当前位置:首页 期刊杂志

一种基于SHTB的II型动态断裂实验技术1)

时间:2024-05-22

邹广平谌 赫 唱忠良

(哈尔滨工程大学航天与建筑工程学院,哈尔滨150001)

一种基于SHTB的II型动态断裂实验技术1)

邹广平2)谌 赫 唱忠良3)

(哈尔滨工程大学航天与建筑工程学院,哈尔滨150001)

冲击剪切载荷作用下动态断裂韧性的测定是材料力学性能和断裂行为研究中重要组成部分.为了测定材料的II型动态断裂韧性,许多学者采用不同的试样与实验方法进行了实验,但限于实验条件,裂纹断裂模式往往是I+II复合型,而不是纯II型,因而不能准确测得材料的II型动态断裂韧性.鉴于此,本文基于分离式霍普金森拉杆(split Hopkinson tension bar,SHTB)实验技术,提出一种改进的紧凑拉伸剪切(modifie compact tension shear,MCTS)试样,通过夹具对MCTS试样施加约束,从而保证试样按照纯II型模式断裂.采用实验--数值方法对MCTS试样动态加载过程进行分析,将实验测得的波形输入有限元软件ANSYS-LSDYNA,得到了裂纹尖端应力强度因子--时间曲线,并与紧凑拉伸剪切(compact tension shear,CTS)试样进行了对比.同时采用数字图像相关法进行了实验,验证了有限元分析结果.结果表明,MCTS试样在整个加载过程中KI≪KII,裂纹没有张开;而CTS试样在同样的加载过程中KI>KII,出现裂纹张开现象.这说明MCTS试样能够准确地测定材料的II型动态断裂韧性,为材料动态力学测试提供了一种有效的实验技术.

动态加载技术,改进的紧凑拉伸剪切试样,分离式霍普金森拉杆,II型动态断裂韧性,应力强度因子,数字图像相关法

引言

在工程应用中,研究材料在动态载荷作用下的力学性能和断裂行为是十分必要的.目前研究者提出的断裂准则中大多涉及I型与II型断裂韧性.因此II型动态断裂韧性的测定是材料断裂行为研究中重要的部分.

实现动态加载的方式有:高速试验机加载[1-2],落锤或摆锤加载[3-4]和霍普金森杆加载[5-9].由于高速试验机能达到的加载速率有限,而落锤加载又不可避免地出现振动现象,难以准确测得试样所受到的载荷,故常用霍普金森杆测量材料动态断裂韧性.很多学者采用不同的试样和加载方式对材料的II型动态断裂韧性进行了测试,其中李玉龙等[10]针对层间断裂测试方法做了较为全面的综述.这些测试方法详见1.1节.

II型断裂韧性测试最大的难点是如何实现II型加载.虽然这些测试方法各有创造性,但没有考虑到在加载过程中裂纹是否会张开,因而无法保证试样的断裂是纯II型.

鉴于此,本文提出一种改进的紧凑拉伸剪切(modifie compact tension shear,MCTS)试样,通过夹具来保证加载过程中试样为纯II型断裂,并采用有限元分析与实验相结合方法验证其有效性.

1 MCTS试样设计

1.1 几种典型的II型动态断裂测试方法

Kusaka等[11-13]采用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)对单边开口弯曲试样(end notched fl xure,ENF)进行三点弯曲加载.如图1所示.

ENF试样可以看作简支梁,由于层间挤压,裂纹不会张开,因此试样所受到的载荷是纯II型的.但这3种动态加载方式存在一个共同的问题,那就是试样与杆会出现脱离接触现象[14-16],那么应变片测得的载荷不能准确反映试样所受的载荷,因此结果是不准确的.

