当前位置:首页 期刊杂志

两种透射率入射腔镜对894.6nm倍频腔转换效率的比较

时间:2024-09-03

张 岩,蔚 娟,张俊香

(1.西安工业大学 光电工程学院, 西安 710021;2.浙江大学 物理系 光学研究所, 杭州 310027)

引 言

在很多需要用到非经典光场的实验研究中,广泛采用外腔倍频过程制备抽运源,进而利用抽运源进行参量下转换产生所需非经典光场[1-4]。在与碱金属原子相关的量子光学实验中,特别是对于铷原子和铯原子,其相应吸收线的非经典光有着重要的应用,如超精密测量[5-6]、量子网络[7]、光谱的测量[8]、光和原子相互作用[9]等。在量子存储的实验研究中,APPEL等人[10]将钛宝石激光器输出的795nm红外光进行外腔倍频,产生功率为40mW的397.5nm紫光,利用紫光抽运光学参量放大器制备非经典光,并与另一束半导体激光在铷原子气室中通过电磁诱导透明效应实现将1.86dB压缩真空光存储1μs。因此,利用外腔倍频过程产生抽运源对制备碱金属原子吸收线的非经典光场具有重要意义,国内外已有不少团队开展了相关研究。而根据参考文献[11]~参考文献[13],倍频腔入射腔镜的透射率是影响转换效率的重要参数之一。在铷原子D1线,HAN等人[14]利用由透射率为11.7%的入射腔镜构成的四镜环形倍频腔对795nm红外光进行外腔倍频,获得130mW的397.5nm紫光,对应的转换效率为31%。WEN等人[15]分别采用入射腔镜透射率为5.6%的半整体腔和透射率为7.4%的环形腔进行外腔倍频,获得47mW(转换效率41%)和35mW(转换效率32%)的397.5nm紫光。ZHAI等人[16]利用入射腔镜透射率为5%的环形腔进行外腔倍频,获得40mW紫光,倍频效率为15.3%。在铯原子D2线,VILLA等人[17]对透射率为8%~12%的多种腔镜倍频效果进行比较,获得蓝光的最高功率为330mW,相应倍频效率为55%。DENG等人[18]采用前表面透射率为8%的整体腔进行倍频,获得158mW蓝光,转换效率为45%。TIAN等人[19]采用入射腔镜透射率为10%的环形腔倍频,倍频效率为67%,制备了210mW蓝光。TIAN等人[13]利用透射率为12.5%的环形腔进行外腔倍频,制备了428mW的蓝光,转换效率高达83.1%。

铯原子D1线的非经典光由于其独特优势[20],在远距离量子信息网络的发展中有着重要的应用前景。南京大学LUO和LIAO等人[21-22]利用倍频及和频过程制备了447.3nm蓝光,但是转换效率只有10%左右。ZHDANOV等人[23]利用内腔倍频过程制备了功率达2.4W的447.3nm蓝光,相应的倍频效率为12.5%。在之前的工作中,作者还利用透射率为5%的入射腔镜构成的驻波倍频腔对350mW半导体激光进行外腔倍频,制备了功率为178mW的单频447.3nm蓝光[24]。利用该倍频腔产生的蓝光,作者又进一步进行了参量下转换等工作[20]。然而,尚未专门开展采用不同透射率入射腔镜对转换效率及功率稳定性影响的实验研究,以获得实验室现有条件下的最佳抽运源。因此,本文作者利用波长对应于铯原子D1线的894.6nm半导体激光作为光源,以周期极化磷酸氧钛钾(periodically poled KTiOPO4,PPKTP) 晶体作为倍频腔的非线性介质,对采用两种不同透射率入射腔镜的驻波倍频腔的转换效率及功率稳定性等参数进行了研究。

1 实验装置

实验装置如图1所示。图中,TA为半导体锥形放大器(tapered amplifier),OI为光隔离器(opitcal isolator),APP为变形棱镜对(anamorphic prism pairs),LIA为锁定放大器(lock-in amplifer),PM为功率计(power meter)。光源由一台半导体激光器(Toptica Photonics,DL100)和半导体锥形放大器(Eagleyard Photonics,EYP-TPA-0915-01500-3006-CMT03-0000)构成。半导体激光器输出功率为28mW、线宽为1MHz的红外光,将其作为种子光注入TA进行功率放大,激光器及TA后各用一个光学隔离器防止后续光路的反馈光。TA由脊型波导构成的单模区和锥形增益区两部分组成,其工作原理是由单模区进行选模从而提供单模低功率激光,该单模低功率激光通过锥形增益区在保证原有激射模式下实现对连续半导体激光的功率放大。

