当前位置:首页 期刊杂志

重视教材资源彰显文化自信

时间:2024-05-05

陈伟坚

一、背景呈现

2015年6月7日下午,在湖北省高考文科数学卷上,考题第20题是以鳖臑这一几何体为背景的立体几何问题命题。考题中出现了“鳖臑(biēnào)”“阳马”两个名词,涉及到了《九章算术·商功》里的知识。

二、阳马、鳖臑

1.何为“阳马、鳖臑”

《九章算术·商功》:“阳马居二,鳖臑居一,不易之率也”,今称为刘徽原理。刘徽注《九章算术》关于体积问题的论述已经接触到现代体积理论的核心问题,指出四面体体积的解决是多面体体积理论的关键,而用有限分割和棋验法无法解决其体积。为了解决这个问题,他提出了一个重要原理:斜解壍堵,其一为阳马,一为鳖臑。

2.阳马、鳖臑的几何教学阐释

阳马和鳖臑是我国古代对一些特殊锥体的称谓,取一长方体,按下图斜割一分为二,得两个一模一样的三棱柱,称为堑堵。

再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个。以矩形为底,另有一棱与底面垂直的四棱锥,称为阳马。余下的三棱锥是由四个直角三角形组成的四面体,称为鳖臑。

三、教材溯源,基于鳖臑的模型

人民教育出版社《普通高中课程标准实验教科书数学必修2》中《第二章点、线、面之间的位置关系》的2.3.2“平面与平面垂直的判定”里,教材在例题3中就给出了以鳖臑为载体的几何命题的证明问题(第69页):

如图3,AB为⊙O的直径,⊙O所在平面为α,PA⊥α于A,C为⊙O上异于A,B的一点。

求证:平面PAC⊥平面PBC。

紧接着为让同学们更进一步认识这一特殊几何体,

教材又借助一个探究,给同学们介绍了鳖臑几何体,并提出探究思考:

如图4,已知AB⊥平面BCD,BC⊥CD,你发现哪些平面互相垂直?为什么?仔细观察,我们可以从图4中发现并证明以下现象:

1.平面ABC⊥平面BCD

2.平面ABD⊥平面BCD

3.平面ABC⊥平面ACD

4.平面ABD⊥平面ACD

该探究借助于鳖臑这一几何体中丰富的垂直关系,让学生熟悉垂直中的判定定理以及性质定理的应用。

接着在教材73页习题2.3A组第3题就设计了一道有关鳖臑的习题:

如图5,在三棱锥V-ABC中,∠VAB=∠VAC=∠ABC=90°,试判断平面VBA与平面VBC的位置关系,并说明理由。

由前面可知,实际上三棱锥V-ABC就是一个鳖臑,△VBC,△ABC都是直角三角形,所以BC⊥平面VBA。故平面VBA与平面VBC

教材这样的编排,遵循了学生的认知规律,有利于学生对知识理解、掌握、运用。

鳖臑几何体覆盖了立体几何中点、线、面的各种位置关系,以及各种空间角的计算,又突出了“垂直”这个横贯立体几何知识的“红线”,因此,鳖臑几何体是探求空间中线线、线面、面面垂直关系的十分重要的基本图形,也是研究棱锥、棱台的基本模型。

在教材中注重挖掘各种信息,并加以提高运用也是高考备考重要一个环节。我们要吃透教材,尤其是对有关中华优秀传统文化的知识,让学生真切体会中华民族的伟大,中华文化的伟大。

責任编辑李少杰

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!