当前位置:首页 期刊杂志

植物细胞色素P450s及其在植物新陈代谢中的作用

时间:2024-05-22

李翔宇,王助乾,孙春玉,张美萍,王 义

(吉林农业大学人参基因资源工程研究中心,吉林长春 130118)



植物细胞色素P450s及其在植物新陈代谢中的作用

李翔宇,王助乾,孙春玉,张美萍,王 义*

(吉林农业大学人参基因资源工程研究中心,吉林长春 130118)

摘要对目前已知功能的CYP450s进行了概述,综述了CYP450s在植物基础代谢和非基础代谢中的重要功能和作用,为进一步研究该基因家族及各成员间的功能提供参考。

关键词细胞色素P450s;新陈代谢;功能

细胞色素P450s(CytochromeP450s,CYP450s)是一个古老的多成员超基因家族。CYP450s是一种单加氧催化蛋白酶,与还原态CO结合后,在450 nm处吸光值最高,故命名为细胞色素P450s[1]。CYP450s是参与生物代谢的最庞大蛋白酶超家族,包括超过1 000个家族和2 500个亚家族[2],广泛存在于生物界中。在动物、植物、真菌、原生生物、细菌、古生菌和病毒中都发现了CYP450s。CYP450s在原核生物中为可溶性蛋白酶;在真核生物中,CYP450s锚定于膜结构细胞器,在细胞质中行使催化功能。自1958年从小鼠肝脏中发现CYP450s以来,随着技术的发展和大数据时代的到来,研究者从不同生物基因组中分离了大量的CYP450s。

CYP450s是一种单加氧酶,通过在底物的特异性位点引入氧原子完成底物位点的加氧原子修饰,丰富的成员产生了多样的功能。一方面,CYP450s家族成员之间同源性很低,不同生物的CYP450s同源性可以低至16%[3]。对于同源性高的CYP450s,单个氨基酸的改变会导致其功能的改变[4],CYP450s在进化过程中通常出现亚功能化和新功能化。另一方面,CYP450s蛋白空间结构类似,此种结构的保守对于其催化功能具有重要意义。大部分CYP450s蛋白序列折叠弯曲成相似的结构构象,由meander卷曲、2个α螺旋结构(J螺旋和K螺旋)、2组β折叠组成的亚铁血红素结合环(Heme-bindingloop)结构可结合催化必需的辅因子——亚铁血红素。CYP450s蛋白有3个极为保守的残基,分别是Heme-bindingloop(FXXGXXXCXG)、电子传递通道残基(PERF)和K螺旋中的EXXR残序。FXXGXXXCXG中极为保守的C(半胱氨酸残基)是血红素5-C的结合位点。K-helix的E(谷氨酸)和R(精氨酸)与PERF中的R(精氨酸)在构象上形成E-R-R的三联体结构,此种结构造成的盐桥效应保证C(半胱氨酸残基)位置与方向的稳定,保证亚铁血红素与半胱氨酸残基牢固的结合。笔者综述了CYP450s在植物基础代谢和非基础代谢中的功能和作用,为进一步研究该基因家族及各成员间的功能提供参考。

1CYP450s的进化与分类

植物CYP450s包含多个亚家族成员,包括CYP51、CYP71~CYP99和CYP701~CYP736。CYP450s的命名是基于序列的同源性与进化关系。当2条序列同源性达40%以上,则将他们归类于同一个基因家族,否则属于2个不同的家族;当序列同源性在40%~55%,则他们属于同一个家族中的不同亚家族;当同源性大于55%时,序列是同一亚家族中的不同成员。1969年,Frear等[5]鉴定了植物中第一条CYP450s(棉花)。截至2013年12月,在植物中被注释的CYP450s已达7 512条[6],这种简单命名方法已无法满足爆发性增长的CYP450s序列信息。

