时间:2024-09-03
吴瑞勇
(太原学院 计算机科学与工程系,太原 030051)
煤矿灾害主要包括瓦斯爆炸、煤尘浓度、渗水、火灾以及塌方[1-3]。瓦斯与煤尘主要靠气体传感设备监控,水灾主要靠探水设备监控,火灾主要靠温度传感设备监控,塌方主要靠土压计等监控。其中,坍塌和火灾由于其不易准确预警从而成为最常见的灾害[4],因为若想实现准确预警往往需要大范围动态监测能力。一方面,坍塌主要是拱顶压力持续增加超过支撑阈值导致的,故具有持续、稳定等应力监测能力是预防该类灾害的关键[5];另一方面,火灾如果能够及时发现就能有效防止扩散及灭火,而实际上往往是因为现有温度传感器无法长时间工作在湿度很高的开采层[6],同时,考虑用电安全也无法大范围铺设测试节点[7]。
针对塌方灾害而言现有的井下监测设备主要有土压计[8]、应变片探测器[9]等,土压计在井下环境可稳定使用,但监测范围十分有限,无法实现大范围监测,以点概面的测试数据往往存在漏检的风险[10];应变片探测器价格便宜、可实现多点监测,但其容易受到环境影响,需要经常标定,费时费力[11]。针对火灾而言,主要监测设备有热释电温度传感器[12],其体积小、成本低,但易受湿度影响,每隔一段时间需进行标定。与此同时,这些电子传感器件最大的安全隐患是有源,有造成火灾爆炸的风险。相比之下,基于光纤布喇格光栅(fiber Bragg grating,FBG)的光纤传感网络具有监测网络无源、不受湿度影响、测试范围广且可多参量检测的特点[13-16]。不仅如此,光纤网络更容易实现与互联网的对接,完成井下设备数据交互、物理层与应用层之间数据交互,构成井下实时监控物联网[17-18]。
为了解决井下高湿度、大型机械振动等恶劣环境对探测器带来的干扰及有源安全隐患,本文中研究了基于FBG的井下多参量传感系统,系统包含一种新型的FBG封装结构以及差分消振数据处理方法,实现了高精度、长时效、高稳定的井下环境参量监测目标。
光纤传感物联网[19]如图1所示。针对井下测控系统而言,应用层主要指监控预警平台,其承担着对应变、温度等数据的监测及对支撑强度、火灾等风险的预警,同时与互联网对接实现对远程管理中心的数据交互;网络层是连接传感单元与监控平台的硬件平台;感知层为应变传感FBG和温度传感FBG。
Fig.1 Optical fiber sensing internet of things
图1中双向箭头指基于光纤完成的数据交互,物联网数据由此完成从传感器到应用平台的数据互换。系统感知层是覆盖在井下各个巷道的光纤传感监测网络。共分为两个部分:一部分是光纤光栅应变传感网络,其主要是用于巷道支撑位置的应力应变监测,从而为支撑风险评估提供有效数据;另一部分是光纤光栅温度传感网络,其主要是用于巷道、开采层等位置的温度监测,获取实时温度变化信息,从而识别由于火灾而引起的温度异常。系统网络层提供数据处理及物理层与应用层的数据交互控制,因为在感知层的传感点位非常多,数据量很大,所以不能把处理系统完全放在巷道等终端位置,故利用光纤传输网络将所有测试点的数据导入到网络层后,由网络层的计算系统实现风险评估,由数据库保存并上传必要的井下环境参量信息。系统应用层是由软界面构成的控制平台,是为上位机中用户控制提供可视化操作界面的。
如图2所示,为了显示基于FBG的光纤传感网络的分布结构,将巷道划分了3个截面,其中在巷道拱起段中45°和60°的固定锚位置上安装FBG传感器,因为该位置可以很好地监测围岩拱顶压力分布。利用分布在固定锚上的FBG可以实时采集拱段的应力场分布,从而为坍塌风险评估提供预警数据。
Fig.2 Schematic diagram of optical fiber sensor network layout
基于FBG的应力监测需要解决两个问题:一是温度变化对应力监测的交叉敏感;二是开采层大型机械振动引入的噪声对FBG应力监测的影响。为此设计了新型的FBG封装结构,采用两个不同FBG完成应力与温度数据的获取,同时将两组信号做互相关运算,实现对振动噪声的差分消除,其结构如图3所示。
Fig.3 The novel packaging structure of FBG
FBG1与拱段固定锚紧接,从而可以通过FBG1获取测试点应力值,实现应力实时监测。FBG2与FBG1均在保护外壳中,认为其温度一致,但由于FBG2采用单端固定的方式,所以当围岩应力发生改变时不影响FBG2,由此可知,FBG2可用于温度标定。
