当前位置:首页 期刊杂志

姜黄素对非酒精性脂肪性肝病的作用研究

时间:2024-09-03

俞媛洁,谭诗云

武汉大学人民医院消化内科,湖北 武汉 430060

姜黄素对非酒精性脂肪性肝病的作用研究

俞媛洁,谭诗云

武汉大学人民医院消化内科,湖北 武汉 430060

非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是最常见的慢性肝病之一,包括单纯性脂肪肝、非酒精性脂肪性肝炎(NASH)、肝纤维化、肝硬化及肝细胞癌。NAFLD的发病机制复杂,胰岛素抵抗(IR)与氧化应激共同参与了NAFLD的发生与发展,NF-κB信号通路的激活可能是NAFLD重要的发病机制之一。近年来,由于姜黄素具有调脂、抗氧化、抗炎、护肝等功能,越来越受到学界的重视,极有可能成为NAFLD潜在的治疗药物。本文就姜黄素对NAFLD的研究进展作一概述。

非酒精性脂肪性肝病;NF-κB;姜黄素

非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是一种与基因、环境、代谢、应激等多因素相关的临床病理综合征,也是代谢综合征(metabolic syndrome)的肝脏表现。姜黄素(curcumin)具有调脂、抗氧化、抗炎、增加胰岛素敏感性、抑制肝脏脂肪蓄积与纤维化的功能[1]。近年来,越来越多的学者开始关注姜黄素对NAFLD的治疗作用。目前,部分细胞与动物的相关研究证实了姜黄素对NAFLD的疗效,但临床研究证据不足。本文将围绕姜黄素对NAFLD作用的研究进展作一概述。

1 NAFLD的流行病学与自然病程

NAFLD指在除外酒精和其他明确的肝损伤因素下,肝细胞出现甘油三酯蓄积、>5%的肝细胞出现脂滴。世界范围内,NAFLD的发病率为9%~36%,在美国,普通人群与肥胖患者NAFLD的发病率分别为30%和90%[2]。代谢综合征包括胰岛素抵抗(insulin resistance,IR)、糖尿病、肥胖及高脂血症,NAFLD的发病与之相关,尤其是肥胖[3-4]。

虽然NAFLD是一种良性的病变,通常不进展,但是一系列“打击”,如脂肪因子、氧化应激、炎性因子与线粒体功能障碍等,可促使NAFLD向非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)、肝纤维化、肝硬化及肝细胞癌(hepatocellular carcinoma,HCC)逐步转变、恶化。NASH的发病率为6%~13%,其中26%~37%的NASH患者出现纤维化,9%~20%的NASH患者进展为肝硬化,5~7年后,40%~60%的肝硬化患者可进展为HCC[2]。

2 NAFLD的发病机制

NAFLD的发病机制复杂,目前学界普遍认同Day和James在1998年首次提出“二次打击”学说[5],认为IR和氧化应激(oxidative stress,ROS)共同参与了NAFLD的发生、发展。IR是首次打击,导致肝脏脂肪蓄积,在此基础上,大量的脂肪因子,如瘦素、脂联素、抵抗素等,调控游离脂肪酸(free fatty acids,FFAs)诱导ROS损伤造成“二次打击”[6]。

ROS可能通过激活Fas配体/Fas系统,诱导Fas死亡区域结构蛋白上调下游半胱天冬酶家族成员,产生蛋白酶级联反应,引起细胞裂解与凋亡。此外,肝细胞凋亡可能引起炎性细胞蓄积,诱发肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白介素-1(interleukin-1,IL-1)、白介素-6(interleukin-6,IL-6)等一系列炎性因子的释放,出现脂肪性肝炎。某些纤维化因子,如转化生长因子-β(transforming growth factor-β,TGF-β),还可引起肝细胞外基质合成增加,形成肝进行性纤维化。尽管NAFLD的发生、发展是一系列复杂的、相辅相成的过程,但细胞内相关信号通路,尤其是核因子-κB(nuclear factor-κB,NF-κB)的激活,有可能是NAFLD发病机制的关键环节。

