当前位置:首页 期刊杂志

基于偏微积分分类数学模型的关联挖掘改进技术

时间:2024-05-04

温荣坤

摘 要: 为了提高大数据环境下关联数据挖掘的效率和精度,提出基于分数偏微积分分类数学模型的关联挖掘方法。基于偏微积分原理塑造基于偏微积分方程的融合算法模型,实现大数据分类过程中的差异性数据融合;再通过偏微分分类数学模型的双边界收敛控制,在数据集合融入偏微积分分类数据模型,通过增减量支持向量完成数据的模糊控制,采用约束捆绑聚类算法对数据模型实施挖掘,获取子序列,在最小迭代次数和收敛下,通过测度信息调控,采用高斯核函数挖掘关联数据序列。实验结果说明,所提关联数据挖掘方法具有较高的挖掘效率和精度,稳定性强。

关键词: 偏微积分分类; 数学模型; 关联挖掘; 分数阶; 收敛控制; 挖掘效率

中图分类号: TN911?34 文献标识码: A 文章编号: 1004?373X(2018)13?0095?05

Abstract: An association mining method based on fractional partial calculus classification mathematical model is put forward to improve the efficiency and accuracy of association data mining under the environment of big data mining. On the basis of partial calculus principle, the fusion algorithm model based on partial calculus equations is constructed to realize the difference data fusion in the large data classification process. By means of the dual?boundary convergence control of partial differential classification mathematical model, the data set is integrated into the data model of partial calculus classification. The variation of support vector is used to realize the fuzzy control of data. The constraint bundling clustering algorithm is used to mine the data model to obtain the sub sequences. Under the conditions of minimum iteration times and convergence, the Gaussian kernel function is used to mine the association data sequence by means of measuring information control. The experimental results show that the proposed association data mining method has high mining efficiency and accuracy, and strong stability.

Keywords: partial calculus classification; mathematical model; association mining; fractional order; convergence control; mining efficiency

0 引 言

当前社会的信息化水平不断提升,形成了海量的大数据,大数据分类问题成为不同领域研究的热点问题。高效的大数据关联挖掘方法,为人们寻求有价值的信息提供基础,对于提升社会的信息化进程具有重要应用价值。随着计算数学研究领域的不断扩张,分析偏微积分方程的稳定解以及收敛性问题逐渐引起人们的关注[1]。因此,本文提出基于分数偏微积分分类数学模型的关联挖掘方法,提高大数据环境下关联数据挖掘的效率和精度。

1 偏微积分分类数学模型的关联挖掘方法

1.1 基于偏微积分分类融合算法的数学模型

当前在关联数据挖掘领域中广泛采用偏微积分原理,其能够提高关联数据的高频區域,动态存储数据的低频区域,使得数据的干扰因素增加。而偏微积分原理提升数据低频区域时,存储数据的最低频区域,其对阶次的选择要求较高[2]。如果采用小阶次将降低干扰效果,采用大阶次会形成模糊问题。偏微积分原理解决离散数据过程中,无法处理待挖掘数据中噪声的干扰问题。本文在关联数据挖掘过程中采用偏微积分原理,塑造关联数据挖掘模型,实现基于偏微积分原理的差异性数据融合,提高关联数据挖掘效率。

1.1.1 偏微积分方程

偏微积分方程是由整数阶偏微分方程的转化产生的,偏导数是将整数阶微分方程中对函数影响因子的偏导数项进行替换得到[3]。偏微积分方程为:

3 结 语

针对大数据环境下的关联数据挖掘问题,本文提出基于偏微积分分类数学模型的关联数据挖掘方法。实验证明该方法提高了数据挖掘效率以及精度,获得了令人满意的效果。

参考文献

[1] 潘大胜,陈志福,覃焕昌.基于模糊关联迭代分区的挖掘优化方法研究[J].科学技术与工程,2016,16(24):235?238.

PAN Dasheng, CHEN Zhifu, QIN Huanchang. Research on mining optimization based on fuzzy association iterative partition [J]. Science technology engineering, 2016, 16(24): 235?238.

[2] 马瑞,周谢,彭舟,等.考虑气温因素的负荷特性统计指标关联特征数据挖掘[J].中国电机工程学报,2015,35(1):43?51.

MA Rui, ZHOU Xie, PENG Zhou, et al. Considering the data mining of statistical parameters of temperature factors associa?ted feature data mining [J]. Proceedings of the CSEE, 2015, 35(1): 43?51.

[3] 周发超,王志坚,叶枫,等.关联规则挖掘算法Apriori的研究改进[J].计算机科学与探索,2015,9(9):1075?1083.

ZHOU Fachao, WANG Zhijian, YE Feng, et al. Research on association rules mining algorithm Apriori improvement [J]. Computer science and exploration, 2015, 9(9): 1075?1083.

[4] 张松,张琳.一种数据挖掘中的W?PAM限制聚类算法[J].计算机科学,2016,43(z2):447?450.

ZHANG Song, ZHANG Lin. A W?PAM constrained clustering algorithm in data mining [J]. Computer science, 2016, 43(S2): 447?450.

[5] 徐开勇,龚雪容,成茂才.基于改进Apriori算法的审计日志关联规则挖掘[J].计算机应用,2016,36(7):1847?1851.

XU Kaiyong, GONG Xuerong, CHENG Maocai. The audit log association rules mining algorithm based on improved Apriori [J]. Computer applications, 2016, 36(7): 1847?1851.

[6] 刘自然,王律强,李爱民,等.改进Apriori算法对试车台监测数据的关联挖掘[J].中国测试,2015,41(4):106?109.

LIU Ziran, WANG Lüqiang, LI Aimin, et al. Improve the association of the Apriori algorithm to the monitoring data of the test platform [J]. China test, 2015, 41(4): 106?109.

[7] 胡维华,冯伟.基于分解事务矩阵的关联规则挖掘算法[J].计算机应用,2014,34(z2):113?116.

HU Weihua, FENG Wei. Association rule mining algorithm based on decomposition transactional matrix [J]. Computer applications, 2014, 34(S2): 113?116.

[8] 李涛,林陈,王丽娜.一种改进的相关项对挖掘算法研究[J].计算机仿真,2016,33(8):223?228.

LI Tao, LIN Chen, WANG Lina. An improved correlation for the research of mining algorithms [J]. Computer simulation, 2016, 33(8): 223?228.

[9] 黄立锋,邓玉辉.可时间局部性感知的块I/O关联挖掘算法[J].小型微型计算机系统,2015,36(5):990?995.

HUANG Lifeng, DENG Yuhui. Temporal locally sexy block I/O association mining algorithm [J]. Minicomputer system, 2015, 36(5): 990?995.

[10] 王英博,马菁,柴佳佳,等.基于Hadoop平台的改进关联规则挖掘算法[J].计算机工程,2016,42(10):69?74.

WANG Yingbo, MA Jing, CHAI Jiajia, et al. Improved association rules mining algorithm based on Hadoop platform [J]. Computer engineering, 2016, 42(10): 69?74.

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!