时间:2024-05-04
邵中华 李竹 崔艳
摘 要: 针对目前主干道车辆出行时间估计考虑道路状况随机性,但在时效性和精确性方面有所欠缺,提出一种新的估计方法。以视频检测器为工具,采集车辆在某一区间的行驶时间,计算其平均速度并将该区间的道路划分为三种状态,考虑到估计的时效性和计算的数据量,利用滑动窗口选取一定量的状态数据加入遗传因子构建转移概率矩阵,获知下一时刻所有出现的状态及其对应的概率,而这些状态对应的出行时间的数学期望就是主干道出行时间的估计值。在山西省临汾市的主干道上,应用浮动车法对模型的准确性和时效性进行验证。实验结果表明模型具有较高的估计精度。
关键词: 城市交通; 出行时间; 马尔科夫链; 主干道; 多状态; 滑动窗口
中图分类号: TN911.1?34; TP393.07 文献标识码: A 文章编号: 1004?373X(2018)13?0092?03
Abstract: The randomness of road conditions is considered in current travel time estimation of main road, which has the defects of timeliness and accuracy. Therefore, a new travel time estimation method of main load is proposed. The video detector is taken as the tool to acquire the travel time of vehicle in a certain interval. The average speed of vehicle in the traveling interval is calculated, and the road in this interval are divided into three states. Considering the timeliness of estimation and data size of calculation, a certain amount of state data is selected by the sliding window, and added with genetic factor to construct the transfer?probability matrix, so as to obtain all the states appearing in the next moment and their corresponding probabilities. The mathematical expectation of the travel time corresponding to the states is defined as the travel time estimation value of main road. The floating car method is used to verify the accuracy and timeliness of the model in the main road of Linfen City of Shanxi Province. The experimental results show that the model has high estimation precision.
Keywords: urban traffic; travel time; Markov chain; main road; multi?state estimation; sliding window
3.3 主干道出行时间估计及分析
通过临汾市路段两端设置的交通状况视频监测器,记录车辆进入和离开该路段时视频所显示的时间点,获取任意车辆在该路段的行程时间,将其算术平均数作为该路段当前时刻的行程时间估计值。
实时统计所得的路段各状态下出行时间的估计值,如表1所示。
表1中,数据147.4表示路段1在A状态时所需经历的时间为147.4 s,其他数据含义类似。
按3.1节中各状态的定义,将表1所得子路段时间加权求和,得到主干道各状态下出行时间的估计值。由式(5)分别选取滑动窗口数据[k]为5,10,15,20,25,30,遗传因子δ为0.84,0.85,…,0.90,得到曲线图如图1所示。
图1中实测值275.8 s为浮动车法测得的车辆实际出行时间,由于数据的原因,[k=20]和[k=25]两条曲线重合。由图1可知,遗传因子大小和数据量的多少都对估计的准确度产生影响。考虑算法运算量,实际估计中采用数据量为20个时,估计值已经与实测值有交点,满足误差较小的需求;根据交点横坐标选取遗传因子为0.88。
本文提出的算法主要采用多状态、遗传因子、滑动窗口数据处理三种措施,通过在山西省临汾市某一主干道上的验证,结果表明该算法在主干道上的出行时间估计方面具有实时性、精确性。
本算法根据车辆速度将道路划分为三种状态,若忽略运算数据量的影响而追求估计的精确度,可将道路划分为更多的状态。另外,本算法未考虑十字路口的调度情况,下一步会针对这一环节进行研究,使理论的适用范围更广。
[1] BRUZELIUS N. The value of travel time: theory and measure?ment [M]. US: Taylor & Francis, 1979: 1?20.
[2] HESS S, BIERLAIRE M, POLAK J W. Estimation of value of travel?time savings using mixed logit models [J]. Transportation research part A: policy and practice, 2005, 39(2): 221?236.
[3] SKABARDONIS A, GEROLIMINIS N. Real?time estimation of travel times on signalized arterials [R]. College Park Maryland, United States, 2005: 1?21.
[4] SKABARDONIS A, GEROLIMINIS N. Real?time monitoring and control on signalized arterials [J]. Journal of intelligent transportation systems, 2008, 12(2): 64?74.
[5] GEROLIMINIS N, SKABARDONIS A. Identification and analysis of queue spillovers in city street networks [J]. IEEE transactions on intelligent transportation systems, 2011, 12(4): 1107?1115.
[6] LIU H X, MA W. A virtual vehicle probe model for time?dependent travel time estimation on signalized arterials [J]. Transportation research part C: emerging technologies, 2009, 17(1): 11?26.
[7] LIU H X, MA W, WU X, et al. Real?time estimation of arterial travel time under congested conditions [J]. Transportmetrica, 2012, 8(2): 87?104.
[8] 张俊婷,周晶,徐红利,等.基于离散时间马尔科夫链的主干道出行时间估计模型[J].系统工程,2014(5):98?104.
ZHANG J T, ZHOU J, XU H L, et al. An arterial travel time estimation model based on discrete time Markov chains [J]. Systems engineering, 2014(5): 98?104.
[9] LAWLOR S, RABBAT M G. Time?varying mixtures of Markov chains: an application to road traffic modeling [J]. IEEE transactions on signal processing, 2017, 65(12): 3152?3167.
[10] FILEV D P, KOLMANOVSKY I. Generalized Markov models for real?time modeling of continuous systems [J]. IEEE transactions on fuzzy systems, 2014, 22(4): 983?998.
[11] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al.Holographic storage in electrooptic crystals: I. steady state [J]. Ferroelectrics, 1978, 22(1): 949?960.
[12] CASTILLO R G, CLEMPNER J B, POZNYAK A S. Solving the multi?traffic signal?control problem for a class of continuous?time Markov games [C]// 2015 International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico City: IEEE, 2015: 1?5.
[13] 陆建,孙祥龙,戴越.普通公路车速分布特性的回归分析[J].东南大学学报(自然科学版),2012(2):374?377.
LU J, SUN X L, DAI Y. Regression analysis on speed distribution characteristics of ordinary road [J]. Journal of Southeast University (natural science edition), 2012(2): 374?377.
[14] THIANNIWET T, PHOSAARD S, PATTARAATIKOM W. Classification of road traffic congestion levels from GPS data using a decision tree algorithm and sliding windows [J]. Lecture notes in engineering & computer science, 2009, 2176(1): 1?6.
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!