当前位置:首页 期刊杂志

Rigid‑Body Analysis of a Beveled Shape Structure in Regular Waves Using the Weak

时间:2024-08-31

Siti Ayishah Thaminah Hikmatullah Sahib · Muhammad Zahir Ramli · Muhammad Afiq Azman ·Muhammad Mazmirul Abd Rahman · Mohd Fuad Miskon · Effi Helmy Ariffin · Muhammad Hafeez Jeofry ·Kamaruzzaman Yunus

Abstract In many cases of wave structure interactions, three-dimensional models are used to demonstrate real-life complex environments in large domain scales. In the seakeeping context, predicting the motion responses in the interaction of a long body resembling a ship structure with regular waves is crucial and can be challenging. In this work, regular waves interacting with a rigid floating structure were simulated using the open-source code based on the weakly compressible smoothed particle hydrodynamics (WCSPH) method, and optimal parameters were suggested for different wave environments. Vertical displacements were computed, and their response amplitude operators (RAOs) were found to be in good agreement with experimental, numerical, and analytical results. Discrepancies of numerical and experimental RAOs tended to increase at low wave frequencies, particularly at amidships and near the bow. In addition, the instantaneous wave contours of the surrounding model were examined to reveal the effects of localized waves along the structure and wave dissipation. The results indicated that the motion response from the WCSPH responds well at the highest frequency range (ω>5.235 rad/s).

Keywords DualSPHysics · Response amplitude operators · Seakeeping · Wave structure interaction · Weakly compressible

1 Introduction

Most studies on seakeeping have focused on developing theoretical and numerical models for investigating the complexity of fluid exerting hydrodynamic forces on the deformation of a structural component. This is because experiments are extremely costly and time-consuming, especially on the evaluation of individual ship designs. Numerical simulations coupled with enhanced computational power have thus become crucial for validating the theoretical predictions of hydrodynamics while providing useful insights for interpreting experimental results. Traditionally, linear and nonlinear strip theories (Kroukovsky and Jacobs, 1957) are widely employed in the assessment of potential hazards and risk factors that might harm a ship advancing in waves with an arbitrary forward speed and in the overall structural design in shipbuilding (Jensen et al., 2004).

In most linear cases, especially in low and moderately regular waves, linear methods adequately predict the vertical ship motion and wave-induced loads (Faltinsen et al.,1991), in which the problems of the boundary condition are generally solved through correction with the forward speed.This condition is commonly seen in the approach of the linear three-dimensional (3D) panel methods of Green’s function (Chapchap, 2015; Sun et al., 2018). Nevertheless, panel methods show limitations and drawbacks if they are used for analyzing the intricate geometrical estimation of the free surface, mitigation of extreme boundary-layer separation,and solving the free-surface Green’s theorem that often profoundly depends on multiplex equations (Cartwright et al.,2004). Likewise, ordinary linear strip theories, linear 3D methods, and potential flow are unsuitable for modeling large wave conditions where the ship motion would create breaking water on the surface. Thus, the fluid force must be nonlinearly treated (Lee et al., 2010).

For large wave conditions, methods coupling linear and nonlinear techniques have been used to resolve the nonlinearity in fluid force. For example, panel methods and time-domain strip theories have incorporated this coupling approach using Rankine sources to distribute particles over the hull surface (Lin et al., 2007) or Rankine panel methods to distribute particles across the keel and free surface (Huang et al., 1998). As a result, nonlinear effects are observed to be at low Froude numbers, with many discrepancies at high wave amplitudes (Fonseca and Guedes Soares, 2002). Such a limitation has been resolved via a combination of nonlinear and undirected methods comprising the Eulerian set procedure and Lagrangian trajectories for analyzing the fluid dynamics of a body, which has been shown to yield good projections for irregular ship motions and wave loads (Greco et al., 2013).