根据进化关系,可将植物CYP450s分成11个Clan。每个Clan根据其命名号最小的家族进行命名,最终将庞大的CYP450s分为7个单基因家族Clan(Single-family clans)和4个多基因家族Clan(Multi-family clans)。单基因家族Clan分别是CYP51 clan、CYP74 clan、CYP97 clan、CYP710 clan、CYP711 clan、CYP727 clan和CYP746 clan;多基因家族Clan包括CYP71 clan、CYP72 clan、CYP85 clan和CYP86 clan[2]。在家族进化过程中,通过祖先基因的重复与变异,CYP450s家族成员多态性极为丰富,同时产生了多样性的功能。不同Clan与Clan之间不仅是序列信息上的差异与聚类,同时也是功能上的协调与分化。

2CYP450s与基础代谢

CYP450s是一种广谱性生物催化酶,广泛分布于生物界中,参与多种代谢反应。它不仅参与内源物质的新陈代谢过程,如脂肪酸代谢[7-8]、植物激素的生物合成与降解[9-10]、次生代谢产物的合成[11-14],还参与外源物质的降解过程,如除草剂降解[15-18]。参与植物基础代谢的CYP450s见表1。

CYP450s在植物生命活动中具有重要作用,参与细胞基

表1 参与植物基础代谢的CYP450s

础生命物质的合成,CYP51s和CYP710s参与植物甾醇的合成[19-20],甾醇是细胞半透膜的重要组成物质。CYP97s通过参与类胡萝卜素的合成,对植物光合作用有重要贡献。类胡萝卜素包含2种色素,分别是叶黄素和胡萝卜素,它们参与光合作用中能量的吸收和转移。CYP97A和CYP97C分别参与类胡萝卜素β环和ε环的羟基化修饰[21-23],在叶黄素的生物合成过程中起重要作用。

CYP450s对维持植物内源激素的平衡具有至关重要的作用,它不仅参与植物激素的合成代谢,还参与植物激素的分解代谢。多种植物激素的生物合成与降解都需要CYP450s的作用。脱落酸(ABA,Abscisic Acid)是一种重要的植物内源激素,具有促进休眠、引起气孔关闭、调节种子胚的发育和增加抗逆性等作用。CYP707A编码8′-脱落酸羟基化酶,该酶在ABA降解过程起重要作用(图1)[24]。CYP735A以异戊烯腺苷单磷酸为底物合成反式玉米素单磷酸,参与细胞分裂素的合成[25]。赤霉素(GA,Gibberellin)是一种双萜类植物激素,通过甲羟戊酸途径(Mevalonic Acid Pathway,MVA Pathway)合成。CYP701A经过三步氧化催化贝壳杉烯合成贝壳杉烯酸[26],贝壳杉烯酸经过CYP88A催化合成GA12[27](图1),CYP714A是一种环氧酶,通过环氧作用使GA失活[28]。芸薹素内酯(BRs,Brassinosteroid)是一种固醇类植物激素,CYP85A[29]、CYP90B[30]、CYP90C和CYP90D[31]参与BRs的生物合成(图1)。这些基因在进化上同属于CYP85 clan,说明参与芸薹素内酯合成的基因可能起源于同一个祖先基因。独脚金内酯(Strigolactones,SLs)是一种普遍存在的新型植物激素,具有促进共生真菌菌丝生长的作用,可作为植物根围与丛枝菌根共生真菌信号连接必不可少的化学分子。据报道,拟南芥CYP711A1(MAX1)可能参与了独脚金内酯的合成[32]。

3CYP450s与次生代谢产物的合成

次生代谢产物是由植物次生代谢产生的一类结构不同的有机化合物,它非植物生长所必需,但间接参与了植物的生长与发育。次生代谢产物可分为萜类、酚类和含氮化合物三大类。多种次生代谢产物在植物抗病反应中起重要作用,如多种酚类物质在植物抗病反应中起传递信号的作用。此外,次生代谢产物由于具有抗菌活性,对人类生产及生活有重要价值,如皂苷类、黄酮类。多种植物次生代谢产物是天然的药用活性物质,具有重要的经济价值,可用于农业、食品、保健和医疗等行业。

