当前位置:首页 期刊杂志

直接拟解法求Boussinesq方程组的精确解

时间:2024-05-18

李伟 李丽

摘 要:微分方程包含常微分方程和偏微分方程。由于非线性偏微分方程是偏微分方程的重要内容,求微分方程的解是微分方程研究的重要内容,从而求非线性偏微分方程的解是微分方程研究内容中的重中之重。很多重大的物理科学问题和信息技术问题都与非线性偏微分方程的研究紧密相关。一般来说,求非线性偏微分方程的解是不容易的。经过科研工作者不断努力已经找到了大量的求解方法。该文借助于行波变换法,直接拟解法和齐次法解得了Boussinesq的新解。这种方法也具有一定的普遍性,可以求一些非线性偏微分方程的解。

关键词:行波变换  精确解  拟解齐次平衡法

中图分类号:O175.2     文献标识号:A 文章编号:1672-3791(2021)10(b)-0000-00

Exact Solution for Solving Boussinesq Equations by Using Direct Quasi Solution

LI Wei  LI Li

(College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning Province, 121013 China)

Abstract: Differential equations include ordinary differential equations and partial differential equations.Because nonlinear partial differential equation is an important content of partial differential equation, the solution of differential equation is the important content of differential equation research, so the solution of nonlinear partial differential equation is the most important content of differential equation research.Many important physical science and information technology problems are closely related to the study of nonlinear partial differential equations. Generally speaking, it is not easy to find the solution of nonlinear partial differential equations. Through the continuous efforts of scientific researchers, a large number of solutions have been found. In this paper, a new solution of Boussinesq is obtained by means of Traveling Wave Transformation method, Direct Quasi solution and Homogeneous solution. This method also has certain universality, and can find the solutions of some nonlinear partial differential equations.

Key Words: Travellingwave transform; Exact solution; Quasi solution; Homogeneous Balance method

通过科研工作者对非线性偏微分方程求解的深入研究,获得了许多求解的方法,如齐次平衡法[1-3]、有理函数变换法[4]、行波變换法[5-6]、辅助函数法、Riccati方程法[7-8]、同伦分析法[9]。该文利用行波变换法,直接拟解法和齐次平衡法获得了Boussinesq方程组的全新的解。

1 Boussinesq方程组的新的精确解

2 结  论

利用行波变换法、齐次平衡法、直接拟解法、获得了Boussinesq方程组的全新的精确解。这种方法也用于解其他非线性偏微分方程(组)。这种方法具有一定的普遍性,可以求一些非线性偏微分方程的解。

参考文献

[1]王明亮,白雪.齐次平衡原则与BTs[J].兰州大学学报,2000,36(3):12-17.

[2]张金良,王飞,王明亮.四阶Burgers方程非线性边值-初值问题[J].应用数学学报.2020,43(6):1029-1041.

[3]YILDIZ G,DAGHAN D.New Exact Solutions of a Nonlinear Iintegrable Equation[J].MathematicalMethods in the Applied Sciences,2020,43(11):6761-6770.

[4]张永丽.基于符号计算的若干求精确解方法的研究[D].青岛:青岛大学,2020.

[5]李志斌.非线性数学物理方程的行波解[M].北京:科技出版社,2006.

[6]陆求赐,张宋传,王学彬.一类Burgers方程的孤立波解[J].数学的实践与认识,2021,51(7):299-303.

[7]赵蓉,夏铁成,李季.一种新扩展的Riccati方程有理展开法及其应用[J].渤海大学学报:自然科学版,2006,27(3):237-241.

[8]ODIBAT Z,ALSAEDI A,HAYAT T .Solitary Wave Solutions of Some Nonlinear Physical Models Using Riccati Equation Approach[J].Acta Mathematicae Applicatae Sinica,2020,36(3):401-418.

[9]胥康,任金莲.浅谈最优同伦渐近法(OHAM)在求解偏微分方程中的应用[J].科技创新导报,2019,16(14):186-188.

基金项目:国家自然科学基金资助项目(项目编号:61603055)。

作者简介:李伟(1977—),男,硕士,讲师,研究方向为孤立子与可积系统。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!