时间:2024-09-03
王天明,李斌成,赵斌兴,孙启明
(电子科技大学 光电科学与工程学院,成都 610054)
光束质量是评价高功率激光系统性能的一个重要指标,而光学元件中的热效应与输出光束质量有着密不可分的关联。一个高功率激光系统中包含大量光学元件,在高功率密度运行条件下这些光学元件由于光吸收会产生一定的热沉积和非均匀温度分布,与之伴随的热光效应和热弹效应会导致激光光束产生双折射、退偏、波前畸变等现象,降低输出光束质量[1-6]。进一步提高光功率密度甚至会造成光学元件的热熔或应力断裂等损伤[7]。因此,光学元件的热效应已经成为当前制约高功率激光系统性能的主要因素之一。
虽然国内外有不少关于激光系统中光学元件热效应的研究,但都是基于线性模型,即材料热物性参数、光学吸收系数等不随温度变化,而鲜见高功率激光作用下光学元件非线性热效应的研究报道。在高功率激光技术高速发展的今天,光学元件热效应的非线性特性将是越来越不可忽略的因素。PENG等人[5]基于线性模型对不同镜体材料的热畸变特性进行了有限元数值模拟与分析讨论。LIU等人[2]基于线性模型,使用有限元法计算了硅镜在中空非均匀激光辐照下的镜面温升和反射面面形随时间变化的特性。HU等人[3]基于线性模型对激光辐照硅反射镜、熔石英窗口镜温度分布和热相差进行了模拟计算,比较了相同吸收情形下,两种元件温升、热相差分布的时间、空间特性。1986年,DRAGGOO等人[8]对高功率激光系统中光学元件的膜吸收进行了测量,近似拟合得到了吸收系数随温度、激光功率、光斑半径的变化关系,但其准确性和适用性有待提高[9]。2000年,CHOW等人[9]对高平均功率激光系统中光学元件复杂的膜吸收情况进行了相关研究,测量了不同情况下的膜吸收率随激光照射时间的变化关系,并对其物理机理进行了解释,但其解释说服力不够强,普适性也有待进一步研究。
实际中,对于高功率连续激光(例如功率密度约为500kW/cm2)作用下光学元件的热效应,研究人员发现基于线性模型、均匀吸收等前提仿真计算得到的结果存在与实验结果不相符的情况,所以非常有必要对实际中可能存在的热效应的情况开展进一步研究,如参考文献[9]中报道的对于不同的样品,在相同功率密度激光辐照下吸收系数随激光辐照时间会呈现出不同的变化趋势。本文作者在相关研究的基础上,考虑了材料物性参数的非线性、温度边界条件的非线性,并基于吸收随温度线性变化的模型进行了一些仿真分析,分析了不同参数对光学元件热效应的影响,探讨了不同材料、不同形状光斑辐照下的光学元件的非线性热效应。
求解高功率密度连续激光作用下光学元件的温度场是研究热效应的关键。通过温度场,便可求出由温度变化引起的折射率变化;通过基于温度场求解出的热弹场,便可求出由元件变形引起的波前畸变和由热应力引起的应力双折射[10]。
高功率连续激光作用下,光学元件所反映出的光学、热学和力学特征将会存在非线性温度效应,因此传统基于线性模型的光吸收、热传导、热弹耦合场的偏微分方程都将不再适用。对于基于线性的温度场和热弹场问题,已有不少解析解推导和有限元计算的研究[11-15],且相对较为成熟。但基于非线性的问题,温度场除极少数的情形外[16],几乎求不出解析解,求出热弹场的解析解更是难上加难。所以本文中也通过有限元法来求解。
一般来说,温度场和热弹场的非线性效应主要来源于3个方面:物性参数、热辐射边界条件和光学吸收系数随温度的变化。
以熔石英玻璃为例,其热导率、密度、比热容、杨氏模量、泊松比和线性热膨胀系数随温度的变化曲线如图1所示[17-18]。以该材料的热导率为例,它随温度会呈现先缓慢增长后迅速增长的变化趋势。简单来说,是因为总的热导率是传导热导率和辐射热导率之和,温度越高,辐射热导率的贡献越来越大,所以总热导率随温度的增长会越来越快[18]。毫无疑问,各参数复杂的变化趋势会导致温度场和热弹场的求解结果难以预测。
Fig.1 Temperature dependences of physical parameters of a typical fused silica sample
对于热辐射边界条件,即边界热流与温度的四次方成正比,是一种高度非线性的边界条件。显然,温度越高,该非线性因素越不可忽略。
除物性参数外,已有的研究表明[17,19],光学吸收率[20-21]也会随着光学元件温度下的变化而变化。现假设吸收率α随温度T的变化关系为:
α=n+mT