CYP74A编码丙二烯氧合酶(AlleneOxide Synthase,AOS),参与茉莉酸类(Jasmonates,JAs)物质的生物合成[33]。茉莉酸类是一种重要的伤信号分子,在植物防御反应中起至关重要的作用。CYP74s在脂氧合酶(Lipoxygenase,LOX)信号传递通路中起关键作用。CYP74B亚家族是氢过氧化物裂解酶,CYP74B16(LuDES)可降解脂肪酸产生小分子物质,参与到植物抗病信号通路中[34]。

CYP450s参与催化合成多种具有药用价值的次生代谢产物,如青蒿素[11,35]、皂苷[36-37]、莨菪碱[38]、黄酮类化合物[39]、紫杉酚[40]。

萜烯是植物中一类天然的碳氢化合物,由3个异戊二烯单元构成,通式为C15H24的烯烃类化合物。抗疟良药——青蒿素是一种倍半萜内酯。AaCYP71AV1(Artemisiaannua)催化合成青蒿素(Artemisinin)(图2)。2006年,Ro等[35]将AaCYP71AV1转入构建酵母工程菌实现青蒿素的生物发酵生产,AaCYP71AV1将紫穗槐-4,11-二烯(amorpha-4,11-diene)经过三步氧化成青蒿素,产率达100 mg/L,克服了传统生产中青蒿素含量低、萃取困难、萃取量低等难题。花姜酮(Zerumbone)是红球姜(Zingiberzerumbet)的内源次生代谢产物,具有抗炎、抗HIV、抗肿瘤的功效,花姜酮的合成需要中间产物8-羟基-α-蛇麻烯(8-hydroxy-α- humulene)的合成。在大肠杆菌中共表达包括CYP71BA1和ZSS1等4个甲羟戊酸途径关键酶,检测到8-羟基-α-8-蛇麻烯合成[41]。此外,CYP450s还参与圆柚酮(Nootkatone)[42]、螺岩兰草酮(Solavetivone)[43]、木香烯内酯(Costunolide)[44]等次生代谢物的合成。

双萜类化合物由4个异戊二烯单元构成,通式为C20H32。铁锈醇(Ferruginol)是一种二萜酸类化合物,能够有效治疗病毒性疱疹和登革热症状。SmCYP76AH1(丹参,Salviamiltiorrhiza)催化次丹参酮二烯合成铁锈醇[45](图2)。紫杉酚(Taxol)为一种双萜类化合物,是一种有效的抗肿瘤药,同时也是销量最大的抗癌药物之一。CYP716B参与紫杉烷(Taxoid)的9-α-羟基化过程[46](图2)。

图1 参与植物激素合成与代谢的CYP450sFig.1 CYP450s involving in phytohormone biosynthesis

图2 参与单萜双萜合成的CYP450sFig.2 CYP450s involving in monoterpene biosynthesis and diterpenoid biosynthesis

大豆GmCYP93E1(Glycinemax)是最早被证实的催化三萜化合物合成的CYP450s,GmCYP93E1基因催化合成齐墩果-12-烯-3,24-二醇(olean-12-ene-3β-24-diol)[36]。在随后的研究中,一系列的三萜类化合物合成途径的CYP450s被分离鉴定。甘草(Glycyrrhizaspp.)的GsCYP88D6和GsCYP72A154基因催化合成甘草次酸,参与甘草酸苷的生物合成[47-48](图3)。灵芝(Ganoderma)的GlCYP450基因参与灵芝酸的合成[49](图3)。葡萄(Vitisvinifera)的VvCYP716A15和VvCYP716A17基因不仅可以催化β-香树脂合成齐墩果酸,还可催化羽扇豆醇合成烨木酸[50]。蒺藜状苜蓿(Medicagotruncatula)的MtCYP716A12基因催化齐墩果酸的合成[51-52](图3)。人参(Panaxginseng)的PgCYP716A47、PgCYP716A52v2和PgCYP716A53v2基因参与人参皂苷合成途径[12-14],其中,PgCYP716A47催化达玛烯二醇合成原人参二醇;PgCYP716A53v2催化原人参二醇合成原人参三醇;PgCYP716A52v2催化合成齐墩果酸型皂苷。西洋参(Panaxquinquefolius)的PqCYP6H(属于CYP716A)基因参与齐墩果酸型皂苷的合成(图3)[53]。