图1 SHPB加载ENF试样示意图Fig.1 SHPB apparatus and ENF specimen

Lambros等[17]和Wu等[18]针对单边裂纹试样(single edge notch,SEN),采用动态剪切冲击方法研究II型层间断裂,如图2(a)所示.很明显,由于杆对试样的作用力不仅有剪力,同时还有相对于裂纹面的弯矩,因此试样受到的载荷不是纯II型,而是I+II复合型.Wu等[18]计算得到的动态应力强度因子如图2(b)所示(图像经过处理).可见I型应力强度因子的最大值约为II型应力强度因子最大值的1/5,显然不能忽略.

图2 SEN试样与实验结果Fig.2 SEN specimen and dynamic SIF

图2 SEN试样与实验结果(续)Fig.2 SEN specimen and dynamic SIF(continued)

Sohn等[19]采用双裂纹试样,在两端加以固定,通过摆锤冲击加载,示意图见图3.有限元分析表明,在两侧完全约束且两裂纹完全对称分布的情况下,两裂纹均为纯II型断裂.实验过程中约束和载荷的完全对称是很难保证的.

图3 双裂纹试样示意图Fig.3 Schematic diagram of dual-crack specimen

Wen等[20]基于分离式霍普金森拉杆(split Hopkinson tension bar,SHTB)装置设计了一种薄片状切口试样,见图4.

图4 薄片状切口试样Fig.4 Thin plane notched specimen

这种试样通过胶粘直接连在杆端部,从而排除了夹具造成的影响.但由于试样本身不对称,在拉力作用下会产生相对于裂纹面的弯矩,因此也无法保证纯II型断裂.

沈昕慧[21]采用了紧凑拉伸剪切(compact tension shear,CTS)试样与夹具,基于SHTB装置进行了复合型动态断裂实验,如图5所示.由于夹具尺寸比试样大并且形状不规则,因此它对波形的影响较为显著.有限元分析表明,在应力波通过试样--夹具系统时,夹具和试样会发生较为明显的振动,无法保证试样的断裂是纯II型的.

图5 CTS试样与夹具示意图Fig.5 Schematic diagram of CTS specimen and clamp

综上所述,为了得到材料在纯剪切载荷作用下的断裂韧性,必须尽可能减小裂纹尖端I型应力强度因子,以保证裂纹为纯II型断裂.因此理想的试样应该满足以下条件:(1)便于预制疲劳裂纹;(2)能够保证裂纹的断裂模式为纯II型;(3)与之匹配的夹具形状较为简单,尺寸不太大.

1.2 MCTS试样与夹具

作者参考了圆盘状紧凑拉伸试样[23],重新设计了试样与夹具,命名为MCTS试样.如图6所示.

MCTS试样与夹具示意图见图6,厚度为5mm.夹具 2个一组,从两个方向通过销钉与 MCTS试样和 SHTB实验装置相连接.约束装置限制了试样垂直于裂纹面方向的位移,这样可以保证试样没有绕着裂尖的转动,从而保证了试样的断裂是纯II型的.

图6 MCTS试样与夹具示意图Fig.6 Schematic diagram of MCTS specimen and clamp

2 MCTS试样有限元分析

2.1 实验--数值方法

王自强等[24]介绍了一种根据裂纹面位移计算应力强度因子的数值方法,Xu等[25]将这种数值方法应用于实验中,提出了实验--数值方法.在塑性区外,裂纹尖端位移场在如图7所示的坐标系内表达

图7 裂尖坐标系统Fig.7 Coordinate system of crack tip

式(1)中坐标系如图7所示,ν0为泊松比,µ为材料剪切模量.

令θ=±π,即可得到裂纹上下表面的位移表达式为

由于图7所示的坐标系为局部坐标系,而有限元计算过程中坐标系为整体坐标系,为了避免坐标变换,因此需要通过裂纹上下表面相对位移来求应力强度因子.令 Δu=u(r,π,t)-u(r,-π,t),Δv=v(r,π,t)-v(r,-π,t),可以推出裂纹尖端应力强度因子的表达式为

式(3)适用于较为靠近裂尖的节点,但由于常规单元无法反映出裂纹尖端应力的奇异性,因此对于非常靠近裂纹尖端的节点,计算结果是不准确的.因此需要在裂尖附近采用精细的网格划分,作出K-r曲线,将曲线平直部分延长到纵轴,取其截距为裂尖应力强度因子的值[26].

