时间:2024-05-22
王佳津 , 王彬雁* , 曹萍萍
(1.四川省气象台,成都 610072;2.中国气象局成都高原气象研究所/高原与盆地暴雨旱涝灾害四川省重点实验室,成都 610072)
短时强降水具有历时短、雨强大、局地性强的特点,易造成城市内涝、滑坡、泥石流等次生灾害,给人民生命财产带来巨大损失[1]。因此,准确预报短时强降水对于城市防灾减灾能力的提升具有重要意义。四川地形复杂,西部为青藏高原东南边缘及横断山区,东部为群山环绕,夏季强降水频发,由于地形降水存在增幅作用,更易发生滑坡、泥石流等次生灾害,其汛期强降水预报是四川天气预报业务的重要任务之一。强降水的预报即包含降水量的预报又包含开始时间的预报。准确预报出强降水的开始时间,能够为政府防灾减灾提供重要的参考依据,从而减少人员伤亡和财产损失。
近年来,随着高分辨率模式的不断发展,预报员对短时强降水的预报能力逐步提高[2-3]。但受模式本身动力学、热力学性能局限,高分辨率模式预报的强降水落区和开始时间仍无法满足实际业务中对精细化预报的要求[4]。为了提高预报准确率,学者们基于模式直接输出的产品研究了多种释用方法,例如概率匹配法[5-8]、人工神经网络法[9-10]、配料法[11-13]、偏差订正法[14-15]等。曹萍萍等[7,16]基于集合预报等模式,多次展开对四川夏季强降水的订正试验。智协飞等[17]采用概率匹配、卡尔曼滤波等技术方法对强降水开展了订正分析。陈锦鹏等[10]基于中尺度模式,采用卷积神经网络的方法,对1 h降水进行了订正研究。但上述工作主要是对降水落区和强度进行订正,对模式预报强降水开始时间展开订正的研究较少。根据已有研究[18],在强对流天气发生前,各个大气对流参数中心与短时强降水中心对应较好,也就是说,强降水发生在一定的大气条件下,例如异常高能高湿[19]。本文以高分辨率模式预报为基础,从物理量阈值入手,开展强降水开始时间的订正,以期减小模式预报强降水开始时间误差,为四川盆地短时临近预警及防灾减灾提供重要参考。
本文使用的降水量资料为四川省156个国家站和4639个区域自动站的逐时降水观测资料,西南区域模式(SWC-WARMS)08时起报的逐时降水及物理量要素资料,模式资料的空间分辨率为9 km×9 km。资料时间长度为2018~2019年5~9月和2020年8月,其中订正方法研究采用2018~2019年5~9月资料,订正检验采用2020年8月资料。格点插值站点采用邻近插值法,即将站点周围5 km范围内格点最大值赋给站点。
本文研究对象是短时强降水,根据中央气象台业务规定,1 h降雨量≥20 mm[7]为短时强降水。强降水开始时间在本文中的定义为:至少2 h连续出现1 h>20 mm降水,那么第一个出现20 mm降水的时间即为短时强降水开始时间。
短时强降水开始时间订正方法采用的是最小偏差和订正法,具体表述如下:
式中:Sm为模式强降水开始时间,So为实况强降水开始时间, ΔS为模式强降水开始时间与实况的差值。另将所有站点的模式强降水开始时间与实况强降水开始时间差值记为 ΔSsum。订正过程中主要依靠强降水相关物理因子阈值,例如订正方法选取m个物理因子,确定各物理因子阈值后,假设订正流程中某一订正时刻通过n(n≤m)个物理因子阈值,即定义阈值百分比为,变化范围为(%,100%)。随后在阈值百分比中寻找 ΔSsum最小值,其对应的阈值百分比则为最优阈值百分比。