注:(1)2,3-环氧化鲨烯,(2)达玛烯二醇,(3)原人参二醇,(4)原人参三醇,(5)β-香树脂,(6)11-酮-香树脂,(7)甘草次酸,(8)齐墩果-12-烯-3,24-二醇,(9)α-香树脂,(10)乌索酸,(11)羽扇豆醇,(12)桦木酸。Note:(1) 2,3-oxidosqualene;(2)Dammarenediol-II;(3)Protopanaxadiol;(4)Protopanaxatriol;(5)β-Amyrin;(6)11-oxo-β-amyrin;(7)Glycyrrhetinic acid;(8)Olean-12-ene-3β-24-diol;(9)α-Amyrin;(10)Ursolic acid;(11)Lupeol;(12)Betulinic acid. 图3 参与三萜合成的CYP450sFig.3 CYP450s involving in triterpenes biosynthesis

4CYP450s与外源物质的代谢

CYP450s具有解除除草剂对植物毒害作用的功能。Höfer等[15]研究发现,拟南芥CYP76s家族成员CYP76C1、CYP76C2和CYP76C4参与苯脲类除草剂的代谢,解除除草剂的毒害作用。Pan等[54]利用图位克隆技术从水稻中克隆得到可提高水稻苯达松抗性的基因CYP81A6。此外,在不同物种中都有CYP450s参与除草剂的代谢,如CYP71B1、CYP71A10、CYP71C6v1和CYP76B1等都可有效降解除草剂(表2)。这些降解外源物质的CYP450s通常属于CYP71clan,CYP71clan是包含最多家族和最多成员的Clan,是相对进化较晚的家族Clan,同样也是功能多样化的Clan。CYP71clan的爆发性进化极大地丰富和补充了CYP450s的功能。此外,CYP71clan多样性功能还包括催化类苯基丙烷、黄酮和类黄酮、生物碱的新陈代谢过程。CYP71clan的爆发性进化增强了植物的抗性和对环境的适应性。

5结语

CYP450s参与多种内源化合物的生物合成与降解过程,研究CYP450s的功能与分布对于学习和了解生命具有重要意义。随着后基因组时代的到来,越来越多生命信息将被解密,庞大的CYP450s家族信息将被挖掘和整理。随着越来越多植物CYP450s信息的挖掘,相关功能的鉴定是目前植物CYP450s研究的重点。CYP450s起源古老,在动物、植物、真菌、原生生物、细菌、古生菌和病毒中都发现了CYP450s。从家族的角度对CYP450s进行研究与阐明,对于研究基因分化和物种进化具有重要意义。多种CYP450s参与了药用化合物的合成过程。生长周期长、药用成分含量低以及提取困难等因素限制了这些药用活性成分的开发与利用,而通过转基因技术构建生长周期短、生产性能高的工程菌株,利用现代发酵技术异源生产药用成分,不仅可以节省土地资源,还降低生产成本。虽然,初步研究已经成功,但利用微生物发酵进行工业化生产仍需进一步研究。

表2 参与除草剂代谢的CYP450s

参考文献

[1] DENISOV I G,MAKRIS T M,SLIGAR S G,et al.Structure and chemistry of cytochrome P450[J]. Chemical reviews,2005,105(6):2253-2278.

