当前位置:首页 期刊杂志

高中数学教学中新课的导入方法

时间:2024-05-04

王淑肖河北省元氏县第一中学

高中数学教学中新课的导入方法

王淑肖
河北省元氏县第一中学

新课导入是课堂教学的先导,怎样在数学课堂教学中培养学生的学习兴趣、诱发思维呢?我们要紧紧抓住新课导入这一环节,教师从实际出发精心安排的新课导入,可以设置情景,激发兴趣;设置疑点,引起重视;联系生活,灵活运用,为新课创设教学意境,使学生迅速进入角色,为新课的教学需要激起学生的探索欲望,从而形成良好的心理动态,可以为新课突出重点、突破难点、埋设教学措施的引线,成为新课启发教学的先导。下面是我在购置数学课堂教学中归纳出的几种新课导入方法:

一、直接导入法

直接导入法又叫“开门见山”导入法,我们谈话写文章习惯于“开门见山”,这样主体突出,论点鲜明。当一些新授的数学知识难以借助旧知识引入时,可开门见山的点出课题,立即唤起学生的学习兴趣。例如,在讲《二面角》的内容时,可这样引入:“两条直线所成的角,直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容——二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速集中到新知识的探索追求中。再如,讲《用单位圆中的线段表示三角函数值》一节时,可作如下开篇前面我们学习了三角函数的定义,每种三角函数的数值都是用两条线段的比值来定义的,这是我们在应用中带来诸多不便,如果变成一条线段,那么应用起来就会方便的多,这节课就来解决这个问题:“用单位圆中的线段表示三角函数值”,这样引入课题,不仅明确了这堂课的主题,而且也说明了产生这堂课的背景。

二、忆旧导入法

当新旧知识联系较紧密时,用回忆旧知识来自然的导入新课也是常用的一种方法。这种方法导入新课,既可以复习巩固旧知识,又可把新知识由浅到深、由简单到复杂、由低层次到高层次地建立在旧知识的基础上,从而有利于用知识的联系来启发思维,促进新知识的理解和掌握。例:讲三角函数的二倍角公式时,可以在复习回忆两角和公式的基础上顺利的导入,将半角公式可以在复习回忆二倍角公式基础上顺利导入。讲半角公式可以在复习回忆二倍角公式的基础上顺利导入。

三、发现导入法

启发学生从某些现象中发现某些规律从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时也有利于学生对新知识的理解和记忆。例:讲立体几何《锥体体积》时,教师拿一个圆柱形容器和一个与圆柱等底等高的圆锥形容器,当装满圆柱的沙倒入圆锥形容器中恰好倒满三次时,问学生:“你们能发现它们体积的关系吗?”学生立即就能悟出圆锥体积等于等底等高圆柱体积的三分之一,在学生这个发现的基础上,教师进一步引导:“这个体积上的三分之一的关系是否对等高等底的各种形状的锥体和柱体都成立?若成立,怎样从理论上严格证明这一结论呢?今天就要来研究这一问题。这样导入新课就把学生从生动的实验所得到的发现引向严密的逻辑推理,对教材来说,这是一种自然的过渡,对学生来说,则成为一种思维上的需要和满足。对于那些容易发现的规律适用于这种方法导入新课。

四、设疑导入法

教师对某些内容故意制造疑团而成为悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。例:讲《余弦定理》时,可如下设置:我们都熟悉直角三角形的三边满足勾股定理:c2=a2+b2,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有c2=a2+b2-x?钝角三角形中钝角的对边是否满足关系c2=a2+b2+x?假若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”引入了对余弦定理的推证。再如:讲立体几何《球冠》一节时,教师可如下设疑:由三个平行平面截一个球恰好把球的一条直径截成四等分,试问截得球面的四部分面积大小如何?教师留出几分钟时间让学生观察议论,同学们一般猜测两头面积较小,中间的两“圈”面积较大。教师这时却肯定的说:“这四部分面积时一样的,都是球面积的1/4!”又说:“这难道可能吗?两头看起来确实好像小,中间的圈要大,可是它们的面积相等却是事实!让我们来学习今天的内容:球冠。”通过这个内容的学习,同学们自己就可以解开它们的面积为什么相等的迷。学生带着这个疑团来学习新课,不仅能提高注意力,而且这个结论也将使学生经久不忘。

如何处理教材,如何设置疑点,是教学艺术的表现,良好的设疑可以激起学生学习的欲望,从而更有利于对新知识的理解。

五、情景导入法

生活中处处有数学的存在。培养学生数学的应用意识,教会学生去观察生活,领悟生活中的数学因素,要注意课堂中实际生活的渗透,巧妙设置情境。

启发学生从生活实际中发现某些规律从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时也有利于学生对新知识的理解和记忆。例:讲立体几何《锥体体积》时,教师拿一个圆柱形容器和一个与圆柱等底等高的圆锥形容器,当装满圆柱的沙倒入圆锥形容器中恰好倒满三次时,问学生:“你们能发现它们体积的关系吗?”学生立即就能悟出圆锥体积等于等底等高圆柱体积的三分之一,在学生这个发现的基础上,教师进一步引导:“这个体积上的三分之一的关系是否对等高等底的各种形状的锥体和柱体都成立?若成立,怎样从理论上严格证明这一结论呢?今天就要来研究这一问题。这样导入新课就把学生从生动的实验所得到的发现引向严密的逻辑推理,对教材来说,这是一种自然的过渡,对学生来说,则成为一种思维上的需要和满足。对于那些容易发现的规律适用于这种方法导入新课。

设计巧妙的新课导入,能够有效的为新课组织教学,把学生的注意力集中到新课的学习上来,能够恰到好处地为新课创设情境,激发起学生的学习兴趣,这便有一种内在的力量推动他自觉地、积极地去探究,使学生从“苦学”步入“乐学”的境界,在品质、知识、能力等各方面都得到高度发展。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!