2.2 有限元分析结果对比

本节采用有限元软件 ANSYS LS-DYNA对MCTS试样进行分析,通过裂纹上下表面的相对位移来计算MCTS试样动态应力强度因子,并与CTS试样进行对比,进而证明这种试样的合理性.

MCTS试样的有限元模型如图8所示.单元类型为solid164单元.试样单元个数为42000个.试样与夹具的几何尺寸见图6,入射杆和透射杆的长度为3m,直径为15mm,材料参数见表1.图8中试样的上下表面均施加了y方向上的约束,以保证试样不发生转动.为便于分析,在入射杆端部截面上73个节点上施加相同的载荷.图9为实验测得的入射波形,根据应力值可以算出作用于每个节点在任意时刻的载荷,作为有限元的输入载荷.

图8 MCTS试样有限元模型Fig.8 Finite element model of MCTS specimen

表1 有限元模型材料属性Table 1 Material properties of finit element model

图9 实测入射波形Fig.9 Detected incident pulse in test

从距离裂尖1mm的节点开始,在裂纹上下表面向外取相邻7组对应的节点,如图10所示.这7点在t=0.8ms时的应力强度因子如图11所示,图11横坐标为节点到裂尖距离.可见这些点的应力强度因子很接近线性分布.根据文献[26],将其拟合直线的截距取为裂纹尖端应力强度因子.应力强度因子随时间变化规律如图12所示.

图10 裂纹面节点Fig.10 Nodes on crack surface

图11 裂纹面节点应力强度因子计算值Fig.11 SIF of nodes on crack surface

图12 MCTS试样裂纹尖端应力强度因子Fig.12 SIF of MCTS specimen at crack tip

相对应地,采用同样的材料参数和载荷对CTS试样进行了有限元分析.CTS试样的有限元模型参见图13.在裂纹尖端区域采用与MCTS试样相同的网格划分,并取相同的节点计算动态应力强度因子.结果见图14.

图13 CTS试样有限元模型Fig.13 Finite element model of CTS specimen

图14 CTS试样裂纹尖端应力强度因子Fig.14 SIF of CTS specimen at crack tip

考察MCTS试样裂尖应力强度因子变化过程可以发现,I型应力强度因子先减小后增大,其最大值约为0.79MPa·m1/2,与II型应力强度因子相比可以忽略不计,说明在整个加载过程中,MCTS试样裂纹基本没有张开;而CTS试样裂纹尖端I型应力强度因子在t=1ms前小于零,由式(3)可知裂纹闭合.而在t=1ms开始急剧增大,其变化幅度非常大,其最大值甚至超过了II型应力强度因子的最大值.即CTS试样裂纹先闭合,后张开.由此可见,CTS试样无法保证裂纹为纯II型断裂,MCTS试样则可以保证.

3 实验验证

为了验证 MCTS试样的有效性,本文采用数字图像相关法 (digital image correlation,DIC),基于SHTB实验装置进行了实验验证,并与有限元结果进行对比.

DIC方法最早由Peters等[27]与Yamaguchi等[28]提出,其基本原理是分析试样表面散斑相对位置的变化,从而计算出试样表面位移场与应变场.与其他光学测量方法相比,DIC具有光路简单,对测量环境要求不高等优点,在冲击、动态断裂等领域有广泛的应用[29-30].

3.1 实验装置

为保证试样断裂模式为纯II型,需要在垂直于裂纹方向施加约束,而沿着杆的方向上不受约束.约束装置如图15所示.其中两侧导轨与底板、横梁组成框架结构以提高整体刚度;MCTS试样与滑块密切接触,滑块与导轨之间嵌有滚珠以降低摩擦,起到约束垂直位移而不约束杆方向位移的作用.

