当前位置:首页 期刊杂志

9p21染色体单核苷酸多态性与冠心病相关性的研究进展

时间:2024-05-13

李建飞+房秋菊+张明宇

[摘要] 冠心病是全世界范围内导致死亡的疾病,全基因组关联研究(GWAS)发现了许多与冠心病相关的易感基因位点。本文综述9p21染色体单核苷酸多态性(SNP)和冠心病的关系,9p21风险基因的表达不仅增加冠心病的发病率,同时提高心肌梗死的发病率,并与早发冠心病和再发心肌梗死相关联,但目前基因造成冠心病高发的具体作用途径仍不清楚。

[关键词] 9p21染色体;单核苷酸多态性;冠心病

[中图分类号] R541.4 [文献标识码] A [文章编号] 1673-9701(2014)02-0004-04

The 9p21 chromosome polymorphism and coronary artery disease: A research progress

LI Jianfei1 FANG Qiuju2 ZHANG Mingyu1

1.Department of Cardiology, the Fourth Hospital of Harbin Medical Univercity, Harbin 150001, China; 2.Department of Cardiology, Heilongjiang Provincial Hospital, Harbin 150038, China

[Abstract] Coronary heart disease is the leading cause of death worldwide. Many susceptibility genes associated with CHD had been identified by GWAS. This article reviews the association of single-nucleotide polymorphisms on chromosome 9p21 with the the risk of CHD. The presence of a risk allele at 9p21 locus increased the risk of myocardial infaction as well as CHD. In addition, it significantly associates with premature CHD and recurrent MI. The mechanism of genetic variants triggered the pathogenesis of CHD remains to be clarified.

[Key words] Chromosome 9p21; Single nucleotide polymorphism; Coronary artery disease 冠心病的发病率逐年升高,目前成为人类疾病谱的第一杀手。流行病学研究结果显示冠心病具有遗传因素作用,既往研究结果也发现了一些基因多态性影响血脂、血栓形成等,但如何测定冠心病易感基因,保护高危冠心病人群仍是一个堡垒。2007年以来,随着高通量基因分型技术和统计学的快速发展,使得全基因组关联研究(genome-wide association study,GWAS)策略得到广泛应用,在冠心病易感基因定位方面取得了一系列成绩。在此对近年冠心病遗传领域的研究进展进行综述。

1 GWAS在冠心病领域的进展

近20年来,通过家系连锁分析研究人类的遗传系统疾病取得了较大的进步,但这些进展仅局限于单基因疾病,而研究冠心病这种由多种遗传因素和环境因素共同起作用造成的复杂性疾病遗传变异却受到了限制。2007年起采用GWAS研究冠心病取得了突破性进展。GWAS是通过整个人类基因组中数以百万计的SNP为标记进行病例-正常关联分析来寻找基因变异与表型之间的关系,发现影响人类复杂性疾病/性状关联的功能性位点和易感区域[1]。该技术采用基因芯片方法对核苷酸序列进行检测和分析,具有高通量快速的优点,实验设计采用初筛实验、重复验证实验以及生物学功能验证三阶段病例对照设计,能经济有效和确切地发现遗传变异位点,对于致病位点和基因的鉴定具有如下优点:①在进行GWAS研究之前不再需要构建任何假设;②一次可以监测数以百计SNPs;③研究对象不仅局限于“候选基因”,基因可以是“未知”的。目前国内外多项实验研究证实位于人9p21染色体上SNPs和冠心病发病率具有显著关联[2,3],并在多种族的重复试验中得到了验证,并且这些易感基因的风险因素独立于所有已知危险因素例如高血脂、高血压、糖尿病和肥胖等之外,因此9p21成为冠心病遗传领域研究的热点。

2 染色体9p21区域结构特点

9pP21染色体动脉粥样硬化的风险单倍型的核心区域不包含任何蛋白质编码基因,其大部分的区域位于一个连锁不平衡块中,该区域内存在两种细胞周期蛋白激酶抑制子编码基因细胞周期素依赖性激酶2A/2B(CDKN2A/CDKN2B)以及名为ANRIL的大型反义非编码RNA(ncRNA),其中ANRIL与CDKN2B基因存在部分重叠[4]。有证据表明ANRIL通过组蛋白修饰进而调控CDKN2A/2B[5,6]。

