当前位置:首页 期刊杂志

有机胺改性对ZIF-8催化Knoevenagel缩合反应活性的影响

时间:2024-08-31

高朋召 吴迪 郑航博 陈会会 张佩

摘   要:采用不同結构的有机胺改性溶剂热法合成ZIF-8催化剂,探讨胺结构特性对ZIF-8催化Knoevenagel缩合反应活性的影响. 结果表明,有机胺改性后ZIF-8保持菱形十二面体结构,形貌规则与未改性材料无明显差别,1,2丙二胺、二乙烯三胺和三乙烯四胺改性ZIF-8后的BET比表面积分别为1 893 m2·g-1、1 885 m2·g-1和1 861 m2·g-1,较改性前下降约6.5 %,这主要是由于接枝在ZIF-8表面的有机胺堵塞了其孔道;采用乙醇作溶剂,催化剂添加量(摩尔分数)为0.6%(相对于苯甲醛用量),反应温度80 ℃,210 min时,1,2丙二胺改性ZIF-8对Knoevenagel反应的催化活性最高,α-氰基肉桂酸乙酯的产率达97.8%,循环10次后,产率依旧保持90 %以上,较未改性催化剂产率提高35.3 %. 对胺改性ZIF-8的催化机理研究表明:有机胺改性ZIF-8可增加其催化活性位点,而1,2丙二胺因链短,空间位阻小,其N活性位点更易与反应物接触,与ZIF-8上原有的咪唑N位点一起通过孤对电子与反应物苯甲醛的亚甲基上的 -H配位,从而显著提高催化剂的活性.

关键词:ZIF-8;Knoevenagel缩合反应;胺改性;机理;催化

中图分类号:O641                                  文献标志码:A   文章编号:1674—2974(2020)08—0124—09

Abstract:In this paper, different kinds of organic amines were used to modify ZIF-8 catalysts prepared via solvothermal method,and the effects of organic amine structural characteristics on the catalytic activity of ZIF-8 for Knoevenagel condensation reaction were discussed. The results show that ZIF-8 modified by organic amine still maintains the rhombohedral dodecahedron structure and possesses regular morphology,without obvious difference from that of unmodified materials. The BET specific surface areas of ZIF-8 modified by 1,2-propylenediamine,diethylenetriamine and triethylenetetramine are 1 893 m2·g-1,1 885 m2·g-1 and 1 861 m2·g-1,respectively, decreased by about 6.5% compared with that of the unmodified materials, mainly due to the blockage of pores for ZIF-8 by organic amines. When ethanol works as solvent, the amount of catalyst is 0.6 mol%(molar ratio to benzaldehyde),the reaction temperature is 80 ℃. When the reaction time keeps for 210 min,1,2-propanediamine modified ZIF-8 exhibits the highest catalyst activity,and the yield of ethyl α-cyanocinnamate reaches 97.8 %. After 10 cycles,the yield of this reaction is still up to 90 %,an increase of 35.3 % higher than that of unmodified ZIF-8. The studies on the catalytic mechanism of amine-modified ZIF-8 indicate that amines modified ZIF-8 can improve the amount of activity site,while 1,2-propanediamine has a shorter chain and less steric hindrance, making its N sites easier contact with reactants. It combines with the original imidazole N site on ZIF-8 to coordinate with α-H on the methylene of benzaldehyde through lone pair electrons,  therefore significantly improving the catalytic activity of the catalyst clearly.

Key words:ZIF-8;Knoevenagel condensation reaction;amine modification;mechanism;catalysis

金属有机骨架材料MOFs具有结构多样、孔隙率高、表面性质可调和易实现功能化等优势,在吸附/分离、多相催化、化学传感、药物运输、光电材料、气体储存等领域实现了广泛应用[1]. 在MOFs材料合成过程中,由于空间位阻效应,金属离子与有机配体不完全配位,为满足其配位稳定性需要,金属离子还会与一些溶剂小分子如水、甲醇等发生弱相互作用. 将其在高温真空环境处理后,这些小分子由于弱的相互作用会脱离骨架,导致金属离子无法实现饱和配位变成缺陷[2],这些位置给胺改性提供了接枝位点.