图15 MCTS试样约束装置Fig.15 Constrain apparatus of MCTS specimen

DIC实验装置由高速摄影机和冷光源组成,如图16所示.图17为喷涂了散斑的MCTS试样.

SHTB实验装置示意图见图18,子弹通过时间间隔仪时触发示波器,同时高速摄影机开始工作,当拍摄的帧数达到摄影机容量上限时自动停止.高速摄影帧率为80000帧每秒,总计100000帧.得到的图像采用Vic-2d图像处理软件进行分析.

图16 DIC实验装置Fig.16 DIC apparatus

图17 喷涂散斑的MCTS试样Fig.17 Speckled MCTS specimen

图18 SHTB实验装置示意图Fig.18 Schematic diagram of SHTB apparatus

3.2 实验结果

图19与图20显示的是MCTS试样在t=0.75ms至t=0.9ms时的应变场.其中t=0对应着子弹刚刚撞击法兰的时刻,即有限元分析的起始时刻.图19与图20中应变的单位为微应变.根据弹性力学理论,位移与应变的关系为

图19 MCTS试样x方向应变场Fig.19 Strain fiel of MCTS specimen inx-direction

图20 MCTS试样y方向应变场Fig.20 Strain fiel of MCTS specimen iny-direction

理论上DIC可以测得试样表面的位移场与应变场,但由于图像处理软件计算的位移场会出现一定程度的不连续现象,而计算应变场时应用了smooth算法,减小了这种不连续性,故给出试样的应变场,根据式(4)反演出位移场,代入式(1)即可得到裂纹尖端应力强度因子,如图21所示.

根据实验结果计算出来的应力强度因子与有限元计算的应力强度因子相比,II型应力强度因子峰值约偏小5%,但整体趋势相同.其中I型应力强度因子的数值远小于II型应力强度因子.这证明了MCTS试样的断裂模式为纯II型.

图21 MCTS试样裂纹尖端应力强度因子实验值Fig.21 Detected SIF of MCTS specimen at crack tip

4 结论

基于SHTB实验装置对CTS试样进行了改进,提出一种新型紧凑拉伸剪切试样.并且通过有限元方法分析了MCTS试样与CTS试样裂纹尖端应力强度因子随时间变化关系.有限元结果表明,在垂直于裂纹面的方向上施加约束能够保证裂纹的断裂模式为纯II型.采用DIC方法进行的实验也验证了这一点,可见MCTS试样相对于CTS试样以及其他类型的II型动态断裂试样具有突出的优越性.

1 Blackman B,Kinloch A,Wang Y,et al.The failure of fibr composites and adhersively bonded fibr composites under high rates of test.Journal of Material Science,1996,31(17):4451-4466

2 Blackman B,Kinloch A,Ro driguez-Sanchez FS,et al.The fracture behavior of adhersively bonded composite joints:Ef f ects of rate of test and mode of loading.International Journal of Solid and Structures,2012,49(13):1434-1452

3 Todo M,Nakamura T,Takashi K.Mode II interlaminar fracture behavior of fibe reinforced polyamide composites under static and dynamic loading conditions.Journal of Reinforced Plastics and Composites,1999,18(15):1415-1427

4 Todo M,Nakamura T,Mada T,et al.Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus.Advanced Composite Materials, 1998,7(3):285-297

5 Iqbal MA,Senthil K,Sharma P,et al.An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material.International Journal of Impact Engineering, 2016,96:146-164

6 许泽建,丁晓燕,张炜琪等.一种用于材料高应变率剪切性能测试的新型加载技术.力学学报,2016,48(3):654-659(Xu Zejian, Ding Xiaoyan,Zhang Weiqi,et al.A new loading technique for measuring shearing properties of materials under high strain rates.ChineseJournalofTheoreticalandAppliedMechanics,2016,48(3):654-659(in Chinese))