3 NF-κB信号通路与NAFLD

NF-κB是一种细胞核转录因子,多种细胞因子、生长因子、免疫受体、递质、应激、细菌及其产物、病毒与其产物、外源物质、环境等可能激活NF-κB信号通路[6]。NF-κB信号通路的激活,是重要的促炎途径,能促进炎性细胞因子的表达,参与肝脏的炎性反应、纤维化与凋亡。FFA、ROS激活NF-κB信号通路,可促进促炎细胞因子的表达,如TNF-α、IL-1、IL-6、IL-8等,而这类炎性细胞因子反过来又再一次促进NF-κB的活化,进一步加剧炎症反应[7]。TNF-α、IL-1、IL-6、脂肪细胞因子等促炎细胞因子、转录因子及c-Jun氨基端激酶(c-Jun N-terminal kinase,JNK)加剧了IR。IR与炎性细胞因子共同参与了NAFLD的发生、发展。Leclercq等[8]研究发现,蛋氨酸与胆碱缺乏饮食构建的NAFLD小鼠肝脏组织NF-κB表达显著增加,应用姜黄素可降低肝脏炎性反应,由此推断NF-κB信号通路可能参与了NAFLD的发生,而姜黄素则通过抑制NF-κB信号通路的激活及促炎基因的表达发挥作用。

4 姜黄素对NAFLD的潜在治疗作用

姜黄素是从姜黄中提取的一种植物多酚,是姜黄最重要的活性成分。尽管针对NAFLD患者的临床研究尚缺,但是动物模型与细胞研究发现,姜黄素是一种多效的多酚类化合物,具有抗氧化[9]、抗炎[9]、护肝[10]、抗癌[11]、调脂[12]、调节免疫[13]等功能。而NAFLD的发病恰恰涉及高脂血症、IR、氧化应激、炎症反应及肝星状细胞的激活等。因此,我们可以推断姜黄素可能通过多种机制调控脂代谢相关疾病的发生、发展,成为NAFLD潜在的治疗药物之一。

5 姜黄素的作用机制

姜黄素可降低血脂水平,抑制肝脏脂质蓄积。Pungcharoenkul等[14]针对健康人的研究表明,姜黄素可显著降低健康人血清胆固醇与甘油三酯水平。Jang等[15]在高脂饮食仓鼠高脂血症与IR的动物模型研究中发现,姜黄素通过增加血浆对氧磷酶活性、增加肝脂肪酸氧化、抑制肝脏脂肪酸与胆固醇的生物合成,显著降低血清FFA、总胆固醇、甘油三酯、瘦素水平,抑制IR。Yiu等[16]发现,姜黄素显著降低高胆固醇饮食大鼠血清总胆固醇和低密度脂蛋白胆固醇水平,上调高密度脂蛋白胆固醇水平,改善肝脏功能,降低肝脏脂质蓄积。同时,姜黄素干预后,大鼠脂代谢与细胞稳态相关酶,如胆固醇α-羟化酶、血红素氧化酶(heme oxygenase 1,HO-1)表达增加,低密度脂蛋白受体表达增加,但3-羟甲基戊二酰辅酶A还原酶(3-hydroxy-3-methyl-glutaryl-CoA reductase)表达下降,表明姜黄素能抑制高胆固醇血症,并通过调控相关酶的表达抑制脂肪肝的形成。

姜黄素可增加胰岛素敏感性。Zhao等[17]发现,姜黄素可通过诱导Nrf2核转运,拮抗氧化应激,降低LO2肝细胞活性氧介导的IR。Shao等[18]发现,姜黄素通过抑制肝脏脂肪生成基因的表达,减少脂肪生成,阻断脂肪组织巨噬细胞浸润与炎性通路,降低脂肪因子的炎性作用,增加胰岛素敏感性,降低高脂饮食诱导的C57BL/6J小鼠IR。

