当前位置:首页 期刊杂志

外齿轮形颗粒催化剂上乙烯催化氧化的反应工程计算

时间:2024-09-03

周继鹏,房鼎业,李 涛,2



外齿轮形颗粒催化剂上乙烯催化氧化的反应工程计算

周继鹏1,房鼎业1,李涛1,2

(1华东理工大学大型工业反应器工程教育部工程研究中心,上海 200237;2华东理工大学化学工程联合国家重点实验室,上海 200237)

摘要:针对乙烯氧化制环氧乙烷反应体系,对外齿轮异形催化剂建立三维反应-传质-传热模型。有效扩散系数和有效热导率均为待求解浓度场和温度场的函数,使得偏微分方程组模型为强非线性。采用有限元算法求解,并对模型有效性进行验证,定量研究了催化剂几何比外表面积和内扩散效率因子的关系。计算结果表明,几何比外表面积为1862 m2·m-3的外齿轮催化剂内扩散效率因子为0.1804,而几何比外表面积为924 m2·m-3的圆柱形催化剂内扩散效率因子为0.0993。对单个催化剂颗粒反应-传递现象的研究能定量指导催化剂设计,并为耦合反应器流体力学和催化剂反应传递现象多尺度模拟计算奠定基础。

关键词:乙烯氧化;异形催化剂;传递过程;数值模拟;内扩散效率因子

引 言

环氧乙烷(EO)是乙烯(ET)工业中重要产品,在其生产成本中,乙烯原料占总成本的70%,故致力于开发高性能催化剂是降低乙烯单耗、提高经济效益最有效的手段[1-2]。乙烯氧化合成环氧乙烷过程是一个强放热多重反应,它的选择性由深度氧化生成CO2副反应所决定。许多研究工作所进行的乙烯氧化过程本征动力学研究都表明:生成CO2副反应导致的温升越高,副反应的反应速率与主反应的反应速率之比越大,选择性越低[3]。

异形催化剂在工业生产中,尤其是强放热/吸热反应体系中有广泛的应用[4]。装填异形多通孔催化剂的反应器具有高空隙率,因而具有更低的压降、更好的流动性能,更少流动死区。异形催化剂几何比表面积大,故能减少传递阻力,反应物能更好扩散到催化剂颗粒中,提高反应转化率和选择性[5-6],从而提高催化剂内扩散效率因子[7-9]。

目前反应器设计更多侧重于反应器内流体力学分析,而不考虑催化剂内扩散影响[10]。而在工业应用中,催化剂内扩散影响往往很严重。房鼎业等[11-12]报道了工业催化剂的效率因子较小,仅为 0.1~0.22。且对于甲烷蒸汽重整催化剂,粒内存在较大死区[11]。求解催化剂颗粒反应-传质-传热模型常见的方法是将其简化为一维或者二维模型求 解[11-14],且将模型参数(有效扩散系数和有效热导率)简化为常数。由于模型的简化,使得模型计算结果精度较低。本文对异形催化剂建立三维反应-传质-传热数学模型,且模型参数为待求解浓度场和温度场函数,使得求解模型方程组呈现强烈的非线性。采用有限元算法(FEM),模型收敛性很好[15-16]。本文方法为耦合反应器流体力学和催化剂反应传递现象计算奠定了基础,能定量指导催化剂开发和反应器多尺度模拟计算[17-18]。

1 反应-传质-传热数学模型

1.1 数学模型

Ag/Al2O3催化剂上,乙烯与氧发生如下3个不可逆反应。由原子系数矩阵法可知该体系有两个独立反应,本模型取反应(1)和反应(2)为独立反应。

传递现象会影响反应进程,同时反应会产生温度分布和浓度分布,影响扩散系数和热导率,进而影响传递现象。为了准确计算模拟催化剂颗粒的反应过程,必须建立催化剂颗粒内反应-传质-传热偏微分方程组并求解。选取ET和CO2作为关键组分。

反应-传质方程

传热方程

其中

式中,1r为反应1中乙烯(ET)的反应速率;r2为反应2中乙烯(ET)的反应速率; r3为反应3中环氧乙烷(EO)的反应速率。

模型中,有效扩散系数为浓度分布、温度分布、孔径分布的函数。有效扩散系数由分子扩散系数和Knudsen扩散系数组成[19]。

分子扩散系数

式中,i=ET、CO2,j=ET、CO2、EO、H2O、O2、N2,且ji≠;iy为催化剂内组分的摩尔分数。

组分i,j二元扩散系数

式中,ε为催化剂孔隙率;τ为曲折因子;pt为系统总压力;Mi为相对分子质量;Vt为扩散体积[19]。

Knudsen扩散系数:

式中,dpore为催化剂的平均孔径。

催化剂颗粒的有效热导率主要受催化剂骨架结构和孔内气体热导率影响。式(14)可用于计算催化剂颗粒的有效热导率[20]

式中,c为与催化剂颗粒有关的参数;N为催化剂孔内气体组分数;λs为催化剂骨架热导率,对Al2O3,热导率与温度呈线性关系[20]。

催化剂孔内单组分气体热导率λfi

式中,λgi为纯组分i热导率,可关联为温度的函数关系式[21]。L为分子平均自由程

式中,k为 Boltzmann常数;de为分子有效直径。

反应焓变为温度的函数[20]。

反应中加入10-6级别二氯乙烷(DEC)作为抑制剂,催化剂反应动力学方程如下[22]

模型参数见文献[22]。

1.2 物理模型及网格划分

外齿轮催化剂尺寸为ϕ6.5 mm×6.5 mm,中孔直径1.4 mm,齿轮曲率半径1.1 mm。

采用有限元软件COMSOL Multiphysics。利用对称性,对八分之一模型求解,再将计算结果映射到整个催化剂上,可以在不影响求解精度的情况下极大减少计算量。催化剂高度方向上因变量梯度在表面大,内部小,所以网格采用扫掠方法,在表面网格密集,内部稀疏。模型棱柱单元网格数为16170,求解自由度为86791。经验证,再细化网格不影响模型计算精度,网格独立性很好。图1为八分之一催化剂颗粒网格剖分示意图。

图1 八分之一催化剂网格示意图Fig.1 Grid map of catalyst

1.3 边界条件及求解方法

模拟条件为工业反应中操作条件。操作压力为2.2 MPa,温度为483.15 K,初始组分含量ET 28.5%、O28.5%、CO28.0%、N255.0%。

边界条件为催化剂颗粒外表面浓度和温度与气相主体浓度和温度相同。

图1中,在催化剂外表面选择浓度和温度边界条件。在对称面上选取对称边界条件。采用直接迭代求解法PARDISO,收敛相对容差为0.1%。由于模型为高度非线性方程,所以先求解反应-传质方程式(4)、式(5)。然后将得到的解作为初值,求解反应-传质-传热方程式(4)~式(6),模型收敛性很好。

图2 COMSOL计算值和文献值[14]比较Fig.2 Concentration distribution of ET calculated by COMSOL comparing with literature values

2 结果与讨论

2.1 模型验证

用COMSOL软件计算了ϕ6.5 mm×6.5 mm,中孔直径 1.4 mm环柱状催化剂颗粒。图 2是COMSOL与正交配置法计算ET浓度分布比较[12]。可见COMSOL算法与正交配置法计算结果吻合。由于文献中正交配置法只选取 10个点对求解方程组进行离散,在对方程组离散化过程中存在较大的舍入误差。而COMSOL可以根据求解精度对方程组进行任意阶次离散,舍入误差较文献采用10点离散正交配置法低。故COMSOL理论上相比于文献中采用10点离散正交配置法精度更高。

2.2 催化剂颗粒有效扩散系数与有效热导率

由式(9)~式(16)可知,有效扩散系数和有效热导率是待求解的浓度场和温度场的函数。图3(a)为ET有效扩散系数。催化剂颗粒内ET平均有效扩散系数为1.97×10-7m2·s-1,CO2平均有效扩散系数为1.85×10-7m2·s-1,且有效扩散系数在催化剂外表面达到最大。有效扩散系数基本不变。分析可知,有效扩散系数与温度和组分浓度有关,催化剂内部温度升高,会导致有效扩散系数变大,由于存在内扩散阻力,导致有效扩散系数变小。由于温升很小,内扩散阻力引起的有效扩散系数变低占主要因素。所以催化剂外表面有效扩散系数最大,内部变低。

图3 有效扩散系数与有效热导率Fig.3 ET effective diffusivity and effective thermal conductivity

图3(b)为有效热导率分布。平均有效热导率为0.45 W·m-1·K-1。有效热导率主要受温度影响,内部温升大,有效热导率在内部达到最大。由于催化剂颗粒温升不大所以有效热导率变化不大。