Nonlinear strip methods are mainly employed for estimating the navigation bearing of a ship advancing in waves with large amplitude motions that give rise to nonlinearities. Frequently,fully nonlinear methods presume that the wave flow is conservative with an independent line integral, continuous, and smooth with no interruption or smashing on the free surface(Chapchap, 2015). These nonlinear methods in seakeeping are generally analyzed via RANS codes. Incorporating viscous and rotational effects into RANS codes to analyze the flow and free surface waves makes it a popular nonlinear method(Tezdogen et al., 2015; Xie et al., 2019). However, nearly all these techniques are hinged on the boundary integral approach and inadequate in resolving the effect of massive water washing along with the deck, i.e., green water effect, fragmenting waves, or water spindrift. Therefore, this study used the meshfree technique of smoothed particle hydrodynamics (SPH) to address the Navier–Stokes problems for nonlinear wave structures (Cercos-Pita et al., 2015).

In this work, the Lagrangian method of SPH was implemented due to its meshless feature. The advantage of using this method is that the competitional domain is discretized into a set of interpolation points called particles, where each particle carries individual properties that evolve over time according to governing equations. This method can be adaptable and versatile with a simple algorithm for engineering applications (Tafuni, 2016; Leonardi et al., 2019).The two methods of applying incompressibility in SPH are enforcing true incompressibility and implementing small incompressibility, also known as weakly compressible SPH(WCSPH). The WCSPH is simple in concept and easy to implement in applications (Ramli et al., 2018; Dominguez et al., 2021). The application of SPH to water waves was started by Monaghan (1994) and then was further investigated by other researchers. The use of SPH has also been extended to study seakeeping analysis (Servan-Camas et al.,2016; Kawamura et al., 2016; Ma and Oka, 2019; Cheng et al., 2020). However, the analysis using SPH is still not common due to the high number of particles needed to capture details with good resolution. The method can be computationally costly, particularly in 3D applications.Therefore, a highly optimized open-source DualSPHysics code, which is based on the WCSPH that is run on a graphics processing unit (GPU), is widely used in many practical engineering problems (Altomare et al., 2020; O’Connor and Rogers, 2021; Pringgana et al., 2021). The GPU offers a high computing power in managing huge amounts of data with a significant reduction in the computation time.

The main objective of this work is to investigate an effi-cient approach in predicting the response amplitude operators (RAOs) of a floating structure over different wave conditions. Vertical displacements were examined using the WCSPH by DualSPHysics, where fluid and boundary domains were transformed into discrete, smoothed particles.Wave heights along the numerical wave tank (NWT) were verified before installing the floating structure, and damping zones were introduced to suppress the effect of reflective waves on the incident waves. Numerical results generated from this study were then compared with experimental data and numerical results from other studies. Consequently, this study showed that the motion responses from the WCSPH were analogous to the theoretical, experimental, and numerical results for various wave conditions along the structure.

2 Methodology of SPH

2.1 Interpolation of SPH

where the summation is over all particlesj,Pis the pressure,ρis the density, andFis the body force (gravity). All interpolations of the WCSPH in this study employed a Wendland quantic kernel (Wendland, 1995; Ramli, 2018) with a length(radius)h=1.3dx, which determines the resolution, wheredxis the initial particle spacing. In DualSPHysics, boundary conditions are based on the dynamic boundary condition (DBC), fluid-driven objects, and modified DBC. In this work, the DBC is implemented, which treats boundary and fluid particles with the same equations. This boundary condition was tested in the work of Ramli (2018).

2.2 Characteristics of the Structure.

In this work, an appropriate structure was chosen according to the availability of experimental datasets used for the validation process. Given that the structure was analyzed as a rigid body for a numerical prediction (Lakshmynarayanana et al., 2015), in this study, the probing model of a flexible structure (Remy et al., 2016) was used for validating the WCSPH. Figure 1 shows the composition and setup of the segmented model used in their studies,with the structure consisting of 12 segregated caissons,each fastened to a steel rod set at 57 mm over the deck. The square-shaped cross section of the rod was 1 cm×1 cm.The principal caisson was slightly altered to generate a beveled shape (Figure 2), while the remainder caissons comprised rectangular sections. Meanwhile, an NWT of 30 m×16 m×1 m was used, and Table 1 shows the properties of the structure and flexible pole. Depending on the modes of deformations, vertical, horizontal, and torsional bendings were permitted for the flexible structure model. The structure motion responses and deformations were evaluated in regular and irregular waves in head waves devoid of the forwarding speed, with tracking points placed at six different locations on the structure. Table 2 shows the six local reference positions for the structure,wherex,y, andzare estimated from the stern, centerline,and hull of the structure, respectively (Figure 2). For the evaluation in regular waves, the structure motions were estimated for several wave periods. Additional details of the experiment are available in Remy et al. (2006).

