油脂食品在电离辐照过程中产生的一类特殊化合物。20世纪70年代初,LeTellier等[1]采用60Co γ 射线对三酰基甘油进行辐照,当吸收剂量达60 kGy时,检测发现了2-ACBs。目前研究表明,含有脂肪的食品经过常规的食品加工,包括加热、微波处理、添加氧化还原金属离子、紫外线辐射、高压处理及在贮藏等过程,并不能产生2-ACBs,只有辐照处理(γ射线、X射线和电子束)才能产生这类环状化合物[2-4]。虽然 Variyar等[5]报道称在天然未辐照腰果和肉豆蔻中检测到了2-十二烷基环丁酮(2-Dodecylcyclobutanone, 2-DCB)和 2-十四烷基环丁酮(2-Tetradecylcyclobutanone, 2-TCB),但Chen等[6]和Leung等[7]相继发表论文证明在未辐照过的腰果、肉豆蔻、杏仁和松子中未检测到2-ACBs。

ZHANG Haiwei (female) was born in March 1979, and graduated with a doctor degree from Chinese Academy of

8 March 2016, accepted 31 May 2016

TS205,TL99

10.11889/j.1000-3436.2016.rrj.34.040102

安徽省教育厅科研项目[高校省级优秀青年人才基金重点项目](2013SQRL017ZD)资助

张海伟,女,1979年3月出生,2008年于中国农业科学院获博士学位,讲师,E-mail: zhanghaiwei@ahau.edu.cn

初稿2016-03-08;修回:2016-05-31

Supported by Scientific Research Project of Anhui Province Department of Education (the provincial level of key projects fund with the outstanding young talents in universities and colleges)(2013SQRL017ZD)

Agricultural Sciences in 2008, lecturer, E-mail: zhanghaiwei@ahau.edu.cn

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!