2.3 ET浓度与催化剂颗粒温度分布图

图4为关键组分ET浓度分布。由图可知催化剂颗粒在外表面浓度降低最大,反应主要发生在外表面。对整个催化剂颗粒进行积分运算可知,ET在催化剂颗粒内的平均浓度为 149.13 mol·m-3,CO2平均浓度为45.91 mol·m-3。

图4 ET浓度分布Fig.4 ET concentration distribution

图5为温度分布。反应为放热反应,催化剂颗粒温度升高,最高温度为484.58 K,温升为1.43 K。温升较小原因是模型求解中选取的边界条件是温度边界条件。由牛顿冷却定律,传热量为对流传热系数与温度差的乘积,催化剂与主流体传热量为一有限常数,而催化剂与主流体之间温差趋于 0(选取了温度边界条件),所以对流传热系数趋于无穷大,故相当于催化剂与主流体区域传热性能最好。

2.4 EO生成速率与选择性

图6为EO反应速率和选择性分布。由图6(a)可知,催化剂外表面反应速率达到最大,经过一个很短的距离,大约0.2 mm左右,催化剂内反应速率降低为外表面反应速率1/10,而且维持不变,可知催化剂有效反应区域为催化剂外表面。

由图6(b)可知,催化剂选择性在外表面达到最大。由于催化剂内部温度比外表面大,催化剂内选择性降低,提高催化剂内扩散效率因子,降低催化剂温升,可有效提高催化剂选择性。

图5 温度分布Fig.5 Temperature distribution/K

图6 EO反应速率和选择性Fig.6 Reaction rate and selectivity of EO

2.5 催化剂效率因子与催化剂设计

内扩散效率因子定义

式中,R(V)为催化剂颗粒内反应速率,为空间坐标函数。RΩ为催化剂外表面反应速率。计算可知,催化剂内扩散效率因子为0.1804,还有很大提升空间。提高催化剂效率因子,能增加催化剂利用率,从而提高反应转化率。在生产规模不变条件下可以减小反应器设备尺寸,降低投资。

EO氧化反应属于内扩散控制,反应速率经过外表面很短距离迅速降低90%,要提高催化剂效率因子,必须增加催化剂几何比外表面积。图7为催化剂选择性和内扩散效率因子与几何比外表面积关系。计算了圆柱形、环柱状、外齿轮形催化剂,得出催化剂选择性、效率因子与几何比外表面积的定量关系。其中,圆柱形催化剂尺寸为ϕ6.5 mm×6.5 mm。环柱状催化剂尺寸见2.1节。将外齿轮异形催化剂等效为等比外表面积球形催化剂颗粒时,经计算得出两者内扩散效率因子相同。

图7 催化剂选择性和内扩散效率因子与几何比外表面积关系Fig.7 Selectivity and internal effectiveness factor of catalyst with geometrical specific surface area

3 结 论

(1)乙烯环氧化反应属于内扩散控制,且扩散阻力区在距离催化剂外表面约0.2 mm左右。在扩散阻力区反应速率下降90%,越过扩散阻力区,催化剂内部反应速率基本维持不变。

(2)几何比外表面积为1862 m2·m-3的外齿轮催化剂内扩散效率因子为 0.1804,EO选择性为86.00%,而几何比外表面积为924 m2·m-3的圆柱形催化剂内扩散效率因子为 0.0993,EO选择性为84.12%。