TA输出激光的空间模式较差,如图2a所示。因此实验中先利用整形棱镜组对激光整形,然后通过光纤对其进行模式清洁后注入倍频腔,经过模式清洁后获得功率为350mW的基频激光。光纤输出激光光斑如图2b所示,具有较好空间模式。倍频腔以PPKTP晶体作为非线性介质,倍频腔的结构及具体参数见参考文献[24],在其它参数相同的情况下,本文中设置了基频光透射率分别为5%和10%的两种入射腔镜。倍频腔结构紧凑,整体固定在定制的铝制光学小平台上用来隔离周围噪声,提高了输出蓝光的稳定性。实验中利用内调制稳频技术锁定腔长使基频光共振[25],其核心装置为一台锁相放大器(Stanford Research System,SR830)。图2c为倍频腔输出蓝光光斑。可以看出其具有非常好的空间模式,有利于下一步作为光学参量振荡器的抽运源进行模式匹配。

Fig.1 Experimental setup

Fig.2 a—output beam from TA b—fundamental light after shaping c—blue laser by frequency doubling

2 结果与讨论

利用偏振光谱稳频技术将激光器的频率精准锁定到铯原子D1线的F=4(62S1/2)→F′=3(62P1/2)超精细跃迁能级上[26],以保证半导体激光器的稳定输出。在其它条件相同,入射腔镜透射率分别为5%和10%时,逐渐增大注入基频光功率,并调节锁相放大器的参数及晶体的温度,使得倍频腔运转在最佳工作状态,输出蓝光功率变化情况如图3所示。其中,实线为理论值,图3a中的圆点和图3b中的方块分别为使用两种透射率腔镜时测得蓝光实际功率。

Fig.3 Output power of blue light versus fundamental power under two di-fferent input couplers

倍频所得蓝光功率理论值的计算方法如下[11]:

(1)

从图3可以看出,在注入基频光功率较低时,实际获得蓝光功率与理论值基本相同。然而随着基频光功率的增加,晶体对蓝光和基频光的吸收变强,导致输出蓝光功率越来越低于理论值。在注入基频光功率最大为350mW时,采用透射率T为5%和10%时的入射腔镜分别获得178mW(转换效率50.8%)和131mW(转换效率37.4%)蓝光。理论上,在注入基频光功率最大时,利用两种透射率腔镜倍频所得的蓝光功率应该基本相等,而实际产生的蓝光功率却相差了47mW,转换效率相差13.4%。这种情况的出现,一方面是由于入射腔镜的透射率为5%时更接近最佳透射率[14],另一方面可能是透射率为10%的腔镜的镀膜不够理想,影响了倍频效率。

图4显示了在最大注入光功率时,倍频腔输出蓝光功率随时间的起伏。采用透射率T为5%和10%时的倍频腔,获得蓝光的0.5h功率起伏均方根(root mean square,RMS)分别为1.4%和0.7%,具有较好的功率稳定性。输出蓝光功率下降主要是由于在较高功率密度的蓝光照射下,PPKTP晶体会被损伤,导致晶体的损耗随着时间的增加而变大,但是这种损伤大部分是可逆的,通常几个小时即可自行恢复[27]。

Fig.4 Blue light power stability in 0.5h

3 结 论

利用以PPKTP 晶体作为非线性介质的驻波倍频腔对铯原子D1线半导体激光进行外腔倍频。在注入350mW 基频光、入射腔镜透射率为5% 时,倍频效率为50.8%,制备了178mW 波长为447.3nm 的蓝光,相较于采用透射率为10% 入射腔镜的倍频腔(转换效率37.4%) ,获得功率为131mW的蓝光,其0.5h功率起伏为0.7%,具有明显优势。该研究为优化非经典光场所需高质量抽运源打好了基础。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!