时间:2024-05-19
李海斌
(西安石油大学 机械工程学院,陕西 西安 710065)
柴油机缸盖振动信号中包含着丰富的工作状态信息,在对其现代诊断技术中,基于振动信号分析的诊断方法显示出了其优越性,利用缸盖振动信号诊断柴油机故障是一种有效方法。故障特征的提取和故障类型的识别是利用振动信号分析法在对柴油机进行故障诊断过程中两个最为重要的过程。根据提取的故障特征识别柴油机的故障类型是一个典型的模式识别问题,对柴油机故障类型识别采用恰当的模式识别方法就尤为重要。神经网络作为一种自适应的模式识别技术,其通过自身的学习机制自动形成所要求的决策区域,而不需要预先给出有关模式的经验知识和判断函数;它可以充分利用状态信息,对来自于不同状态的信息逐一进行训练而获得某种映射关系。鉴于其自身特性,在故障模式识别领域中有着越来越广泛的应用。而据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。但是它也存在一些缺陷,例如学习收敛速度、不能保证收敛到全局最小点、网络结构不易确定。遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法。其基本操作是选择、交叉和变异,核心内容是参数编码、初始群体的设定、适应度函数的设计、遗传操作设计和控制参数的设定。遗传算法通过种群随机搜索,对数据进行并行处理,将结果收敛到全局最优解。因此,将遗传算法与BP神经网络结合应用于柴油机故障诊断中,可以提高网络的性能,避免网络陷入局部极小解,进而实现对设备故障的识别。
BP神经网络是一种多层前馈型神经网络,其神经元的传递是S型函数,输出量为0至1之间的连续量,它可以实现从输入到输出的任意非线性映射。由于权值的调整采用反向传播学习算法,因此也称为其为BP网络。
图1 BP神经元模型
上图给出一个基本的BP神经元模型,它具有R个输入,每个输入都通过一个适当的权值和ω下一层相连,网络输入可表示为:
a=f(wp+b)
f就是表示输入/输出关系的传递函数。
BP神经网络的结构与所有影响齿轮故障的特征因素有关。柴油机运动部件多而复杂,激励源众多且其频率范围宽广,加之噪声的融入,使得柴油机表面振动信号极为复杂。基于这种特点,可以确定用于柴油机故障诊断的BP神经网络的输入层、输出层隐含层以及节点数等。由小波包提取各柴油机故障的特征值作为输入节点,输出节点数目与柴油机故障类别的数目有关。
BP神经网络又称为反向传播算法,其算法数学意义明确、步骤分明,是神经网络中最为常用、最有效、最活跃的一种网络模型。常用方法梯度下降法和动量法,但是梯度下降法训练速度较慢,效率比较低,训练易陷入瘫痪,而且其实质是单点搜索算法,不具有全局搜索能力;动量法因为学习率的提高通常比单纯的梯度下降法要快一些,但在实际应用中速度还是不够;BP神经网络学习训练开始时网络的结构参数是随机给定的,因此结果存在一定的随机性。
遗传算法(Genetic Algorithm,GA)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国密歇根大学的J.Holland教授于1975年首先提出来的,遗传算法具有很强的宏观搜索能力和良好的全局优化性能,因此将遗传算法与BP神经网络结合,训练时先用遗传算法对神经网络的权值进行寻找,将搜索范围缩小后,再利用BP网络来进行精确求解,可以达到全局寻找和快速高效的目的,并且可以避免局部极小点问题。该算法不仅具有全局搜索能力,而且提高了局部搜索能力,从而增强了在搜索过程中自动获取和积累搜索空间知识及自应用地控制搜索的能力,从而使结果的性质得以极大的改善。
遗传算法优化BP神经网络主要分为:BP神经网络结构确定、遗传算法优化权值和阀值、BP神经网络训练及预测。其中,BP神经网络的拓扑结构是根据样本的输入/输出个数确定的,这样就可以确定遗传算法优化参数的个数,从而确定种群个体的编码长度。因为遗传算法优化参数是BP神经网络的初始权值和阀值,只要网络结构已知,权值和阀值的个数就已知了。神经网络的权值和阀值一般是通过随机初始化为[-0.5,0.5]区间的随机数,这个初始化参数对网络训练的影响很大,但是又无法准确获得,对于相同的初始权重值和阀值,网络的训练结果是一样的,引入遗传算法就是为了优化出最佳的初始权值和阀值。
通过基于遗传算法的BP神经网络建立小波包特征量与故障之间的对应关系。表1为柴油机常见故障在不同频段的能量分布,构成了人工神经网络的训练样本。表2为网络输出样本,“0”代表没有故障,“1”代表发生故障。利用表1中的训练样本对基于遗传算法的BP神经网络进行训练,经1000次训练达到了理想训练效果。
表1 训练样本
表2 网络理想输出
表3 待诊断的故障样本
表4 诊断结果
将表3中的待诊断的故障样本输入到已经训练好的BP神经网络,得到诊断结果如表4所示。第1组待诊断的信号第1个输出节点接近1,可以根据训练样本结果判断该组数据故障为供油提前角晚;第2组待诊断的信号第4个输出节点接近1,根据训练样本结果可以判断该组数据故障类型为供油提前角早;第3组待诊断的信号第7个数据节点接近1,可以判断故障类型为针阀卡死,其诊断结果和现场勘查结果一致。
遗传算法优化BP神经网络的目的是通过遗传算法得到更好的网络初始值和阀值。通过以上研究可以看出,遗传算法和BP算法有机的融合,可以有效地弥补BP神经网络结构、权值和阀值选择上的随机性缺陷,充分利用了遗传算法的全局搜索能力和BP神经网络的局部搜索能力,克服了传统的BP神经网络柴油机故障诊断的缺点,提高了柴油机故障诊断的精度。
[1]史峰,王辉.智能算法 30个案例分析[M].北京:北京航空航天大学出版社,2011.
[2]张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2008.
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!