姜黄素可抑制氧化应激反应。姜黄素通过抗氧化酶的表达,如谷胱甘肽过氧化酶、HO-1、谷胱甘肽s-转移酶、过氧化氢酶及超氧化物歧化酶(superoxide dismutase,SOD)等[1],增强肝脏抗氧化能力。Gaedeke等[19]在对肾小球肾炎的研究中发现,姜黄素可上调HO-1水平或活性,抑制氧化应激反应,阻断纤维化的进程。Panahi等[20]的一项临床随机对照试验表明,短期、联合应用姜黄素与胡椒碱,可上调代谢综合征患者血清SOD活性,下调血清丙二醛(malondialdehyde,MDA)水平,抑制氧化应激与炎性反应。

姜黄素可降低肝脏炎症反应。FFA与ROS可激活NF-κB信号通路,引起肝脏炎性因子的释放增加与IR,参与了NAFLD的发生、发展。姜黄素能与多个炎症反应的分子靶点相互作用,通过抑制NF-κB通路抗炎。Weisberg等[21]发现,姜黄素能显著改善糖尿肥胖症大鼠动物模型肥胖相关炎症,抑制白色脂肪组织巨噬细胞浸润,抑制肝脏NF-κB信号通路的活性,抑制炎性因子TNF-α、IL-6的生成,降低肝脏炎性反应,增加脂联素的产生。此外,姜黄素还能降低注射TNF-α诱导的脂肪肝小鼠氧化应激、抑制嗜中性粒细胞浸润[22]。

姜黄素能抑制肝星状细胞活性。Tang等[23]研究发现,瘦素可通过上调胞内葡萄糖水平,激活肝星状细胞。而姜黄素可通过阻断胰岛素受体底物/磷脂酰肌醇3-激酶/AKT信号通路,抑制细胞膜葡萄糖转运蛋白4(glucose transporter 4,GLUT4)膜转位,激动葡萄糖激酶活性,诱导葡萄糖向6-磷酸葡萄糖转化,从而抑制瘦素上调胞内葡萄糖水平的作用,抑制肝星状细胞活性,减少细胞外基质的沉积。

目前,由于姜黄素尚不能应用于临床,其对NAFLD患者疗效的临床研究尚缺,尽管如此,大量与脂质蓄积、脂代谢异常相关的动物、细胞模型的研究证据已经表明,姜黄素具有调脂、抗炎、抗氧化、降低IR、抑制肝星状细胞的激活等功能,因此,姜黄素极有望成为NAFLD及其相关疾病的潜在治疗药物之一。

[1] Zabihi NA, Pirro M, Johnston TP, et al. Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? The data suggest yes [J]. Curr Pharm Des, 2017, 23(7): 969-982.

[2] Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection [J]. Hepatology, 2010, 51(5): 1820-1832.

[3] Li Y, Jadhav K, Zhang Y. Bile acid receptors in non-alcoholic fatty liver disease [J]. Biochem Pharmacol, 2013, 86(11): 1517-1524.

[4] Kim SB, Kang OH, Lee YS, et al. Hepatoprotective effect and synergism of bisdemethoycurcumin against MCD diet-induced nonalcoholic fatty liver disease in mice [J]. PLoS One, 2016, 11(2): e147745.

[5] Day CP, James OF. Steatohepatitis: a tale of two "hits"? [J]. Gastroenterology, 1998, 114(4): 842-845.

[6] Zeng L, Tang WJ, Yin JJ, et al. Signal transductions and nonalcoholic fatty liver: a mini-review [J]. Int J Clin Exp Med, 2014, 7(7): 1624-1631.

[7] Kaidashev IP. NF-kB activation as a molecular basis of pathological process by metabolic syndrome [J]. Fiziol Zh, 2012, 58(1): 93-101.