Figure 1 Experimental layout by Remy (2006)

Figure 2 Reference points for quantification (beveled shape of the bow)

Table 1 Attributes of the structure

2.3 Computational Setup

Similar to the approach used for describing 2D arrangements, the boundaries of structures in the 3D domain are also discretized into particles that directly interact with the fluid domain in the NWT. Each boundary particles hold the properties of the floating structure and interact with the fluid particles at each time step. The pressure between these boundary and fluid particles was then computed to determine the updated velocity and position at each time step, which were the motion responses of the floating structure. However, because the boundary was not a symmetrical rectangular form, discretizing a boundary domain into particles could be tedious. Therefore, the fill point technique was used in this study to transform a single point into discrete boundary particles and redistribute the points throughout the domain based on the shape of the boundary (Figure 3), in which all frames were discretized without disrupting the mesh refinement of the particle(Dominguez et al., 2021).

In the numerical setups for the NWT, a 3D platform was used with thex-axis along with the structure and they-axis andz-axis in the athwartships and upright directions,respectively. Given that the symmetry boundary condition in the finite volume method was not an available option in DualSPHysics, modeling the structure and fluid domain in full dimension was essential. Thus, rendering it became computationally intensive because the dimensions of the fluid domain and side walls were dependent on the individual wavelengths (λ). Figure 4 shows that the structure was initially placed at 1.5λfrom the wavemaker on the left side with the damping beach located at the terminus of the NWT to restrain the approaching waves. Assuming that the longest wavelength produced in this test was 5 m, the damping beach was fixed to 1.5 times the structure length.Meanwhile, each of the side walls was fixed at 2.2 m from the structure’s centroid for all tests, with three probes placed around the structure for tracking the advancing waves and their reflections from the side walls. The movement in thex-direction was also riveted, capturing only the vertical wave motion and pitching.

Table 2 Measuring points from aft to forward of the structure

For the simulation of a rigid body in head waves,the particle mesh was estimated on the true size of the structure and NWT. The NWT was sufficiently large for producing waves near the floating structure while completely restraining the wave at the far end of the damping zone. Apart from the overall dimension, the choice of the appropriate particle spacing for the fluid domain and rigid boundary also depended on the total number of particles generated, computational cost required, and numerical instability. Following the preliminary convergence test of another study (Ramli, 2018), three-particle spacings with consistently well-maintained wave profiles were used in this study:dx=0.010 m,dx=0.015 m,anddx=0.020 m. Particle spacings within this range of numbers were generally deemed appropriate for the study. Given that 25 M particles were generated fromdx=0.010 m, i.e., larger than the utmost number that the current GPU could handle,dx=0.020 m was used in all tests. The total number of particles was 4 M particles with 3.5 M fluid particles and 0.5 M boundary particles.Particle spacings, i.e.,dx=0.012 m and 0.015 m, were employed to examine motion responses with relatively lower frequencies in these convergence studies. Boundary particles were chosen for each wall to mimic the actual setups of the NWT. In each repetition, the movement of the piston wavemaker was controlled by a sinusoidal function. The rigid-body response of the structure in head regular waves under different test conditions was computed for five-wave periods (Table 3). These rigidbody responses were then compared with the findings of the 3D finite volume computational fluid dynamics(CFD) technique (Star-CCM+) proposed by Lakshmynarayanana et al. (2015) and 2D numerical (MARS) and empirical examination of Remy (2006).

Figure 3 Transformation from the solid to particle interface

3 Results and Discussion

3.1 Production of Waves via the Paddle Motion

Prior to the installation of the structure model, the wave profiles that the piston wavemaker produced were tested for two purposes: (i) to verify the wave heights of regular waves generated at various frequencies and (ii) to establish the position of the structure with a minimum reduction in the wave height while allowing a gap between the structure and wavemaker for periodic solutions without being corrupted by reflection. A similar experiment was conducted on the 2D case for the WCSPH with a satisfactory result (Ramli,2018). However, wave reflections from the side walls were not assessed in these tests, which could influence the wave height (Lakshmynarayanana et al., 2015). In this study, six additional probes were incorporated into the analysis. Figure 5 shows all six tracking probes. The tracking points were fixed within 1.5λfrom the wavemaker based on frequencies,and then wave heights were noted in each repetition. Experiments were performed in various conditions to optimize the results.