根据上文对短时强降水开始时间的定义,当模式预报某一时次有短时强降水,而实况其前后6 h以内出现短时强降水,即为1次个例。本文研究对象未包括模式预报出短时强降水而实况未出现的个例。2018~2019年5~9月共筛选出325站次个例,短时强降水个例站点分布如图1所示,除广安、泸州2市外,基本覆盖盆地各市。图2为分析强降水开始时间误差分布箱线图,图中负值代表模式预报强降水开始时间较实况提前,正值代表模式预报强降水开始时间较实况延迟。如图所示,6、7、8月强降水开始时间误差以负数居多,即代表模式预报的强降水开始时间往往比实况提前,3个月份的误差中位数均为-1,这意味着模式预报的强降水开始时间大多数情况较实况提前1 h。从逐月数据分布上看,7、8月误差分布特征较为一致,25%分位点为-3,75%分位点为0;而6月有所差别,25%分位点为-2,75%分位点为1。这代表模式对6月强降水开始时间的预报还存在部分开始时间较实况延迟的个例,而对7、8月则大多是强降水开始时间预报提前于实况。
图1 短时强降水个例站点分布及分区示意
图2 短时强降水开始时间(模式-实况)线箱分布
为了统计模式短时强降水开始时间预报偏差的日变化特征,以短时强降水实况出现时间为准,将白天时段划分为09:00~20:00,夜间时段划分为21:00~次日08:00。图3给出了白天、夜间时段模式短时强降水开始时间预报不同偏差频次分布。如图所示,对于模式预报短时强降水开始时间较实况延迟的情况,白天和夜间出现的频次相差不大,一般延迟1~2 h;而对于模式预报短时强降水开始时间较实况提前的情况,夜间出现频次在不同偏差下均远大于白天,夜间预报提前3 h出现的频次多达80次,而白天在相同偏差下仅出现8次。
图3 模式短时强降水开始时间预报不同偏差频次分布
根据已有研究[20,21],选取10个与短时强降水相关性较好的物理量因子,所选因子如表1所示,并通过邻域法将各物理量插值到站点上。
表1 物理因子选取表
根据图1站点分布,再结合四川盆地气候特征[22],将盆地站点分为4个区域(I区、II区、III区、IV区):I区(102°~106°E, 31°~34°N),共 98站;II区 (106°~109°E,30°~34°N),共 21 站;III区 (101°~104°E, 28°~31°N),共122 站;IV 区 (104°~107°E, 27°~31°N),共 61 站。
下文将根据此分区确定不同地区6~8月水汽、动力、热力3个方面各物理量因子的订正阈值。已有研究[18]指出各个大气对流参数中心与短时强降水中心对应较好,所以,短时强降水开始时间的客观订正是否可以从对应的物理量因子阈值入手?本文就是以此为切入点,开展了短时强降水开始时间的订正试验,具体订正方法如1.2节所述。
以2018年强降水过程为例,确定强降水订正最优阈值百分比。设定最优阈值百分比为50%,即当通过选取10个物理因子中的5个物理因子阈值时,就能使得 ΔSsum最小。订正试验流程如图4所示,首先将模式降水和相关要素插值到最近的站点上,然后通过模式降水资料判断强降水开始时间TS,考虑到之前的检验结果,大部分模式的强降水开始时间较实况提前,所以寻找到这个开始时间向后的5 h,即从Ts至Ts+5h的对应物理因子与各阈值进行对比,当达到最优阈值百分比的物理因子个数时,则认为该时刻是修正后的强降水开始时间;若没有符合条件的情况,则输出根据模式降水资料找到的原始强降水开始时间和最终输出模式订正后的强降水开始时间,并确定最优阈值百分比。
根据图4的订正流程,基于2018年SWC-WARMS资料,共设计3个订正试验方案。方案1中各物理量阈值取25%分位点,方案2中各物理量阈值取50%分位点,方案3中各物理量阈值取75%分位点。3个方案计算结果如表2所示。通过分析可知,方案2中当订正阈值百分为比60%时, ΔSsum最小,即60%为最优阈值百分比,2018年强降水事件开始时间偏差总和减少59 h。综上所述, 6、7、8月强降水开始时间对应物理量订正阈值最终确定为方案2的阈值,即强降水历史事件中各物理量50%分位点的值,如表3所示。
表2 不同订正方案 Δ Ssum 计算结果
图4 强降水开始时间订正方案流程(以最优阈值百分比50%为例)