Knoevenagel反应(简称K反应)是指吡啶、哌啶和胺等弱碱性催化剂催化醛或酮与带有活泼亚甲基(α-H)的有机物反应,是精细化工合成中最基本的缩合反应之一[3]. 目前关于胺改性MOFs用于催化K反应取得了一定的进展. Huang等[4]研究发现,胺改性得到的NH2-Tb-MOF对K反应的催化活性与均相催化剂苯胺相当(86%),同时对反应底物表现出一定的尺寸选择性;Ren等[5]利用乙二胺改性的镧系MOFs作为K反应的催化剂,效率达到了99 %以上,且循环3次后仍能保持在96 %左右;Hwang等[6]研究发现,乙二胺改性前后MIL-101在80 ℃下对K反应催化效率分别为31.5%和 97.7 %,表明胺改性能显著提高其催化活性.

在K反应中,含亚甲基的反应底物因分子大小不同常表现出不同的反应活性,相对于丙二腈(0.69 nm × 0.45 nm),大分子底物氰乙酸乙酯(1.03 nm × 0.58 nm)的反应活性更低,所需的反应条件更苛刻;在精细化工合成领域,氰乙酸乙酯与苯甲醛反应生成的α-氰基肉桂酸乙酯是一种重要的药用中间体,故为该反应提供更高活性的催化剂显得尤为重要[7]. 近年来,ZIF-8作为非均相催化剂,在K反应、环加成和Friedel-Crafts酰化等有机合成反应中均表现出良好的催化效果[8]. 通过对ZIF-8胺改性,有机胺上的一个氮原子可与Zn2+配位,而另一个氮原子作为催化K反应的活性中心,故可在一定程度上增强其催化效果[5].

目前有机胺结构对胺改性MOFs催化K反应活性的研究鲜有报道. 本文分别选择1,2丙二胺、二乙烯三胺和三乙烯四胺作为ZIF-8的3种有机胺改性劑,探讨胺的结构特性对ZIF-8催化苯甲醛和氰乙酸乙酯反应活性的影响. 改性前ZIF-8记为样品A,丙二胺、二乙烯三胺和三乙烯四胺改性ZIF-8分别标记为样品B、C和D.

1   实   验

1.1   原料

主要的试剂有六水硝酸锌(Zn(NO3)2·6H2O)、2-甲基咪唑(C4H6N2,2-IM)、苯甲醛(C7H6O,BA)、氰基乙酸乙酯(C5H7NO2,ECA)、1,2丙二胺(C3H10N2,AP)、二乙烯三胺(C4H13N3,DETA)、三乙烯四胺(C6H18N4,TETA)、无水乙醇、甲醇、甲苯以及色谱校准样α-氰基肉桂酸乙酯(ECPA),均为分析纯.

1.2   ZIF-8制备工艺及胺改性

ZIF-8的合成工艺参照文献[9],进行了部分修改:将Zn(NO3)2·6H2O(3 mmol)与2-甲基咪唑(12 mmol)分别溶解在30 mL和20 mL无水甲醇中,固体完全溶解后,将Zn盐溶液在搅拌下迅速加入咪唑溶液中,搅拌5 min后将混合物转移到100 mL聚四氟反应釜中,密封,在140 ℃保温24 h. 冷却至室温后从混合物中除去母液,用无水甲醇离心洗涤3~5次,在80 ℃下隔夜干燥后备用.

根据Miralda等[10]提供的方案并修改后进行胺改性ZIF-8实验:将得到的ZIF-8粉体在100 ℃干燥24 h进行预活化,取200 mg ZIF-8悬浮在30 mL甲苯中,分别加入0.1 mmol 1,2丙二胺、二乙烯三胺和三乙烯四胺,85 ℃回流20 h,冷却后的产物用甲醇彻底洗涤,并在85 ℃真空干燥24 h.

1.3   测试与表征

采用X射线衍射仪(XRD,Rigaku D/max2200)对胺改性前后的ZIF-8进行物相分析. 测试条件:Cu-Ka射线,扫描范围10° ~ 80°,步长0.02,扫描速度为8°/min. 采用JSM-6700场发射扫描电子显微镜对胺改性前后的ZIF-8进行微观形貌观察. 采用FT-IR(Perkin Elmer Spectrum One)对胺改性前后的ZIF-8中存在的官能团进行分析. 操作条件为KBr压片,波长范围为4 000~400 cm-1. 采用美国物理电子公司的PEI5700型X-射线光电子能谱仪进行元素分析. 采用德国耐驰公司的STA-449C综合热分析仪研究胺改性前后的ZIF-8的热稳定性,操作条件为空气中,以5 ℃·min-1的升温速率测量从室温到800 ℃. 氮气吸附-脱附测试借助ASAP2020全自动比表面积及孔隙率分析仪完成,样品测试前在100 ℃条件下真空干燥24 h,测试时脱气条件设为120 ℃、24 h,比表面积和孔径分别由BET公式和BJH方法计算得到.