In Figure 5, dotted lines representing findings from the WCSPH were compared with the analytical results of the 0.10 m wave height. The wave profiles and analytical solution were generally congruent, except for minor discrepancies at relatively low frequencies. The time record of the wave advancement forω=3.490 rad/s showed a minimum wave dissipation at each probe, with the largest reduction of 12% in the wave height throughout the test (Figure 6).Figure 7 shows the wave advancement at different time steps,and the visualization could be enhanced by depicting the particles onto the surface viaIsoSurface.exein DualSPHysics (Crespo et al., 2015).

That whole day Vasilissa walked, for she had lost her way. She could find no path at all in the dark wood and she had no food to set before the little doll to make it alive.

Figure 4 Top and side views of the computational structure

3.2 Rigid‑Body Motion Responses in Head Waves.

Figure 8 presents the RAOs calculated from the WCSPH,in which the amplitudes from four to six wave periods were averaged to yield RAOs. The 2D linear potential flow yielded rigid-body motion responses via the strip theory,designated as MARS (Bishop and Price, 1979), and a finite element method using ABAQUS (version 6.14) denoted by STAR. In the absence of distortions, displacements comprising solely rigid-body motions of heaves and pitches were represented by MARS_Rigid and STAR_Rigid. A particle spacingdxof 0.020 m used for all simulations was denoted by the WCSPH. Altogether, MARS_Rigid qualitatively agreed well with STAR_Rigid in responses, except for minor discrepancies around points 7 and 9 with relatively low frequencies. Supplementary hydroelastic measurements from Remy et al. (2006) were graphed to chart the relation between motion responses and deformations. The results from the experimental data reflect the behavior of a flexible structure, providing insights on how it differs in comparison with motion responses from rigid structures.

Overall, the behaviors of flexible and rigid structures differed in several ways. At comparatively high-frequency ranges ofω>5.235 rad/s, the instantaneous wave contour around the body exerted 3D effects on the structure at points 1, 3, and 5, which was indicative of overestimation by the WCSPH (Figure 9). The 3D effects were largely the results of strong but localized nonlinear wave systems, and a 2D linear model of the potential flow theory would not project itappropriately. However, projections from the WCSPH were lower than that of STAR_Rigid, notably atω=5.283 rad/s with the largest difference of less than 30%. Lower WCSPH projections were probably due to the waves fragmenting on the free surface around the forward section. The repulsive character of the dynamic boundary particles could also cause fluctuations in pressure that affect the flow fields. Predictions from the WCSPH and STAR_Rigid agreed better with the experimental data at all points for the highest frequency. In this case, the impact of diffraction prevailed at the vicinity of waves approaching the bow, perturbing the free surface at the structure regardless of its flexible or rigid condition, thus yielding a minor change in the vertical motion.

Table 3 Selected numerical experimental setups

Figure 5 Average wave height at each tracking probe (prior to installing the barge) at various frequencies

Figure 6 Time history of the wave elevation along the NWT without the structure. T=1.8 s, λ=5.058 m (≅0.7λ)

Whenω<5.235 rad/s, most deviations from the potential theory were revealed. Overprediction occurred at points 1,3, and 12 for the WCSPH, whereas at points 5, 7, and 9, the values underpredicted the potential theory. The rigid structure was most likely linked to the impact of a strong bow and stern waves because of the motion when moving in the pitch motion. Nevertheless, most projections were closely complemented with STAR_Rigid, except for points 7 and 9,probably because of their distant locations from the bow and stern. At positions near the bow (point 1) and stern (point 12), the flexible structure was deformed following the wave advancement, thus generating lower vertical responses than the potential theory.