3 9p21染色体与冠心病

Talmud最早评估了9p21染色体SNPs在传统评分基础上对冠心病风险的影响。在NPHS-Ⅱ研究中,对传统的风险因子调整后,携带此风险基因的纯合子人群死亡比率为1.7。王擎等[7]在《Nature》发表了以中国汉族人群样本为基础的多阶段病例对照研究设计的GWAS及重复验证结果,在共1613例冠心病病例和1484例正常对照组的两组人群中进行检测,结果显示位于9p21上的rs1333048和rs1333049两个位点与冠心病显著相关,C和G为其风险等位基因,并且发现位于6q24.1上的rs6903956位点也与冠心病相关联(P=4.87×10-12,OR=1.51)。2012年7月,顾东风等[8]在《Nature》发表了对3.3万余名中国冠心病患者以及正常对照人群的GWAS,鉴定出8个冠心病相关的9p21遗传易感区域。该研究第一阶段对1515例冠心病患者和5019名对照人群的基因组DNA进行全基因组遗传变异的关联分析,随后在15 460例冠心病患者和11 472名对照人群中进行多阶段重复验证,并在8.7万欧洲人群全基因组样本中交叉验证,同时还首次鉴定出2p24.1、4q32.1、6p21.32和12q21.33共4个染色体区域,其遗传变异可影响冠心病的发病。随后,一项25 945份病例及31 777份对照的荟萃分析在《Human Genetics》杂志上发表,该研究表明9p21上SNPs与东亚人群冠心病风险关联紧密,其OR值为1.30,95%CI为1.25~1.35,其结果与高加索冠心病人群研究结果相似[9]。

4 心肌梗死相关SNPs

Helgadott最早研究了冰岛心肌梗死患者的SNP rs1333040、rs2383207、rs1011627,结果显示这3个SNP都与心肌梗死发病率显著相关,其中rs10757278的碱基G与心肌梗死的相关度最高,OR=1.28,携带基因GG和GA相对危险度分别是正常人基因AA的1.64和1.26倍,G基因每拷贝一次,心肌梗死的发病时间会提前1年。此后,在韩国[10]心肌梗死人群中研究结果显示,染色体9p21基因的rs10757274、rs2383206位点,携带基因GG和GA和患病风险较基因AA携带者增加30%。我国张琦[11]在432例汉族心肌梗死人群中的研究结果显示,rs10757274、rs2383206这两个位点的基因G可分别使心肌梗死患病风险提高40%和44%,在校正高血压、高血脂和糖尿病等影响因素后分别为44%和54%(P < 0.01)。这些研究说明染色体9p21的基因变异与心肌梗死发病率高度相关,可以作为冠心病心肌梗死患者的危险度预测和进行预防检测方法。由于地区和种族的不同,基因多态在不同群体中的表现频率存在差异,与心肌梗死的关联性也有所不同,目前研究染色体9p21上常见基因变异位点见表1。

表1 心肌梗死相关SNPs

5 9p21染色体与早发冠心病

早发冠心病被WHO定义为冠状动脉造影狭窄率≥50%或已诊为急性心肌梗死,且男性<55岁,女性<60岁。在一项包括212例早发冠心病和232例没有冠状动脉疾病的对照研究中,证实了rs10757278的A/G和G/G基因型、rs2383207的G/G基因型比A/A基因型在早发性冠状动脉疾病关联上具有更高的风险性(OR:2.207,95%CI:1.069~4.394,P:0.028;OR:3.051,95%CI:1.086~8.567,P:0.004;OR:2.964,95%CI:1.063~8.265,P:0.038)[18]。Lin等[19]在台湾将入选的425例早发冠心病患者及1377例对照组作为样本,研究结果显示rs2383207位点的基因G同该人群早发冠心病的发生相关(OR:1.85,95%CI:1.13~3.10)。Zhou等[20]最早对染色体9p21与早发冠心病的相关性进行了荟萃分析,对筛选出的4个SNPs位点进行病例对照研究,结果显示染色体9p21区域遗传变异是导致早发冠心病发生的易感因素,rs2383 206(OR:1.17,95%CI:1.10~1.25,P < 0.01);rs10757278(OR:1.28,95%CI:1.15~1.42,P < 0.01);rs10757274(OR:1.17,95%CI:1.08~1.33,P=0.02)。