(1)
式中,n为室温下的吸收率,m为吸收率随温度变化的系数。n和m与波长、光学元件材料等相关,具体取值由实测得到。
对于温度变化不大的热传导问题,温度场可用一般的温度控制方程(含热源,常物性的均匀各向同性物体区域的热传导微分方程)及其相应条件求解得到,求解的是线性问题。线性模型是忽略了温度及其各类导数的一次方以上项的结果。当温度变化较大时,将导致相应的数学模型为非线性的,或者泛定方程为非线性,或若干定解条件为非线性。基于非线性的定解问题的泛定方程为[16]:
(2)
边界条件考虑对流换热和热辐射:
(3)
式中,h为换热系数,ε为史蒂芬-玻尔兹曼常数,σ为辐射系数,T′为环境温度,∂T/∂s为温度沿界面外法线方向的导数。
对于高平均功率连续激光辐照光学元件的热弹场问题,依旧可近似认为具有变形较小、温度变化缓慢的特征。变形较小,也就意味着在推导热弹性运动方程的过程中可以略去非线性项(应变表达式中位移的非线性项和本构方程中的非线性项);温度变化缓慢,也就意味着可以略去热弹性运动方程中的动力项(即位移随时间的2阶导数项)和热弹性材料的热传导方程中的耦合项,这样温度场就可以通过求解前面讨论过的热传导方程来得到,位移场可以通过求解如下拟静态的热弹性运动方程来得到[22-24]。
热弹性运动方程的矢量形式为:
(4)
或写成柱坐标系下的标量形式:
(5)
(6)
式中,u为样品变形位移矢量,ur为径向分量,uθ为环向分量,uz为轴向分量,ν(T)为泊松比,αth(T)为样品线性膨胀系数,T(r,θ,z,t)为样品的温度分布。如果是轴对称问题,则:uθ=0,ur=ur(r,z),uz=uz(r,z)。
利用有限元仿真软件,求解了不同情况下的温度场和位移场。取光学元件样品直径为30mm,厚度为5mm;温度边界条件中,换热系数取5W/(m·K),辐射系数取0.74;力学边界条件取径向固定(压圈法)[25];加热时间为90s。吸收率中的n和m理应由实际测量得到,但这里只能通过假设来进行分析研究。
取高斯激光功率为15kW,光斑直径为2mm,考虑前后表面吸收且吸收率相等的情况(增透光学元件)。计算中用到的熔石英的物性参数如图1所示。
不予考虑物性参数和温度边界条件非线性的表面温升和变形分布如图2所示(图中L表示线性(linear),NL表示非线性(non linear))。n为50×10-6,100×10-6和200×10-6时考虑物性参数和温度边界条件非线性的样品中心表面温升比不考虑任何非线性的情况分别约低17K,57K和182K(分别约为不考虑任何非线性的样品中心表面温升的9%,16%,25%),这主要是该材料的热导率和比热容随温度的升高而增大以及考虑温度辐射边界条件导致的。可以看出,仅考虑物性参数和温度边界条件非线性的表面温升较线性情况会偏低,其差值随温度为非线性变化的关系;对应的表面变形峰谷(peak-to-valley,PV)值分别约高10nm,24nm和14nm(分别约为不考虑任何非线性的样品表面变形PV值的8%,10%和3%)。显然对于像熔石英这类的热导率随温度的升高而增大的材料,由于物性参数引起的非线性效应至少对整个高功率激光系统的温升是有利的。
Fig.2 Comparison of calculation results of fused quartz samples irradiated by Gaussian laser, with and without the nonlinearity of physical parameters and temperature boundary conditions
Fig.3 Comparison of calculation results of fused quartz sample irradiated by Gaussian laser, with and without the nonlinearity of absorption
在考虑物性参数和温度边界条件非线性的前提下,考虑吸收非线性与否的表面温升和表面变形分布如图3所示。其中假设n=100×10-6,m分别为0.01×10-6K-1,0.05×10-6K-1,0.1×10-6K-1。可以看出,在m可能的取值范围内,温度场和位移场的变化非常明显。
Fig.4 Variation of temperature rise and thermal deformation of the fused quartz sample center