[2] NELSON D,WERCK-REICHHART D.A P450-centric view of plant evolution[J].The plant journal,2011,66(1):194-211.

[3] DANIELE W R,FEYEREISEN R.Cytochromes P450:A success story[J].Genome biology,2000,1(6):3003.

[4] SCHALK M,CROTEAU R.A single amino acid substitution(F363I)converts the regiochemistry of the spearmint(-)-limonene hydroxylase from a C6-to a C3-hydroxylase[J].Proceedings of the national academy of sciences,2000,97(22):11948-11953.

[5] FREAR DS,SWANSON H R,TANAKA F S.N-demethylation of substituted 3-(phenyl)-1-methylureas:Isolation and characterization of a microsomal mixed function oxidase from cotton[J].Phytochemistry,1969,8(11):2157-2169.

[6] RENAULT H,BASSARD J E,HAMBERGER B,et al.Cytochrome P450-mediated metabolic engineering:Current progress and future challenges[J].Current opinion in plant biology,2014,19:27-34.

[7] PINOT F,BEISSON F.Cytochrome P450 metabolizing fatty acids in plants:Characterization and physiological roles[J].Febs journal,2011,278(2):195-205.

[8] SPECTOR A A,KIM H Y.Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism[J].Biochimicaet biophysica acta(BBA)-Molecular and cell biology of lipids,2015,1851(4):356-365.

[9] MCLEAN K,HANS M,MUNRO A.Cholesterol,an essential molecule:Diverse roles involving cytochrome P450 enzymes[J].Biochemical society transactions,2012,40(3):587.

[10] TAMIRU M,UNDAN J R,TAKAGI H,et al.A cytochrome P450,OsDSS1,is involved in growth and drought stress responses in rice(OryzasativaL.)[J].Plant molecular biology,2015,88(1/2):85-99.

[11] PADDON C J,WESTFALL P,PITERA D,et al.High-level semi-synthetic production of the potent antimalarial artemisinin[J].Nature,2013,496(7446):528-532.

[12] HAN J Y,KIM M J,BAN Y W,et al.Theinvolvement of β-amyrin 28-oxidase(CYP716A52v2)in oleanane-type ginsenoside biosynthesis inPanaxginseng[J].Plant and cell physiology,2013,54(12):2034-2046.

[13] HAN J Y,KIM H J,KWON Y S,et al.The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J].Plant and cell physiology,2011,52(12):2062-2073.

[14] HAN J Y,HWANG H S,CHOI S W,et al.Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis inPanaxginseng[J].Plant and cell physiology,2012,53(9):1535-1545.

[15] HÖFER R,BOACHON B,RENAULT H,et al.Dual function of the cytochrome P450 CYP76 family fromArabidopsisthalianain the metabolism of monoterpenols and phenylurea herbicides[J].Plant physiology,2014,166(3):1149-1161.

[16] OHKAWA H,INUI H.Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants[J].Pest management science,2015,71(6):824-828.

[17] HAYASHI E,FUZIMOTO K,IMAISHI H.Expression ofArabidopsisthalianacytochrome P450 monooxygenase,CYP71A12,in yeast catalyzes the metabolism of herbicide pyrazoxyfen[J].Plant biotechnology,2007,24(4):393-396.

[18] HAN H,YU Q,VILA-AIUB M,et al.Genetic inheritance of cytochrome P450-mediated metabolic resistance to chlorsulfuron in a multiple herbicide resistantLoliumrigidumpopulation[J].Crop protection,2014,65:57-63.

[19] SCHALLER H.Sterol and steroid biosynthesis and metabolism in plants and microorganisms[M]// MANDER L,LUI H W.Comprehensive natural products II.Oxford:Elsevier,2010:755-787.

