当前位置:首页 期刊杂志

CNTs增强镁基复合材料研究现状

时间:2024-05-18

杨林冲 王坦 张永超 陈杰 赵广治 张保丰

(黄河科技学院,河南 郑州450063)

CNTs增强镁基复合材料研究现状

杨林冲 王坦 张永超 陈杰 赵广治 张保丰

(黄河科技学院,河南 郑州450063)

本文综述了碳纳米管增强镁基复合材料的制备方法和研究现状,介绍了目前常用的熔体搅拌法、消失模铸造法、粉末冶金法、熔体浸渗法和预制块铸造法等制备方法的原理和制备技术。

CNTs;镁基;复合材料;制备方法

镁及镁合金具有密度低,比强度、比刚度高,铸造性能和切削加工性好等优点,被广泛应用于汽车、航空、航天、通讯、光学仪器和计算机制造业。但镁合金强度低,耐腐蚀性能差严重阻碍其广泛应用。

碳纳米管不仅具有极高的强度、韧性和弹性模量,而且具有良好的导电性能,还是目前最好的导热材料。这些独特的性能使之特别适宜作为复合材料的纳米增强相。近年来,碳纳米管作为金属的增强材料来强度、硬度、耐摩擦、磨损性能以及热稳定性等方面发挥了重要作用。

近些年,镁基复合材料成为了金属基复合材料领域的新兴研究热点之一,碳纳米管增强镁基复合材料的研究也逐渐成为材料学者研究重点之一。本文就目前有关碳纳米管增强镁基合金复合材料的制备技术做综述,以供研究者参考。

1 熔体搅拌法

熔体搅拌法是通过机械或电磁搅拌使增强相充分弥散到基体熔体中,最终凝固成形的工艺方法。主要原理是利用高速旋转的搅拌器搅动金属熔体,将CNTS加入到熔体漩涡中,依靠漩涡的负压抽吸作用使CNTS进入金属熔体中,并随着熔体的强烈流动迅速扩散[1]。

周国华[2]等人采用搅拌铸造法制备了CNTs/AM60镁基复合材料。研究采用机械搅拌法,在精炼处理后,在机械搅拌过程下不断加入碳纳米管到镁熔体中,搅拌时间20min,然后采用真空吸铸法制得拉伸试样。研究结果显示,碳纳米管具有细化镁合金组织的作用,在拉伸过程中,能够起到搭接晶粒和承载变形抗力的作用。

C.S.Goh[3]等采用搅拌铸造法制备了CNTS/Mg基复合材料时,金属熔化后采用搅拌桨以450r/min的转速搅拌,然后用氩气喷枪将熔体均匀地喷射沉积到基板上,从而制得CNTS/Mg基复合材料。力学性能测试表明,复合材料具有较好的力学性能。

李四年[4]等人采用液态搅拌铸造法制备了CNTS/Mg基复合材料。CNTS加入前首先经过了化学镀镍处理,研究采用了正交实验,考察了CNTS加入量、加入温度和搅拌时间对复合材料组织和性能的影响。研究结果表表明,CNTS加入量在1.0%、加热温度在680℃、搅拌3min时,能获得综合性能较好的复合材料。

搅拌铸造法优点是工艺简单、成本低、操作简单,因此在研究CNTS增强镁基复合材料方面得到广泛应用。但搅拌铸造法在熔炼和浇铸时,金属镁液容易氧化,CNTS均匀地分散到基体中也存在一定难度。

2 消失模铸造法

消失模铸造是将与铸件尺寸形状相似的石蜡或泡沫模型黏结组合成模型簇,刷涂耐火涂料并烘干后,埋在干石英砂中振动造型,在负压下浇注,使模型气化,液体金属占据模型位置,凝固冷却后形成铸件的新型铸造方法。

周国华[5]等人就通过消失模铸造法制备CNTs/ZM5镁合金复合材料。将PVC母粒加入到二甲苯中溶解,把CNTs加入上述溶液中超声分散10min后过滤、静置20h,装入发泡模具发泡成型,用线切割机加工制得消失模。把制得的含碳纳米管的消失模具放入砂箱内,填满砂并紧实,将自行配制的ZM5镁合金熔体浇注制得复合材料。实验结果表明,碳纳米管对镁合金有较强的增强效果,对ZM5合金的晶粒有明显的细化作用。

