时间:2024-12-29
韩战义,王继升,王军梅,刘清元,独传新(中材株洲水泥有限责任公司,湖南株洲412000)
中材株洲水泥有限责任公司5000t/d水泥熟料生产线由中材国际工程股份有限公司(南京)设计,2008年建成投产,为达到生态环保控制目标,公司于2012年配套建设SNCR脱硝系统,采用浓度20%的氨水对水泥窑内形成的NOx进行脱除。采用SN⁃CR脱硝具有系统简单、投资少、对窑炉系统影响小、系统占地面积小等优点,但由于SNCR脱硝效率不高,因此氨水用量较大,2019年我公司氨水用量70126t,单位熟料增加成本3.16元/t,同时,大量的氨水喷入造成分解炉内结皮、系统煤耗高、设备内部腐蚀等问题。为降低生产成本,2020年大修期间,公司组织实施了脱硝降氮技术改造。
水泥窑炉内生成的NOx主要为热力型NOx和燃料型NOx,热力型NOx为燃烧空气中的N2在1500℃以上的高温下氧化生成,燃料型NOx为燃料中含有的氮化物在燃烧过程中氧化而生成,这两种NOx均伴随燃烧过程产生,回转窑内高温区温度在1500℃以上,而分解炉内温度通常在1000℃以下,可见NOx主要来源于回转窑内,结合NOx生成特点和主要来源,其控制技术大体可分为燃烧前控制、燃烧过程控制和燃烧后控制。燃烧前控制主要方法为控制燃料中的N含量,但目前该技术尚未得到较好开发;燃烧过程控制主要方法为分级燃烧、低氧燃烧;燃烧后控制主要方法为SCR、SNCR。总体而言,燃烧前控制和燃烧后控制需增加设备,投资大且增加运营成本,而燃烧过程控制方法是从优化燃烧的角度出发,因此仅需对现有设备改造,不增加日常运营成本。
为降低氨水用量,节约生产运营成本,我公司结合分级燃烧、低氧燃烧两种方式进行了脱硝改造,改造主要由窑尾燃烧器改造、三次风管改造、4级下料管改造、窑头燃烧器改造四部分组成。
分级燃烧是通过对分解炉局部结构优化,在分解炉内形成一个还原区,利用煤粉在缺氧状况下产生的CO、C-H化合物等还原物质与回转窑内生成的NOx发生还原反应,从而达到脱硝的目的。我公司采用分煤的分级燃烧方式进行脱硝改造,即在烟室缩口上方增加4根脱硝燃烧器,对称分布,原分解炉锥体位置的2根窑尾燃烧器与三次风管相对位置保持不变,但随三次风管一同上移,由于烟室缩口气体为回转窑内煤粉与空气燃烧后产生的烟气,氧含量通常在1%~2%左右,因此在烟室缩口增加4根脱硝燃烧器,煤粉从缩口喂入后,在缺氧状况下,难以充分燃烧,产生大量CO、C-H化合物对NOx进行还原。
图1 脱硝降氮改造现场图
我公司三次风管与分解炉连接位置位于分解炉锥体部分,虽切向进入分解炉,但向下(即烟室方向)倾斜约15°。分煤改造前,2根窑尾燃烧器位于三次风管上方300 mm,分级改造后在烟室缩口上方新增了4根窑尾燃烧器,由于三次风管向下倾斜约15°,这种入炉方式导致烟室缩口煤粉在缺氧状况下生成的CO与氧含量21%左右的三次风提前相遇,相当于缩短了NOx在还原区的停留时间。为确保脱硝效果,延长NOx在还原区的停留时间,公司对三次风管进行了改造,改造内容为:将三次风管从窑尾平台处开始抬高,三次风管入炉位置由分解炉锥部改为分解炉直筒与锥体连接处,入炉位置提高1800mm,三次风切向垂直进入分解炉,由于三次风管改造后,2根窑尾燃烧器位于三次风入炉区域,如果使用该煤管,易造成局部高温结皮,因此,2根窑尾燃烧器同时上移1800mm。
窑尾燃烧器改造后,尾煤基本全部由烟室缩口上方喂入,必然导致缩口和分解炉锥部温度上升,若没有生料在此处吸热发生分解反应,将造成缩口和分解炉锥部结皮,对系统产量和质量造成影响。因此我们对四级下料管进行了改造:我公司四级下料管共4根,对称分布于分解炉中部,无法达到降低分解炉锥部温度的目的,因此窑尾燃烧器改造后,在分解炉锥体新增2根四级下料管,一个分料阀,2根下料管对称分布,位与烟室缩口燃烧器上方1500mm,分料阀开度根据分解炉下部温度进行调节,控制在900~950℃,避免缩口和分解炉锥部局部高温。
低氧燃烧是通过降低煤粉燃烧的过剩空气系数,进而降低燃料周围氧浓度,达到降低燃烧温度峰值减少热力型NOx生成的目的。改造前我公司窑头燃烧器为DBC-220-550-8型燃烧器,这种燃烧器的特点主要体现在高一次风量、低一次风压,窑头配备ARF-295型一次风机,风量145.83 m3/min,风压29.40kPa,虽有利于形成稳定的火焰,对煤质的适应性较强,但大量低温的一次风进入回转窑内,不仅造成热耗上升,也会增加热力型NOx生成量。为降低煤耗,减少NOx生成量,公司对窑头燃烧器进行了技改,采用DJGX-5000T/D-T型低氮燃烧器替换原燃烧器,同时采用YG150磁悬浮鼓风机替换罗茨风机,一次风量90m3/min,风压72kPa。改造前后一次风机主要参数见表1。
表1 改造前后一次风机主要参数
通过采用分级燃烧和低氧燃烧两种方法对窑尾燃烧器、三次风管、四级下料管、窑头燃烧器进行脱硝降氮改造后,我公司脱硝氨水用量明显降低,改造前我公司氨水用量约850 t/月,改造后我公司氨水用量约352 t/月,脱硝降氮改造后氨水用量降低约498 t/月,氨水按800元/t计算,预计每年可节约成本约398.4万元。我公司脱硝降氮改造总投资约300万元,一年内可收回成本,投资回报率高,氨水用量降低相当于减少了进入分解炉的水分,因此氨水用量的减少有利于降低煤耗。同时考虑到SNCR脱硝效率普遍较低,氨逃逸量较大,不仅会造成管道和设备壳体腐蚀还会污染环境,因此,减少氨水用量还能起到保护管道、设备壳体和生态环境的作用。
综上,我公司脱硝降氮改造有利于降低生产运营成本,保护管道和设备壳体,改善生态环境,是值得在水泥行业推广的一项技术改造。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!