[20] MORRISON A M S,GOLDSTONE J V,LAMB D C,et al.Identification,modeling and ligand affinity of early deuterostome CYP51s,and functional characterization of recombinant zebrafish sterol 14α-demethylase[J].Biochimica et biophysica acta(BBA)-General subjects,2014,1840(6):1825-1836.

[21] KIM J,DELLAPENNA D.Defining the primary route for lutein synthesis in plants:The role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3[J].Proceedings of the national academy of sciences of the United States of America,2006,103(9):3474-3479.

[22] KIM J E,CHENG K M,CRAFT N E,et al.Over-expression ofArabidopsisthalianacarotenoid hydroxylases individually and in combination with a β-carotene ketolase provides insight into in vivo functions[J].Phytochemistry,2010,71(2):168-178.

[23] TIAN L,MUSETTI V,KIM J,et al.TheArabidopsisLUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity[J].Proc Natl Acad Sci USA,2004,101:402-407.

[24] MIZUTANI M,TODOROKI Y.ABA 8’-hydroxylase and its chemical inhibitors[J].Phytochemistry reviews,2006,5(2/3):385-404.

[25] TAKEI K,YAMAYA T,SAKAKIBARA H.ArabidopsisCYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin[J].Journal of biological chemistry,2004,279(40):41866-41872.

[26] HELLIWELL C A,SHELDON C C,OLIVE M R,et al.Cloning of theArabidopsisent-kaurene oxidase gene GA3[J].Proc Natl Acad Sci USA,1998,95:9019-9024.

[27] HELLIWELL C A,CHANDLER P M,POOLE A,et al.The CYP88A cytochrome P450,ent-kaurenoic acid oxidase,catalyzes three steps of the gibberellin biosynthesis pathway[J].Proc Natl Acad Sci USA,2001,98:2065-2070.

[28] ZHANG Y,ZHANG B,YAN D,et al.Two Arabidopsis cytochrome P450 monooxygenases,CYP714A1 and CYP714A2,function redundantly in plant development through gibberellin deactivation[J].Plant J,2011,67:342-353.

[29] NOMURA T,KUSHIRO T,YOKOTA T,et al.The last reaction producing brassinolide is catalyzed by cytochrome P450s,CYP85A3 in tomato and CYP85A2 inArabidopsis[J].J Biol Chem,2005,280:17873-17879.

[30] FUJITA S,OHNISHI T,WATANABE B,et al.Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27,C28 and C29 sterols[J].Plant J,2006,45:765-774.

[31] OHNISHI T,SZATMARI A M,WATANABE B,et al.C-23 hydroxylation byArabidopsisCYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis[J].Plant cell,2006,18:3275-3288.

[32] BOOKER J,SIEBERER T,WRIGHT W,et al.MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J].Developmental cell,2005,8(3):443-449.

[33] LAUDERT D,PFANNSCHMIDT U,LOTTSPEICH F,et al.Cloning,molecular and functional characterization ofArabidopsisthalianaallene oxide synthase(CYP 74),the first enzyme of the octadecanoid pathway to jasmonates[J].Plant molecular biology,1996,31(2):323-335.

[34] GOGOLEV Y V,GORINA S S,GOGOLEVA N E,et al.Green leaf divinyl ether synthase:Gene detection,molecular cloning and identification of a unique CYP74B subfamily member[J].Biochimicaet biophysica Acta(BBA)-Molecular and cell biology of lipids,2012,1821(2):287-294.

[35] RO D K,PARADISE E M,OUELLET M,et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J].Nature,2006,440(7086):940-943.

[36] SHIBUYA M,HOSHINO M,KATSUBE Y,et al.Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay[J].Febs journal,2006,273(5):948-959.

[37] CARELLI M,BIAZZI E,PANARA F,et al.Medicagotruncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins[J].The plant cell,2011,23(8):3070-3081.