3 粉末冶金法

粉末冶金法是把CNTS与镁合金基体粉末进行机械混合,通过模压等方法制坯,然后加入到合金两相区进行烧结成型的一种成型工艺。粉末冶金法的优点在于合金成分体积分数可任意配比而且分布比较均匀,可以避免在铸造过程中产生的成分偏析现象,而且由于烧结温度是在合金两相区进行,能够避免由于高温产生的氧化等问题。

沈金龙[6]等人采用粉末冶金的方法制备了多壁碳纳米管增强镁基复合材料。试验采用CCl4作为分散剂将镁粉和CNTS混合,在室温下将混合粉末采用双向压制成型后进行真空烧结,制成碳纳米/强镁基复合材料。研究结果表明:碳纳米管提高了复合材料的硬度和强度,镁基复合材料的强化主要来自增强体的强化作用、细晶强化和析出强化。

Carreno-Morelli[7]等利用真空热压烧结粉末冶金法制备了碳纳米管增强镁基复合材料。研究发现,当CNTs含量为2%时,复合材料的弹性模量提高9%。

杨益利用利用粉末冶金法,制备了碳纳米管增强镁基复合材料,研究了碳纳米管制备工艺和含量对复合材料组织和性能的影响。研究采用真空热压烧结技术,通过研究发现,在热压温度为600℃、保压时间20min、保压压力在20MPa、CNTS含量为1.0%时,制得的复合材料具有强度最高值。TEM分析CNTS与镁基体结合良好,增强机理主要有复合强化、桥连强化和细晶强化。

4 熔体浸渗法

熔体浸渗法是先把增强相预制成形,然后将合金熔体倾入,在熔体的毛细现象作用下或者一定的压力下使其浸渗到预制体间隙而达到复合化的目的。按施压方式可以分为压力浸渗、无压浸掺和负压浸渗三种。

Shimizu等采用无压渗透的方法制备了碳纳米管增强镁基复合材料,随后进行了热挤压,力学性能测试显示,抗拉强度达到了388MPa、韧性提高了5%。

5 预制块铸造法

周国华等人采用碳纳米管预制块铸造法制备了CNTS/AZ91镁基复合材料。将AL粉、Zn粉、CNTs按比例混合分散后,用50目不锈钢网筛过滤后在模具中压制成预制块。然后利用钟罩将预制块压入镁熔体并缓慢搅拌至预制块完全溶解,采用真空吸铸法制得复合材料试样。研究结果表明,预制块铸造法能够使CNTs均匀分散到镁合金熔体中,复合材料的晶粒组织得到细化,力学性能明显提高。

6 结语

近年来,CNTs在增强镁基复合材料的研究越来越多,目前存在的主要问题是CNTs的分散和与基体界面的结合等问题。由于但碳纳米管具有高的比表面能,使其在与其他材料的复合过程中易形成团聚,导致复合材料性能不甚理想,最终起不到纳米增强相的效果,同时碳纳米管属轻质纳米纤维,与各类金属的比重相差太大,不易复合。目前有关碳纳米管增强镁基合金复合材料的研究还处于初期阶段,随着技术的不断发展,新工艺和新方法不断出现,CNTs的分散及与基体的界面结合等问题将逐渐被解决,开发出性能优异的CNTs/Mg基复合材料将有着重要的意义。

[1]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003

[2]周国华,曾效舒,袁秋红.铸造法制备CNTS/AM60镁基复合材料的研究[J].铸造,2009,58(1):43-46.

[3]GohCS,WeiJ,etal.Ductilityimprovementandfatigue studiesinMg-CNTnano-composites[J].ComposSci.Techn,2008,68:1432.

[4]李四年,宋守志,余天庆等.铸造法制备纳米碳管增强镁基复合材料[J].特种铸造及有色合金,2005,25(5):313-315.

[5]周国华,曾效舒,袁秋红等.消失模铸造法制备CNTS/ZM5镁合金复合材料的研究[J].热加工工艺,2008,37(9):11-14.

[6]沈金龙,李四年,余天庆等.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005,26(4):309-312.

[7]Carreno-MorelliE,YangJ,etal.Carbonnanotube/magnesiumcomposites[J].PhysStatusSolidiA,2004,201(8):53.

[8]杨益.碳纳米管增强镁基复合材料的制备与性能研究[D].北京:国防科学技术大学硕士论文,2006.

TB331

A

1671-0037(2014)01-66-1.5

2013年12月12日。

郑州市科技攻关项目(20130839),黄河科技学院大学生创新创业实践训练计划项目(2013XSCX025)。

杨林冲(1991-),本科生,黄河科技学院工学院。

张保丰(1979-),副教授,研究方向:新材料加工及制备技术。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!