(3)催化剂几何比外表面积能作为评价催化剂内扩散影响的重要指标。且催化剂内扩散效率因子几乎随催化剂几何比外表面积呈线性递增关系。

符 号 说 明

ci——组分i浓度,i=ET,CO2,mol·m-3

ci,b——组分i在主流体浓度,mol·m-3

ci,∂Ω——组分i在催化剂表面浓度,mol·m-3

Deff(CO2) ——CO2有效扩散系数,m2·s-1

Deff(ET) ——ET有效扩散系数,m2·s-1

Deff,k,i——Knudsen扩散系数,m2·s-1

Deff,m,i——分子扩散系数,m2·s-1

dpore——催化剂平均孔径,nm

ΔHi——反应焓变,i=1,2,3,J·mol-1

Ki——吸附常数

k ——Boltzmann常数,k =1.38×10-23J·K-1

ki——反应速率常数

Mi——相对分子质量

pt——总压,MPa

ri——反应i的反应速率,i=1,2,3,kmol·kg-1·h-1

r(CO2) ——CO2总反应速率,mol·kg-1·s-1

r(ET) ——ET总反应速率,mol·kg-1·s-1

T ——催化剂温度,K

Tb——主流体温度,K

T∂Ω——催化剂外表面温度,K

Vi——扩散体积

yi——组分i的摩尔分数,i=ET, CO2, EO, H2O, O2, N2

ε ——催化剂孔隙率

η ——催化剂内扩散效率

因子

λeff——有效热导率,W·m-1·

K-1

λfi——催化剂内单组分气体热导率,W·m-1·K-1

λgi——纯组分气体热导率,W·m-1·K-1

ρcat——催化剂密度,kg·m-3

τ ——催化剂曲折因子

References

[1] 李涛, 樊蓉蓉, 朱炳辰. 薄壁多通孔环氧乙烷合成银催化剂工程研究-外冷管式反应器的数学模拟及比较 [J]. 石油化工, 2008, 34: 817-818.

LI T, FAN R R, ZHU B C. Engineering design of thin-walled silver catalyst of ethylene to ethylene oxide: mathematical modeling and compare of external cooling tube reactor [J]. Petrochemical Technology, 2008, 34: 817-818.

[2] SALMI T, CARUCCI J H, ROCHE M, et al. Microreactors as tools in kinetic investigations: ethylene oxide formation on silver catalyst [J]. Chem. Eng. Sci., 2013, 87: 306-314.

[3] 李红权. 乙烯氧化制环氧乙烷反应的热力学分析及工艺改进方向[J]. 工业催化, 1999, 7 (1): 33-37.

LI H Q. Thermodynamics for synthesis of ethylene oxide through ethylene oxidation and the trends in improvement on its process condition [J]. Industrial Catalysis, 1999, 7 (1): 33-37.

[4] DEROUANE E G, PARMON V, LEMOS F. Sustainable Strategies for the Upgrading of Natural Gas in Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges and Opportunities [M]. Netherlands: Springer, 2005: 413-420.

[5] SIE S T, KRISHNA R. Process development and scale up (Ⅱ): Catalyst design strategy [J]. Rev. Chem. Eng., 1998, 14 (3): 159-202.

[6] DIXON A G, NIJEMEISLAND M, STITT E H. Packed tubular reactor modeling and catalyst design using computational fluid dynamics [J]. Advances in Chemical Engineering, 2006, 31: 307-389.

[7] BRUNO S P, BARRETO G F, GONZALEZ M G. Effect of the geometric characteristics of commercial catalysts for steam reforming [J]. Chem. Eng. J., 1988, 39 (3): 147-156.

[8] BAEK S M, KANG J H, LEE K J, et al. A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications [J]. Int. J. Hydrogen Energy, 2014, 39 (17): 9180-9192.

[9] ALBERTON A L, SCHWAAB M, FONTES C E, et al. Hybrid modeling of methane reformers (Ⅰ): A metamodel for the effectiveness factor of a catalyst pellet with complex geometry [J]. Ind. Eng. Chem. Res., 2009, 48 (21): 9369-9375.

[10] DIXON A G. CFD study of effect of inclination angle on transport and reaction in hollow cylinder catalysts [J]. Chem. Eng. Res. Des., 2014, 92 (7): 1279-1295.

[11] 房鼎业, 孙启文, 朱炳辰. 非等温甲烷蒸汽转化反应催化剂的效率因子 [J]. 高校化学工程学报, 1991, 3 (5): 225-231.

FANG D Y, SUN Q W, ZHU B C. The effectiveness factors for non-isothermal methane steam-reforming catalyst [J]. Journal of Chemical Engineering of Chinese Universities, 1991, 3 (5): 225-231.

[12] 高崇, 潘银珍, 朱炳辰. 环柱状催化剂内强放热复合反应-传质-传热耦合过程研究(Ⅲ): 数学模型的求解及实验验证 [J]. 化工学报, 1998, 49 (5): 617-623.

GAO C, PAN Y Z, ZHU B C. Study on coupling process of multiple reaction-mass transfer-heat transfer in hollow cylindrical catalysts with strong heat effect (Ⅲ): Solution and experimental verification of mathematical model [J]. Journal of Chemical Industry and Engineering (China), 1998, 49 (5): 617-623.

[13] LI T, XU M S, ZHU B C, et al. Reaction-diffusion model for irregularly shaped ammonia synthesis catalyst and its verification under high pressure [J]. Ind. Eng. Chem. Res., 2009, 48 (19): 8926-8933.

