当前位置:首页 期刊杂志

数据治理 建立长效机制

时间:2024-05-04

“十一五”时期银行数据大集中后,对数据的规范管理、质量改进及应用机制建设成为摆在信息主管面前的重要课题。

“我们2003年就开始搞大数据。”中国农业银行软件开发中心赵维平表示,“当时遇到很多困惑,如技术路径、平台选型方面的问题。最终,我们选择了自主可控的技术路径:基础硬件、基础软件、数据模型、工具平台和制度管理都是自主可控的。”

赵维平介绍说:“农行的大数据平台建设,硬件方面我们采用华为RH2288系列,基础软件方面我们引进了南大通用的MPP架构数据库,从28个数据节点扩展至后来的56个节点,非结构化、结构化的上游生产数据基本都放在MPV架构数据库中。数据模型方面,我们结合先进建模理论,融合了范式和维度思路。基础工具方面,我们以自主开发为主,制定了一套比较完备的规范、制度、方法和标准。”

农行大数据平台有着比较清晰的逻辑架构。“在数据源层,全行几乎所有生产系统数据已纳入进来,通过交换平台实现上游数据生产和下游数据消费系统之间,总分行之间,总行各应用系统间的数据交互。”赵维平解释说,“在数据分析挖掘方面,我们按业务细分领域落到不同的应用系统中去尝试实现。同时,我们也在加大对各类算法,聚类、分类、回归、神经网络等的研究,注重数据分析人才的培养。”

在探索大数据应用方面,中国银行推出的中银开放平台是一个实践产品。中国银行总行软件中心上海分中心副总经理牛晓峰介绍说:“这个平台获得了2015年人民银行的科技进步奖。其设计思路是将中国银行整体数据进行归并整理,开发出1000多个标准API接口,并将这些接口开放给中行各分行及客户,他们可以通过API访问并使用中行数据,加工后获得想要的应用结果。”

对于如何更为有效地释放银行数据价值,牛晓峰认为三个方面比较关键。“一是在合规前提下要更有效、充分地利用银行外部数据服务;二是以应用为驱动,要做大数据应用的场景产品;三是通过将结构化、非结构化,线上、线下的数据有机提炼并整合起来,从而更精准地建设客户营销平台。”

四大银行中,中国建设银行拥有庞大用户基数,目前手机银行用户数达1.8亿多,网上银行近2亿。“随着手机银行、网上银行及微信银行三大互联网渠道的建立及用户数的累积,我们应用大数据的场景和基础已经具备。”中国建设银行信息技术管理部资深经理林磊明表示。

他认为,传统银行做大数据主要为解决三大问题。“一是提升客户识别,二是利于客户营销,三是强化风险防范。”

目前,建行已成立上海大数据分析中心,隶属于信息管理部门。林磊明表示:“建行大数据平台设计遵循架构先行,在功能架构上希望做到尽可能完备,并能及时反映到业务流程中去。目前,我们在大数据平台上已经取得一些成果,如我们能向客户经理提供实时数据服务,已经总结出挖掘类、数据实验室、机器查询、仪表盘、固定报表、自动查询等六类数据应用模式。同时,我们通过建立‘模型实验室,支持大数据模型研发,并快速部署至生产环境中去。此外,通过位置服务终端识别技术应用,我们在银行风险事件规避和防范方面有了比较不错的应用成效。”

总的来看,“十二五”期间,各大银行主管领导对数据积累、改善并持续改进质量的关注度提升,并有意识地构建数据治理平台和相关机制。但业内专业的数据质量管理部门仍然缺乏,风险数据的同业共享机制也尚未建立。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!