7 于金程,刘正,董阳等.高应变速率下Mg-Gd-Y镁合金动态拉伸性能与失效行为.沈阳工业大学学报,2015,37(6):650-655(Yu Jincheng,Liu Zheng,Dong Yang,et al.Dynamic tensile properties and failure behavior of Mg-Gd-Y alloy at high strain rates.Journal of Shenyang University of Technology,2015,37(6):650-655(in Chinese))

8 邹广平,沈昕慧,赵伟玲等.SHTB加载紧凑拉伸试样断裂韧性测试仿真.哈尔滨工程大学学报,2015,36(7):917-921(Zou Guangping,Shen Xinhui,Zhao Weiling,et al.Numerical simulation of dynamic fracture toughness tests on the compact tension specimen loaded by SHTB.Journal of Harbin Engineering University,2015, 36(7):917-921(in Chinese))

9 Xia KW,Yao W.Dynamic rock tests using split Hopkinson(Kolsky) bar system—A review.Journal of Rock Mechanics and Geotechnical Engineering,2015,7(1):27-59

10 李玉龙,刘会芳.加载速率对层间断裂韧性的影响.航空学报, 2015,36(8):2620-2650(Li Yulong,Liu Huifang.Loading rate ef f ect on interlaminar fracture toughness.Acta Aeronautica et Astronautica Sinica,2015,36(8):2620-2650(in Chinese))

11 Kusaka T,Hojo M,Mai YW,et al.Rate dependence of mode I fracture behavior in carbon-fibe/epoxy composite laminates.Composite Science and Technology,1998,58(3-4):591-602

12 Kusaka T,Kurokawa T,Hojo M,et al.Evaluation of mode II interlaminar fracture composite of laminates under impact loading.Key Engineering Materials,1997,141-143:477-500

13 Kusaka T,Yamaguchi Y,Kurokawa T.Ef f ect of strain rates on mode II interlaminar fracture toughness in carbon-fibe/epoxy laminated composites.Journal of Physics IV France,1994,4(8):671-676

14 Jiang F,Vecchio KS.Hopkinson bar loaded fracture experimental technique:A critical review of dynamic fracture toughness tests.Applied Mechanics Reviews,2009,62(6):1-39

15 Yokoyama T,Kishida K.A novel impact three-point bend test method for determining dynamic fracture initiation toughness.Experimental Mechanics,1989,29(2):188-194

16 Rubio L,Fernandez-Saze J,Navarro C.Determination of dynamic fracture initiation toughness using three-point bending tests in a modifie Hopkinson pressure bar.Experimental Mechanics,2003, 43(2):379-386

17 LambrosJ,RosakisAJ.Dynamiccrackinitiationandgrowthinthick unidirectional graphite/epoxy plates.Composite Science and Technology,1997,57(1):413-421

18 Wu XF,Dzenis YA.Determination of dynamic delamination toughness of a graphite-fibe/epoxy composite using Hopkinson bar.Polymer Composites,2005,26(2):165-180

19 Sohn MS,Hu XZ.Impact and high strain rate delamination characteristics of carbon fibe epoxy composites.Theoretical and Applied Fracture Mechanics,1996,25(1):17-29

20 Wen X,Lu F,Chen R,et al.Experimental studies on mixed-mode dynamic fracture behaviour of aluminium alloy plates with narrow U-notch.Fatigue and Fracture of Engineering Materials and Structures,2016,39(11):1379-1390

21 沈昕慧.应力波加载下材料动态断裂韧性相关实验技术研究.[博士论文].哈尔滨:哈尔滨工程大学,2016(Shen Xinhui.Investigation on dynamic fracture toughness experimental technique under stress wave load.[PhD Thesis].Harbin:Harbin Engineering University,2016(in Chinese))

22 Richard HA.A new compact shear specimen.International Journal of Fracture,1981,17(5):105-107

23 Anderson TL.Fracture Mechanics,Foundations and Applications. Boca Raton,CRC Press,1991

24 王自强,陈少华.高等断裂力学.北京:科学出版社,2009:43-76(Wang Ziqiang,Chen Shaohua.Advanced Fracture Mechanics. Beijing:Science Press,2009:43-76(in Chinese))