由此可见,确定表示吸收非线性强弱的m值是准确描述高功率激光照射下的样品吸收的关键。
图4是取n=100×10-6的情况下,样品中心表面的温度和变形随m的变化关系。显然,这样的吸收系数随温度升高而增大的非线性吸收可能会对温度和变形产生正反馈效应,这对高功率激光系统来说是极其不利的。
取高斯激光功率为15kW,光斑直径为2mm,只考虑前表面吸收(高反射光学元件),取n=100×10-6。计算中用到的硅样品的物性参数来源于参考文献[26]~参考文献[29],这里不再进行讨论。
不考虑任何非线性与考虑物性参数和温度边界条件非线性的表面温升和变形分布如图5所示。在考虑物性参数和温度边界条件非线性的前提下,考虑和不考虑吸收非线性的表面温升和变形分布如图6所示。其中假设n=100×10-6,m分别为0.01×10-6K-1,0.05×10-6K-1和0.1×10-6K-1。可以看出,对于硅样品,在上述条件下不管是由于物性参数还是由于吸收所表现出来的非线性效应都不是很明显。这是因为硅的热导率很大(相比于熔石英),所以即使在高功率激光辐照下,硅样品的温升也不会很大,而非线性效应主要依赖于温升,温升越大,非线性效应越明显。显然,对于高功率激光辐照硅样品(即热导率很大的样品)的情况,很多时候是可以忽略热效应的非线性因素的,这将会给求解问题的计算量和计算时间带来好处。
Fig.5 Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of physical parameters and temperature boundary conditions
Fig.6 Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of absorption
高功率激光采用非稳腔输出的光斑一般为环形光束[3,7],本文中也对平顶环形激光辐照光学元件的情形进行一些探讨。取平顶环形激光功率为25kW,光斑外半径Rout=1.5mm,内半径Rin=0.75mm(即遮拦比为0.5),考虑前后表面吸收且吸收率相等的情况,取n=100×10-6。
Fig.7 Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the nonlinearity of physical parameters and temperature boundary conditions
对于平顶环形激光辐照光学元件的情形,如图7所示。考虑和不考虑物性参数和温度边界条件非线性的温度场差异与高斯激光辐照光学元件的情形基本一致,温升分布都是在温升较大时有明显差异,考虑物性参数和温度边界条件非线性的样品表面最大温升比不考虑任何非线性的情况低约85K(约为不考虑任何非线性的样品表面最大温升的20%);考虑和不考虑物性参数和温度边界条件非线性的样品表面变形差异主要出现在样品边缘,约为16nm。对于非线性吸收的情形,如图8所示。在n一定的前提下,表面温度和变形依旧对m有很大的依赖性,并且表面温升与变形近似有同步变化的关系,这规律同样与高斯激光辐照光学元件的情形基本一致。需要注意的是,在上述仿真条件下,考虑和不考虑吸收非线性对于表面变形带来的差异主要出现在样品内部。
Fig.8 Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the absorption nonlinearity
在考虑了物性参数非线性、温度边界条件非线性和光学吸收非线性的基础上,分析了不同参数对热效应的影响;探讨了不同材料、不同形状光斑辐照下的光学元件的非线性热效应。结果表明,高功率(功率密度约为500kW/cm2)连续激光作用下光学元件所反映出的热学、力学和光学吸收存在着不同程度的非线性效应,非线性效应的强弱取决于样品材料、光斑形状等因素,对于像熔石英这类低热导率的材料会存在不可忽略的非线性特性,而对于硅这类高热导率的材料,热效应的非线性非常弱。本文中的理论计算结果为相关实验研究提供了技术指导,有关高功率激光照射下光学元件热效应非线性现象的实验研究将是下一步研究的重点。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!