[8] Leclercq IA, Farrell GC, Sempoux C, et al. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice [J]. J Hepatol, 2004, 41(6): 926-934.

[9] Esmaily H, Sahebkar A, Iranshahi M, et al. An investigation of the effects of curcumin on anxiety and depression in obese individuals: a randomized controlled trial [J]. Chin J Integr Med, 2015, 21(5): 332-338.

[10] Kadasa NM, Abdallah H, Afifi M, et al. Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats [J]. Asian Pac J Cancer Prev, 2015, 16(1): 103-108.

[11] Mahady GB, Pendland SL, Yun G, et al. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen [J]. Anticancer Res, 2002, 22(6C): 4179-4181.

[12] Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial [J]. Phytother Res, 2013, 27(3): 374-379.

[13] Ganjali S, Sahebkar A, Mahdipour E, et al. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial [J]. Scientific World Journal, 2014, 2014: 898361.

[14] Pungcharoenkul K, Thongnopnua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects [J]. Phytother Res, 2011, 25(11): 1721-1726.

[15] Jang EM, Choi MS, Jung UJ, et al. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters [J]. Metabolism, 2008, 57(11): 1576-1583.

[16] Yiu WF, Kwan PL, Wong CY, et al. Attenuation of fatty liver and prevention of hypercholesterolemia by extract of Curcuma longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase [J]. J Food Sci, 2011, 76(3): H80-H89.

[17] Zhao SG, Li Q, Liu ZX, et al. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation [J]. Hepatogastroenterology, 2011, 58(112): 2106-2111.

[18] Shao W, Yu Z, Chiang Y, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes [J]. PLoS One, 2012, 7(1): e28784.

[19] Gaedeke J, Noble NA, Border WA. Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1 [J]. Kidney Int, 2005, 68(5): 2042-2049.

[20] Panahi Y, Hosseini MS, Khalili N, et al. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis [J]. Clin Nutr, 2015, 34(6): 1101-1108.

[21] Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity [J]. Endocrinology, 2008, 149(7): 3549-3558.

[22] Mouzaoui S, Rahim I, Djerdjouri B. Aminoguanidine and curcumin attenuated tumor necrosis factor (TNF)-alpha-induced oxidative stress, colitis and hepatotoxicity in mice [J]. Int Immunopharmacol, 2012, 12(1): 302-311.

[23] Tang Y, Chen A. Curcumin prevents leptin raising glucose levels in hepatic stellate cells by blocking translocation of glucose transporter-4 and increasing glucokinase [J]. Br J Pharmacol, 2010, 161(5): 1137-1149.

(责任编辑:王全楚)

Therelationshipbetweencurcuminandnon-alcoholicfattyliverdisease

YU Yuanjie, TAN Shiyun

Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, its disease spectrum contains simple steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is rather complicated, both insulin resistance (IR) and oxidative stress involved in its occurrence and progress. NF-κB singnal pathway activation could be a crucial mechanism. Recently, curcumin has been an increasingly hot spot in medical field, due to its multiple pharmacological effects, such as regulate hyperlipidemia, antioxidant, anti-inflammation, hepatic protection. Based on numerous evidences of studies, curcumin has enormous potential to be one of the therapeutic drugs for NAFLD. This review focused on research status about the potential relationship between curcumin and NAFLD.

Non-alcoholic fatty liver disease; NF-κB; Curcumin

R575.5

A

1006-5709(2017)10-1107-03

2016-12-01

俞媛洁,博士研究生,研究方向:非酒精性脂肪性肝病的基础与临床。E-mail: yuyuanjie0303@yeah.net

谭诗云,博士,教授,博士生导师,研究方向:非酒精性脂肪性肝病的基础与临床。E-mail: tanshiyun@medmail.com.cn

10.3969/j.issn.1006-5709.2017.10.009

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!