FBG的波长偏移量Δλ解算函数为:
(1)
式中,λ0为初始波长(FBG1的回波);ε为FBG的应变量产生的应变,其与应力F(F=kε,k为应变系数)成正比;ΔT为温度变化量;Pε为弹光系数;αf和ξ分别为对应不同光频率f的热膨胀系数和热光系数[20];k,Pε,αf和ξ均为常数;λ0即为中心波长;Δλ为波长偏移量,由解调仪[21]解出。由上式可知,仅有温度与应力为未知量,又因为FBG2为单悬臂,无应力干扰,故其ε=0,则温度可由FBG2解算得到,满足下式:
(2)
式中,ΔλFBG2为由FBG2解算得到的波长偏移量值。将(2)式代入(1)式,再利用FBG1的波长偏移量就能求出F,从而实现应变与温度的解耦。
针对测试过程中存在振动干扰,采用差分运算的方式进行抵消处理。由于振动在FBG1和FBG2中均存在,并且在时间上是一致的,所以对两个FBG的回波数据做傅里叶变换,将两组信号的频域信息做互相关运算,从而将具有明显振动周期存在的光谱波动找出,并将其对应的光谱相互抵消,就能最大程度地消减由于振动造成的干扰了。则光功率谱G有:
(3)
式中,t为时间,λ为波长,A(t)为t时刻的功率值。然后对两个FBG的频域数据进行互相关运算,互相关函数有:
(4)
然后将相关度高的波长波动位置数据组成集合,从而依据集合剔除由于振动引入的应力测试值变动。
为了验证系统的可行性,在太原西山煤矿南矿区某一非工作状态的巷道中进行了环境参量监测实验。实测井下平均温度21.4℃,相对湿度69%,巷道内本身没有开采设备工作,但临近巷道有开采作业,存在明显振动噪声。并将监测数据通过光纤传感网络与互联网相连,使办公区域的主机可以直接巡检开采层环境监测数据,系统结构如图4所示。
Fig.4 Experimental test system
在同一个拱形截面中(如图2所示),采用4个FBG可以分别获取拱段两侧的压力分布。以一侧为例,两个FBG应力传感器的监测数据就能够判断出拱段位置上是否存在应力异常变化,从而实现风险预警。由于数据具有一定的线性特征,故测试时可采用可测区间内两个测试值完成测试曲线的标定,标定后压力F与FBG的回波波长λ的函数可表示为:
F=C(λ45°-λ60°)
(5)
式中,C表示土体压力系数(kPa/nm),λ45°和λ60°表示FBG在45°和60°的回波波长。
实验监测时间为96h,共计4d的测试数据,期间第1天中有2次相邻开采层的爆破、第2天中有2次在更远一些的巷道的爆破以及第4天有1次另一个稍远的巷道的爆破。依据FBG测试回波信号反演的压力变化曲线如图5所示。
Fig.5 Data of soil pressure change obtained from FBG inversion
由土体压力数据可知,在9:00~10:00之间及15:00~16:00之间相邻开采层的爆破引起的应变传感FBG明显的波动,分别导致45°测试点位置应力最大值为949kPa和863kPa,60°测试点位置应力最大值为757kPa和653kPa。两个FBG测试曲线的变化时间及振幅差基本相同。系统通过差分计算完成应变测试数据中对爆破振动造成的响应误差的消除。
将用于温度传感的FBG的数据采集至处理系统,依据(3)式和(4)式将具有相关度超过预设阈值的波长偏移数据滤除后,再将整个时间段的波长进行温度反演,反演后温度波动如图6所示。
Fig.6 Data of temperature change after filtering out vibration noise
由实验数据分布可以看出,在96h的数据采集过程中,巷道内温度变化很小。整个过程温度测试精度为0.5℃,温度最大值为21.7℃,最小值为21.0℃。相比之下,在未经振动差分滤噪的温度测试数据中,计算获得的温度最大值为49.8℃,最小值为12.4℃,显然计算值与实际情况不符,说明未滤波的条件下振动对测试数据影响明显。而未经差分滤噪的错误数据是由于测试过程中相邻开采层爆破产生的振动导致的,可见,本差分算法在应变、温度与振动的解耦方面具有明显效果。
针对井下高湿度、强振动等复杂环境条件,设计了一种无源、紧凑型光纤传感物联网系统,其可实现对应力和温度信息双解调,同时利用互相关算法实现振动噪声的差分消除。实验测试结果显示,应变、温度测试结果符合实际值,振动噪声误差被有效抑制,验证了其在井下复杂环境中具有更好的适应性。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!