当前位置:首页 期刊杂志

引导“结构性”学习,培养“结构化思维”

时间:2024-05-08

乔丽

摘  要:在小学数学教学中,引导学生进行“结构性”学习十分重要,通过“结构性”学习,能够让学生对数学知识进行内化,让数学思维走向“结构化”。基于此背景,对以下几个策略进行了探索:基于“原有知识”迁移,生成数学新知;紧扣“基本概念”拓展,串联数学知识;借助“对比题组”推进,促进知识建构;运用“思维导图”整理,形成知识网络。

关键词:结构化学习;结构化思维

“结构”所指向的是事物内部各个构成之间的组建方式,“结构化思维”则是以事物内部结构为对象而展开的探寻过程,从而把握事物内部各个构成之间的关系,并从中提炼出一般规律。布鲁纳认为,在把握事物结构的过程中,就是根据事物内部的主要构成发现其间的意义,并架构联系使其易于理解。在小学数学教学中,其核心本质在于有效的思维训练,进而才有助于促进数学素养的全面提升,所以有必要对学生展开结构化的思维训练。学生在结构化思维的过程中,能展开更清晰、更高效的数学思考,能够触及事物本质和核心,能够利用所学思考并有效解决生活中的问题,以此促进数学学习的高效化。

一、基于“原有知识”迁移,生成数学新知

知识迁移的关键在于通过已知对未知而形成一种拓展影响,为了确保知识正向迁移,首先需要准确把握知识之间的内在关联,这样才能够立足于新旧知识点,准确把握其生长点,以此作为启发学生思维的有效落点。在这一过程中,教师不仅要立足于宏观的视角,准确把握整体知识结构与局部要素之间的关联,还要对学生形成积极正确的引导,使其能够自主架构通往新知的桥梁,这样才能够在知识迁移的过程中同时发展结构化思维。

例如,在教学“三角形的认识”一课时,三角形的高是教学难点所在。教学中,可以引导学生已经学习过的平行四边形的高作为链接新知的关键落脚点实现知识的正向迁移学习。首先,借助多媒体绘制一个平行四边形,以一边上的任意一点向对边做一条垂线,这样就能够得到平行四边形的一条高,然后将这一边不断地缩短直至成为一点,此时的平行四边形就变成了一个三角形,而这一点就可以作为三角形的其中一个端点,由此而绘制的垂直线段就是三角形的高。

可见,紧抓知识的关键生长点促进知识迁移,不是为了使學生了解某一知识点,教学的核心则是为了培养学生思维和能力,促进学生结构化思维的进一步提升。

二、紧扣“基本概念”拓展,串联数学知识

“基本概念”所指向的就是教材中所包含的各种基础知识,是数学知识结构中不可缺少的关键重要构成,也是教师应当特别关注的重点所在,不仅要正确认知核心概念在其中所具有的基础功能以及决定性作用,而且也要积极引导学生在建构模型、建立关联以及深化运用等一系列学习过程中自主完成认知结构的架构,这样,在这个过程中学生就能够对相关的数学知识进行串联,他们的结构化思维就能够得到有效激活。

例如,在小学数学教学中,让学生理解“同样多”这一基本概念十分重要。在理解这一基本概念的过程中,学生们通过一一对应的比较中,能够发现事物的数量之间存在两大构成:其一是“同样多”的部分,其二就是“多”或“少”的部分。如果所求解的目标是数量总和或者是其中的一部分时,就能够基于“同样多”引出“和”与“差”,分别指向加法或者减法运算;当所“多”或所“少”的部分与“同样多”的数量相同时,又会就此生成“份”“倍”以及“分”等概念,就此引出乘法和除法数学模型,并延伸至其他关联知识,如比、百分数以及比例,等等。

这样,紧扣“同样多”这一核心基本概念,不仅成功关联了与加减乘除相关的知识点,也能够使学生准确把握知识点之间的内在关联,并为接下来其他数量关系的学习打下扎实的根基,并且能够有效地激活他们的结构化思维。

三、借助“对比题组”推进,促进知识建构

在小学数学课堂教学中,教师为学生设计具有相似性的题组十分重要。引导学生基于“相似题组”对比教师会基于提问的方式促进学生数学思维的发展,而问题的设计应当具有递阶性,应当从最简单的问题着手,由浅入深,层层深入,这样才能体现“问题串”的逻辑性,才有助于促进结构化思维能力的提升。

例如,为了可以使学生准确理解乘法和加(减)法两步应用问题的先后顺序,可以为学生创设超市购物的情境并设计题组,要求学生独立思考之后展开小组合作交流。

题目1:小明要买4个面包,每个面包价格3元,一共需要付多少钱?这一问题对学生来说相对简单,很快就能够得出4×3=12(元)。题目2:小明需要买4个面包以及1瓶饮料,饮料是6元一瓶,一共需要多少钱?学生在初步解答的过程中,大都以两步运算进行解答:先算出4个面包的价格为4×3=12(元),再与饮料相加得到12+6=18(元)。教师可以趁势引导学生展开思考:如何才能够将这两个算式合并在一起?学生在经过小组交流之后得出结论4×3+6,或者6+4×3。进而可以得到最终的结论:在相同的算式中,如果同时包含加法和乘法,应遵循以下计算顺序:先乘法后加法。

学生在这个过程中,就能够对相关的数学知识进行结构化建构,自然就能够达到事半功倍的教学效果。

四、运用“思维导图”整理,形成知识网络

通过思维导图的方式有利于学生完成对知识的自主架构,特别是在复习课中,不仅是一项有力的思维工具,也能够帮助学生顺利完成对旧知的复习和巩固,并形成完整的知识网络。教材提供了极其丰富的素材,不仅涵盖了完整的数学知识点,也提供了多样的解题策略。学生可以通过对课本内容的整理,对解决问题这一过程形成整体把握以及深度感知。

例如,在六年级“解决问题”复习和整理的教学过程中,可以要求学生收集教材中所呈现的具有代表性的问题,然后通过对这些问题的解决,梳理其间的思维过程。这样,学生能够结合已有的学习经验,并辅以思维导图等多元的方法,形成具有个性化的解决问题的思维过程。在这一过程中,所蕴含的是学生的个性化理解以及深入认知,学生所收集和整理的问题也各有不同:有的学生整理的是分数问题,有的学生整理的是抽屉问题,等等;同时在整理实践中,有的学生使用了列举法,有的学生选择了假设验证法,等等。可见,此时针对方法策略的整理水到渠成。由学生自主收集问题、自主完成对方法策略的梳理,能够比讲解教材例题所得到的总结更为深刻。除此之外,还有助于关注知识点、问题以及方法之间的内在关联,不仅有利于深化认知,也能够提升结构化整理能力。

总之,在核心素养理念下,在小学数学教学中,引导学生进行结构化数学学习十分重要,这样,学生对数学知识的学习才会从零散走向统整,数学思维才会从低阶走向高阶,以此促进他们数学核心素养的有效提升。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!