For points 7 and 9, the attributes of the projection marginally varied from MARS_Rigid and STAR_Rigid, largely because these points were located at the amidships, where the fluid dynamic was primarily affected by the vertical motion of the barge. However, the added mass coefficient obtained from the WCSPH did not corroborate well with the theoretical and experimental data collected at lowfrequency ranges. This discrepancy might be attributable to the fluctuations of pressure at the interface between the fluid and structure.

A thorough assessment between RAOs at various frequencies is given in Figures 10 and 11 with colors representing the velocity of the created waves. Atω=3.926 rad/s, withλ≥2.245m (length of the structure),the bow reflected most of the waves arriving in succession. A higher wave velocity encircling the bow suggests a strong influence of slamming due to higher vertical displacement, thereby generating an uninterrupted and strong but localized wave contour along with the structure, notably at the amidship (points 7 to 9). This nonlinear pattern was not visible in the symmetry boundary approach in STAR-Rigid, which could explain the discrepancy around the amidship area. Figure 11 shows a similar nonlinear pattern for high frequencies, with the slamming effect occurring at the bow, which could differentiate the 3D motion from its 2D equivalent in the simulation. A high frequency appeared to produce short waves that traveled through the structure with minimal wave dissipation. Therefore, the vertical displacement around the amidship was less perturbed and maintained similar responses, as shown in Figure 8.

Figure 7 Wave advancements at various moments in the simulation at ω=6.283 rad/s. Colors represent the swiftness of wave movements

Figure 8 RAO values of vertical displacements along with the structure. In the analyses of the rigid and flexible bodies, point 12 was located near the stern and point 1 near the bow, as shown in Figure 2

Figure 9 Development of the wave profile hitting the floating barge for ω=6.981 rad/s

Figure 10 Illustration of the instantaneous wave contour surrounding the rigid structure at 9.15 s and 9.85 s for ω=3.926 rad/s

To better understand the relationship of particle spacing and the accuracy and capability of the WCSPH in predicting the RAOs for low-frequency ranges, particle numbers were increased for two cases ofω<3.490 rad/s andω<3.926 rad/s. The simulations are expected to yield a better prediction as what has been observed in the case of propagating regular waves. The number of particles was carefully selected on the basis of keeping the balance between the acceptable accuracy of the simulation and a reasonable computational cost. Both cases shown in Figure 8 were denoted as WCSPH_0.012 and WCSPH_0.015 with 18 M and 9 M particles, respectively. However, both results did not show any significant improvements, particularly at the amidships.

Figure 11 Instantaneous wave contours around the rigid structure at 13.95 s and 14.5 s for ω=6.283 rad/s

4 Conclusions

The open-source code DualSPHysics has been used as a numerical tool to study the interaction of a beveledshaped structure in head waves. This is a 3D hydrodynamic experiment to develop an efficient approach in predicting the motion response in comparison with other numerical techniques and experimental data. The beveledshaped structure was modeled using a model similar to that of Lakshmynarayanana et al. (2015), which was, in turn, based on a hydroelastic test conducted by Remy et al. (2006). Some concluding observations from the investigation are given below:

1) Overall, the motion responses of the WCSPH agreed well with the theoretical and experimental findings, except for minor disparities at low frequencies at the amidship of the structure.

2) The disparities were largely the result of the vertical motion, which was presumably affected by a strong but localized wave along the structure and a regular longcrested wave.

3) The convergence test was conducted to examine the small discrepancies noted at relatively low frequencies. However, no apparent improvement was attained through the test.

4) The overprediction of motion responses from the WCSPH occurred at bow regions, and this finding was similar to that of STAR_Rigid at relatively higher frequencies.

5) The comparison with the experimental data provided useful insights into the differences in motion responses between the rigid and deformable structures.

6) The results of this study could be improved with a hydroelastic module to simulate deformable structures.Improvements might also be achieved via a double-precision technique for particle position or variable particle resolution near the structure.

Acknowledgements The authors would also like to express our appreciation to the DualSPHysics team for their works in producing efficient solutions for engineering problems.

FundingThis work was funded by the Ministry of Higher Education(MOHE) of Malaysia under the Long Term Research Grant Scheme(LRGS) No. LRGS21-001–0005 and LRGS/1/2020/UMT/01/1/4.

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!