25 Xu Z,Li Y.A novel method in determination of dynamic fracture toughness under mixed mode I/II impact loading.International Journal of Solids and Structures,2012,49:366-376

26 郦正能.应用断裂力学.北京:北京航空航天大学出版社,2012:64-72(Li Zhengneng.Applied Fracture Mechanics.Beijing:Beihang University Press,2012:64-72(in Chinese))

27 Peters WH,Ranson WH.Digital imaging technique in experimental mechanics.Opt Eng,1982,21(3):427-431

28 Yamaguchi I.Speckle displacement and deformation in the dif f raction and image field for small object deformation.Opt Acta,1981,28(10):1359-1376

29 周忠彬,陈鹏万,黄风雷.PBX材料宏细观断裂行为的数字散斑相关法实验研究.高压物理学报,2011,25(1):1-7(Zhou Zhongbin,Chen Pengwan,Huang Fenglei.An experimental study on the micro/macro fracture behavior of PBX using digital speckle correlation method.Chinese Journal of High Pressure Physics,2011, 25(1):1-7(in Chinese))

30 邹广平,汪艳伟,唱忠良等.基于数字散斑相关法的紧凑拉伸试样断裂韧性实验研究.实验力学,2015,30(3):275-281(Zou Guangping, Wang Yanwei, Chang Zhongliang, et al. Experimental study of compact tension specimen fracture toughness based on digital speckle correlation method. Journal of Experimental Mechanics,2015, 30(3): 275-281 (in Chinese))

A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB1)

Zou Guangping2)Chen He Chang Zhongliang3)
(College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin150001,China)

Dynamic fracture toughness under impact shear loading is an essential aspect in fracture behavior and mechanical property of material.Experiments have been done by several researchers using dif f erent specimens and test methods in order to measure mode II fracture toughness.But due to crack opening during loading process,the results obtained in these tests are not mode II but mixed mode I+II.Since crack opening are not be considered,dynamic shear fracture toughness of material can not be accurately detected.In view of this problem,a modifie compact tension shear(MCTS) specimen based on split Hopkinson tension bar(SHTB)apparatus is proposed in this paper.The specimen was constrained with special designed clamp to prevent crack opening,so mode II fracture are ensured.Numerical analysis was carried out using experimental-numerical method.The incident pulse detected in test are introduced in ANSYS-LSDYNA as input pulse.Stress intensity factor at crack tip of MCTS specimen was calculated by relative displacement of corresponding nodes on crack surface in two directions.Simulation of compact tension shear(CTS)specimen was also done with same incident pulse as control.In addition,experimental study was also carried out using digital image correlation method based on SHTB apparatus to validate numerical results.Experimental results shows that during loading process,MCTS specimen ensuresKI≪KIIand crack opening are not observed.However,for same incident pulse,the maximum mode I stress intensity factor of CTS specimen is even higher than mode II.Which indicates that dynamic shear fracture toughness of material can be measured ef f ectively using MCTS specimen.This work provides an ef f ective and convenient test technique for evaluating dynamic properties of a certain material.

dynamic loading method,MCTS specimen,SHTB,dynamic fracture toughness,stress intensity factor,digital image correlation method

O347.4

A doi:10.6052/0459-1879-16-239

2016-08-29收稿,2016-11-26录用,2016-11-29网络版发表.

1)国家自然科学基金资助项目(11372081).

2)邹广平,教授,主要研究方向:动态断裂力学.E-mail:gpzou@hotmail.com

3)E-mail:czl19820228@163.com

邹广平,谌赫,唱忠良.一种基于SHTB的II型动态断裂实验技术.力学学报,2017,49(1):117-125

Zou Guangping,Chen He,Chang Zhongliang.A modifie mode II dynamic fracture test technique based on SHTB.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):117-125

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!