1.4   催化剂活性及循环稳定性测试

催化剂活性测试:K反应在装有回流冷凝器的磁性搅拌圆底烧瓶中进行. 将1.0 mL苯甲醛、1.1 mL氰基乙酸乙酯和2.9 mL无水乙醇组成的反应混合物加入烧瓶后,在反应体系中加入一定量胺改性前后的ZIF-8,水浴加热,同时通入氮气并缓慢搅拌,考察因素分别为温度、催化剂用量以及胺结构特性,使用前所有催化剂过400目筛. 反应过程中定时取样收集,并通过气相色谱仪GC7890B检测,色谱柱采用HP-5型毛细石英管柱,规格为30 m×320 μm×0.25 μm,检测器采用氢火焰离子化检测器(FID),通过不同浓度的纯α-氰基肉桂酸乙酯建立标准曲线来计算反应的产率[11].

[13]  LIU B,JIAN M,LIU R,et al. Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology[J]. Colloids and Surfaces a Physicochemical and Engineering Aspects,2015,481:358—366.

[14]  DEVI S,SINGH B,PAUL A K,et al. Highly sensitive and selective detection of trinitrotoluene using cysteine-capped  gold nanoparticles[J].Analytical Methods,2016,8:4398—4405.

[15]  ORDONEZ M J C,BALKUS K J,FERRARIS J P,et al. Molecular sieving realized with ZIF-8/matrimid@ mixed-matrix membranes [J]. Journal of Membrane Science,2010,361(1/2):28—37.

[16]  REN H,ZHANG L,AN J,et al. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release[J]. Chemical Communications,2013,50(8):1000—1002.

[17]  WANG Z,WANG D,ZHANG S,et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials,2016,28(17):3399—3405.

[18]  LIU J,HE J,WANG L Y,et al. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil[R]. Scientific Reports,2016:23667.

[19]  MICHAEL C,CECILIA C,STEPHANIE M A,et al. Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8) [J]. RSC Advances,2018,47(8):26987—26997.

[20]  WU J B,LIN Y F,WANG J,et al. Correlation between N 1s XPS binding energy and bond distance in metal amido,imido,and nitrido complexes[J]. Inorganic Chemistry,2003,42(15):4516—4518.

[21]  WU Y N,ZHOU M M,ZHANG B R,et al. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate-framework-8 for efficient arsenate removal[J]. Nanoscale,2014,6:1105—1112.

[22]  REICHENBACH C,KALIES G,ENKE D ,et al. Cavitation and Pore blocking in nanoporous glasses[J]. Langmuir,2011,27(17):10699—10704.

[23]  DONG X,SU Y,LU T,et al. MOFs-derived dodecahedra porous Co3O4:an efficient cataluminescence sensing material for H2S[J]. Sensors and Actuators B:Chemical,2018,258:349—357.

[24]  XIA J,DIAO K,ZHENG Z,et al. Porous Au/ZnO nanoparticles synthesised through a metal organic framework (MOF) route for enhanced acetone gas-sensing[J]. RSC Advances. 2017,61(7):38444—38451.

[25]  SCHIJNDEL V,CANALLE J A M,MOLENDIJK L A,et al. The green Knoevenagel condensation:solvent-free condensation of benzaldehydes[J]. Green Chemistry Letters and Reviews,2017,10(4):404—411.

[26]  TROTZKI R,HOFFMANN M M,ONDRUSCHKA B. Studies on the solvent-free and waste-free Knoevenagel condensation[J]. Green Chemistry,2008,10(7):767—772.

[27]  TRAN U P N,LE K K A,PHAN N T S. Expanding applications of metal-organic frameworks:zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction[J]. ACS Catalysis,2011,1(2):120—127.

[28]  ZHAO Y,DING H,ZHONG Q. Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science,2012,258(10):0—4307.

[29]  ZHANG P,XIAO Y,SUN H,et al. Microwave-assisted,Ni-induced fabrication of hollow ZIF-8 Nanoframes for Knoevenagel reaction [J]. Crystal Growth & Design,2018,18(7):3841—3850.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!