6 9p21染色体与再发心肌梗死

全球注册的急性冠脉事件对2942例急性冠脉综合征患者及170例在195d内出现再发心肌梗死患者进行对照研究发现,rs1333049与再发心肌梗死易感性相关,C为其风险等位基因,rs1333049为影响再发性心肌梗死的独立危险因素(风险比HR:1.48,95%CI:1.00~2.19,P:0.048)[21]。Diether Lambrechts等[22]利用全基因组关联研究,对英国和比利时2个地区2099例ACS患者随访5年,发现rs579459上C等位基因的多态性与再发心肌梗死相关(HR:2.25, 95%CI:1.37~3.71,P:0.001),在随后的进一步研究中在1250例波兰ACS患者得到重复验证(HR:2.70,95%CI:1.26~5.82,P:0.011)。但近期Salim Virani等[23]在《Circulation》发表了对再发心肌梗死GWAS的分析结果,认为位于9p21区域上的位点(rs1333049,rs2383206,rs10757278,rs10757274)与再发心肌梗死无关。冠心病作为一种典型的复杂性状,是多个遗传基因及环境因素相互作用的结果。目前包括GWAS策略在内仍缺少有效方法评估基因-环境和基因间交互作用。同时由于人类种群的不同,也会导致基因组结构的不同,造成决定同一复杂性状的遗传学基础在不同种族得到的结果存在一定的差异。

7 染色体9p21影响冠心病遗传易感性的可能机制

这些基因多态性的改变如何从分子机制上引发冠心病高发还是目前研究的瓶颈。近年来,对冠心病风险基因的分子机制研究已取得了一些成绩[24,25],染色体9p21风险基因与CDKN2A/CDKN2B相隔约100 kb,p16INK4A和p15INK4b编码的CDKN2A、CDKN2B被认为在调节部分细胞周期中起主要作用[26],它们通过抑制肿瘤蛋白转录因子的分解,使E2F细胞增殖基因的表达能力下降,从而阻止细胞的增殖[26]。在动物模型中证实了这些调节细胞周期因子可以抑制血管平滑肌细胞的增殖[27,28]。Visel等[29]已证实敲除小鼠4号染色体70 kb的DNA,它与人类染色体9p21冠心病风险区间的非编码基因同源,他们观察到突变种小鼠中的CDKN2A和CDKN2B表达显著下降,主动脉平滑肌的增殖能力明显提升,这与冠状动脉粥样硬化相关。这一研究为9p21风险区间能够调节细胞增殖和老化提供了有力的证据。Holdt等[30]分析得出与冠状动脉斑块形成相关的染色体9p21上CDKN2A、CDKN2B和MTAP也同样在正常人群冠脉血管平滑肌上表达。Musunuru等[31]认为9p21.3基因多态性对心肌梗死的影响可能是通过介导对血小板活性的影响。Harismendy等[32]已经证实在人类血管内皮细胞中,干扰素信号激活显著地影响9p21染色体的结构和位点基因的转录调节。同样的9p21.3位点基因可能影响细胞周期激酶抑制因子4b位点的反义非编码RNA ANRIL的调节,进而调节CDKN2A和CDKN2B的表达,这种调节可能促进细胞的增殖,引起动脉粥样硬化性改变[3,33]。

综上所述,9p21染色体SNPs与冠心病发病率密切相关。基因研究的最终目的是提供临床预测、诊断和预后评估,并为患者提供个性化治疗策略,9p21可以提供冠心病的风险预测,但目前实践中我们还缺乏相关的专家共识,同时,研究基因造成冠心病高发的具体作用机制成为了我们更大的挑战。

[参考文献]

[1] Hardy J,Singleton A. Genomewide association studies and human disease[J]. N Engl J Med,2009,360(17):1759-1768.

[2] Schunkert H,Erdmann J,Samani NJ. Genetics of myocardial infarction: a progress report[J]. Eur Heart J,2010,31(8):918-925.

[3] Patel RS,Ye S. Genetic determinants of coronary heart disease: new discoveries and insights from genome-wide association studies[J]. Heart,2011,97(18):1463-1473.

[4] Congrains A,Kamide K,Oguro R,et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B[J]. Atherosclerosis, 2012,220(2):449-455.

[5] Yap KL,Lei Z,Li S,et al. Molecular Interplay of the non-coding RNA ANRIL and methyllated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a[J]. Mol Cell,2010,38(5):662-674.

[6] Kotake Y,Nakagawa T,Kitagawa K,et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene[J]. Oncogene,2011,30(16):1956-1962.

[7] Wang F,Xu CQ,He Q,et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population[J]. Nature Genetics,2011,43(4):345-349.

[8] Lu X,Wang L,Chen S,et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease[J]. Nat Genet,2012,44(8):890-894.

[9] Dong LP,Wang HR,Wang DW,et al. Association of chromosome 9p21 genetic variants with risk of coronary heart disease in the east asian population: a meta-analysis[J]. Annals of Human Genetics,2013,77(3):183-190.

[10] Shen GQ,Li L,Rao S,et al. Four SNPs on chromosome 9p21 in a south Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease[J]. Arterioscler Thromb Vasc Bio,2007,28(2):360-365.