[14] PAN T S, ZHU B C. Study on diffusion-reaction process inside a cylindrical catalyst pellet [J]. Chem. Eng. Sci., 1998, 53 (5): 933-946. [15] HAYES R E, KOLACZKOWSKI S T, THOMAS W J. Finite element model for a catalytic monolith reactor [J]. Computers & Chemical Engineering, 1992, 16 (7): 645-657.

[16] ROY S, HEIBEL A K, LIU W, et al. Design of monolithic catalysts for multiphase reactions [J]. Chem. Eng. Sci., 2004, 59 (5): 957-966.

[17] KOČÍ P, NOVÁK V, ŠTĚPÁNEK F, et al. Multi-scale modelling of reaction and transport in porous catalysts [J]. Chem. Eng. Sci., 2010, 65 (1): 412-419.

[18] KULKARNI K, MOON J, ZHANG L B, et al. Multi-scale modeling and solution multiplicity in catalytic pellet reactors [J]. Ind. Eng. Chem. Res., 2008, 47 (22): 8572-8581.

[19] FOGLER H S. Elements of Chemical Reaction Engineering [M]. 4th ed. Pearson Education, 2006: 813-827.

[20] 高崇, 朱英, 李树森, 等. 环柱状催化剂内强放热复合反应-传质-传热耦合过程研究(Ⅰ): 催化剂曲折因子有效热导率的测定 [J].化工学报, 1998, 49 (5): 601-609.

GAO C, ZHU Y, LI S S, et al. Study on coupling process of multiple reaction-mass transfer-heat transfer in hollow cylindrical catalysts with strong heat effect (Ⅰ): Experimental measurement of tortuosity factors and effective thermal conductivity of catalyst pellets [J].Journal of Chemical Industry and Engineering (China), 1998, 49 (5): 601-609.

[21] 时钧, 汪家鼎, 余国琮, 等. 化学工程手册 [M]. 2版. 北京: 化学工业出版社, 1996: 1-141-1-145.

SHI J, WANG J D, YU K T, et al. Chemical Engineers Handbook [M]. 2nd ed. Beijing: Chemical Industry Press, 1996: 1-141-1-145.

[22] 高崇, 潘银珍, 朱炳辰. 环柱状催化剂内强放热复合反应-传质-传热耦合过程研究(Ⅱ): 本征反应动力学及反应-传质-传热耦合过程数学模型 [J]. 化工学报, 1998, 49 (5): 610-616.

GAO C, PAN Y Z, ZHU B C. Study on coupling process of multiple reaction-mass transfer-heat transfer in hollow cylindrical catalysts with strong heat effect (Ⅱ): Intrinsic kinetics and mathematical model of coupling process of reaction-mass transfer-heat transfer [J]. Journal of Chemical Industry and Engineering (China), 1998, 49 (5): 610-616.

2016-01-19收到初稿,2016-03-08收到修改稿。

联系人:李涛。第一作者:周继鹏(1990—),男,硕士研究生。

Received date: 2016-01-19.

中图分类号:TQ 028.8

文献标志码:A

文章编号:0438—1157(2016)07—2808—07

DOI:10.11949/j.issn.0438-1157.20160081

Corresponding author:Prof. LI Tao, tli@ecust.edu.cn

Reaction engineering calculation for ethylene catalytic oxidation over gear-shaped catalysts

Abstract:For the reaction of ethylene catalytic oxidation to ethylene oxide over a gear-shaped catalyst particle, a three-dimensional reaction-mass transfer-heat transfer model is developed to calculate effectiveness factor of the catalyst. Effective diffusivities and effective thermal conductivity are the function of temperature and concentration distribution in catalyst particle. The finite element method is employed to solve the set of highly nonlinear partial differential equations, and the values obtained agree well with those given by literatures. Geometric external surface area is a key parameter for the effectiveness factor. The effectiveness factor is 0.1804 for gear-shaped catalyst with geometric external surface area of 1862 m2·m-3, and 0.0993 for cylindrical catalyst with geometric external surface area of 924 m2·m-3. The quantitative calculation for reaction-transport phenomena in a single catalyst particle could be a guide for catalyst design and a basis for multi-scale simulation of coupling hydromechanics and catalytic reaction-transport phenomena.

Key words:ethylene oxidation; irregular shape catalyst; transport processes; numerical simulation; internal effectiveness factor

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!