通过表2可知,2018年短时强降水开始时间最优阈值百分比为60%,在这个最优阈值百分比下,最终订正结果如图5所示。对比订正前后的结果,短时强降水开始时间偏差明显减小,正订正区域主要分布在广元、绵阳、德阳、成都、雅安、乐山、巴中、遂宁、自贡、宜宾等10市(图5c)。进一步分析订正后的结果,2018年强降水事件共涉及195个站点,订正后强降水开始时间偏差减小的站点有57个,即正订正为29.2%,短时强降水开始时间偏差增加的站点有1个,即负订正为0.5%。
图5 2018年最优订正阈值百分比下短时强降水开始时间偏差空间分布(a.订正前,b.订正后,c.正订正站点分布)
为检验最小偏差和订正法的适用性,本文对强降水事件高发时段2020年8月进行了订正试验。应用准对称混合滑动训练期[23],确定最优阈值百分比,然后选用10个物理因子的订正阈值(表3),采用最小偏差和订正法对强降水开始时间进行订正。其中准对称混合滑动训练期的定义如图6所示,例如对2020年8月15日的强降水开始时间进行订正,2020年为预报年(n),8月15日为预报日(fd),那么进入训练期的时段为预报年(n)不包含8月15日在内的前14 d,即2020年8月1~14日;预报年的前一年(n-1)包含预报日在内的前15 d和后15 d,即2019年8月1~30日;预报年的前两年(n-2)包含预报日在内的前15 d和后15 d,即2018年8月1~30日。简单来说,对模式预报的8月15日强降水开始时间进行订正,确定最优订正阈值百分比所用到的强降水个例事件发生时段应该选取2020年8月1~14日、2019年8月1~30日和2018年8月1~30日。
图6 对称混合滑动训练期示意
表3 强降水开始时间对应物理量订正阈值
表4给出的是2020年8月短时强降水事件开始时间订正检验结果。如表所示,0~24 h时效范围内,订正后较订正前偏差和略有增加,订正效果不理想;但随着预报时效的增长,订正效果逐渐转好,特别是在48~72 h时效,偏差和减少8 h。由于实际业务中SWCWARMS小时降水资料的有效时效为12 h以上,根据订正结果,对于24 h时效内的短时强降水开始时间,预报员可以直接参考模式预报结果,而对于24 h以上的预报时效,短时强降水开始时间的预报可以参考订正结果。
表4 2020年8月短时强降水开始时间订正检验结果
本文利用2018~2019年5~9月、2020年8月四川地面观测降水资料(含区域自动站)和同时段西南区域模式08时起报的各要素场资料,分析了该模式对四川盆地汛期短时强降水开始时间预报的系统偏差,并通过最小偏差和订正法,确定了短时强降水开始时间各物理因子的订正阈值和最优阈值百分比,得到如下主要结论:
(1)对2018~2019年共325个强降水样本进行分析,发现西南区域模式对四川盆地强降水开始时间的预报大部分较实况提前,一般提前1~2 h,7~8月的预报强降水开始时间提前量大于6月。
(2)选取了10个与强降水相关性比较大的物理量因子,设计了3个试验方案,发现利用最小偏差和订正法可以确定强降水开始时间相关物理因子的订正阈值及最优阈值百分比。
(3)从试验结果看,对于24 h时效内的短时强降水开始时间,预报员可以直接参考模式预报结果,而对于24 h以上的预报时效,订正后强降水开始时间偏差减少2~8 h,预报员可以参考订正后的结果。
本研究从订正流程上看,订正对象主要是模式预报出现短时强降水的样本,但是对于模式未报出短时强降水而实况出现的情况,没有订正能力,针对这一类问题仍需进一步研究。短时强降水开始时间订正中,以偏差订正的小时雨量替代模式原始输出小时雨量,订正效果是否会更好?以上都是未来需要进一步思考的问题。此外,本文订正试验方法采用动态最优阈值百分比、准对称混合滑动训练期相结合的订正方法,对24 h以上的预报时效有很好的订正效果,后期将利用该方法对汛期SWC-WARMS预报的短时强降水开始时间进行业务订正,以期为预报员提供参考,提高短时强降水开始时间预报的准确率。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!