[11] 张琦,王志军,杨新春,等. 染色体9p21上两个SNP位点与中国汉族人群心肌梗死的关系[J]. 山东医药,2010,50(5):4-6.

[12] Hiura Y,Fukushima Y,Yuno M,et al. Validation of the association of genetic variants on chromosome 9p21 and 1q41 with myocardial infarction in a Japanese population[J]. Circ J,2008,72(8):1213-1217.

[13] Peng WH,Lu L,Zhang Q,et al. Chromosome 9p21 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese[J]. Clin Chem Lab Med,2009,47(8):917-922.

[14] Guo J,Li W,Wang Y,et al. Association of single nucleotide polymorphisms on chromosome 1p13 and 9p21 with acute myocardial infarction in a Chinese population: the AMI study in China[J]. Acad J Sec Mil Med Univ,2011,32(8):822-829.

[15] 齐林,李建美,孙浩,等. 云南汉族心肌梗死相关基因的多态性研究[J]. 中华医学遗传学杂志,2012,29(4):413-419.

[16] Saleheen D,Alexander M,Danesh J,et al. Association of the 9p21.3 locus with risk of first-ever myocardial infarction in Pakistanis: Case-control study in south asia and updated meta-analysis of Europeans[J]. AHA,2010,30(7):1467-1473.

[17] Shen GQ,Rao S,Martinelli N,et al. Association between four SNPs on chromosome 9p21 and myocardial infarction is replicated in an Italian population[J]. J Hum Genet,2008,53(2):144-150.

[18] Chen Z,Qian Q,Ma G,et al. A common variant on chromosome 9p21 affects the risk of early-onset coronary artery disease[J]. Mol Biol Rep,2009,36(5):889-893.

[19] Lin HF,Tsai PC,Liao YC,et al. Chromosome 9p21 genetic variants are associated with myocardial infarction but not with ischemic stroke in a Taiwanese population[J]. Investig Med,2011,59(6):926-930.

[20] Zhou LT,Qin L,Zheng DC,et al. Meta-analysis of genetic association of chromosome 9p21 with early-onset coronary artery disease[J]. Elsevier,2012,510(2):185-188.

[21] Buysschaert I,Curruthers KF,Dunbar DR,et al. A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: The GRACE Genetics Study[J]. European Heart Journal,2010,31(9):1132-1141.

[22] Wauters E,Carruther KF,buysschaert I,et al. Influence of 23 coronary artery disease variants on recurrent myocardial infarction or cardiac death: the GRACE Genetics Study[J]. Eur Heart J,2013,34 (13):993-1001.

[23] Virani SS,Brautbar A,Lee W,et al. Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease[J]. Circulation Journal,2012,76(4):950-956.

[24] Linsel-Nitschke P,Schunkert H. Chromosome 9p21 and coronary risk: the mystery continues[J]. Atherosclerosis,2011,214(2):257-258.

[25] Muhlestein JB, Anderson JL. The 9p21.3 genetic region and coronary heart disease where do we go from here?[J]. Am Coll Cardiol,2011,58(4): 435-437.

[26] Gil J,Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all[J]. Nat Rev Mol Cell Biol,2006,7(9):667-677.

[27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

[28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

[29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

[30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

[31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

[32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

[33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

(收稿日期:2013-11-01)

[27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

[28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

[29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

[30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

[31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

[32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

[33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

(收稿日期:2013-11-01)

[27] Gizard F,Nomiyama T,Zhao Y,et al. The PPARalpha/p16INK4a pathway inhibits vascular smooth muscle cell proliferation by repressing cell cycle-dependent telomerase activation[J]. Circ Res,2008,103(10):1155-1163.

[28] Segev A,Nili N,Qiang B,et al. Inhibition of intimal hyperplasia after stenting by over-expression of p15: a member of the INK4 family of cyclin-dependent kinase inhibitors[J]. Mol Cell Cardiol,2011,50(3):417-425.

[29] Visel A,Zhu Y,May D,et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J]. Nature,2010,464(7287): 409-412.

[30] Holdt LM,Beutner F,Scholz M,et al. Anril expression is associated with atherosclerosis risk at chromosome 9p21[J]. Arterioscler Thromb Vasc Biol,2010,30(3):620-627.

[31] Musunuru K. Regulatory elements in noncoding dna in the chromosome 9p21 locus[J]. Circ Cardiovasc Genet,2011,4(3):330-331.

[32] Harismendy O,Notani D,Song X,et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signaling response[J]. Nature,2011,470(7333):264-268.

[33] Cunnington MS,Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus[J]. Curr Atheroscler Rep,2011,13(3): 193-201.

(收稿日期:2013-11-01)

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!