[38] LI R,REED D W,LIU E,et al.Functional genomic analysis of alkaloid biosynthesis in Hyoscyamusniger reveals a cytochrome P450 involved in littorine rearrangement[J].Chemistry & biology,2006,13(5):513-520.

[39] YAN Y,KOHLI A,KOFFAS M A.Biosynthesis of natural flavanones in Saccharomyces cerevisiae[J].Applied and environmental microbiology,2005,71(9):5610-5613.

[40] KASPERA R,CROTEAU R.Cytochrome P450 oxygenases of Taxol biosynthesis[J].Phytochem Rev,2006,5:433-444.

[41] YU F,OKAMOTO S,HARADA H,et al.Zingiberzerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis[J].Cell Mol Life Sci,2011,68:1033-1040.

[42] FRAATZ M A,BERGER R G,ZORN H.Nootkatone-A biotechnological challenge[J].Applied microbiology and biotechnology,2009,83(1):35-41.

[43] TAKAHASHI S,YEO Y S,ZHAO Y,et al.Functional characterization of premnaspirodieneoxygenase a cytochrome P450 catalyzing region and stereo-specific hydroxylation of diverse sesquiterepene substrates[J].J Biol Chem,2007,282:31744-31754.

[45] GUO J,ZHOU Y J,HILLWIg M L,et al.CYP76H1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeast[J].Proc Natl Acad Sci USA,2013,110:12108-12113.

[46] ZHANG N,HAN Z,SUN G,et al.Molecular cloning and characterization of a cytochrome P450 taxoid 9a-hydroxylase inGinkgobilobacells[J].Biochemical and biophysical research communications,2014,443(3):938-943.

[47] SEKI H,OHYAMA K,SAWAI S,et al.Licorice β-amyrin 11-oxidase,a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J].Proceedings of the national academy of sciences,2008,105(37):14204-14209.

[48] SEKI H,SAWAI S,OHYAMA K,et al.Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin[J].The plant cell,2011,23(11):4112-4123.

[49] GUO X,SUN C,SONG J,et al.Construction of the coexpression vector containing key element GLCYP450 involved in Ganodermatriterpene biosynthesis and its reductase gene GLNADPH[J].Yaoxuexuebao actapharmaceutica sinica,2013,48(2):206-210.

[50] FUKUSHIMA E O,SEKI H,OHYAMA K,et al.CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J].Plant and cell physiology,2011,52(12):2050-2061.

[51] CARELLI M,BIAZZI E,PANARA F,et al.Medicagotruncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins[J].The plant cell,2011,23(8):3070-3081.[52] FUKUSHIMA E O,SEKI H,OHYAMA K,et al.CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J].Plant and cell physiology,2011,52(12):2050-2061.

[53] WANG L,ZHAO S J,LIANG Y L,et al.Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis inPanaxquinquefolius[J].Functional & integrative genomics,2014,14(3):559-570.

[54] PAN G,ZHANG X,LIU K,et al.Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides[J].Plant molecular biology,2006,61(6):933-943.

[55] ROBINEAU T,BATARD Y,NEDELKINA S,et al.The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics[J].Plant physiology,1998,118(3):1049-1056.

[56] WERCK-REICHHART D,HEHN A,DIDIERJEAN L.Cytochromes P450 for engineering herbicide tolerance[J].Trends in plant science,2000,5(3):116-123.

[57] XIANG W,WANG X,REN T.Expression of a wheat cytochrome P450 monooxygenase cDNA in yeast catalyzes the metabolism of sulfonylurea herbicides[J].Pesticide biochemistry and physiology,2006,85(1):1-6.

[58] LIU C,LIU S,WANG F,et al.Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in bothArabidopsisand tobacco[J].Plant cell,tissue and organ culture,2012,109(3):419-428.

[59] LAMB S B,LAMB D C,KELLY S L,et al.Cytochrome P450 immobilisation as a route to bioremediation/biocatalysis[J].FEBS letters,1998,431(3):343-346.

基金项目“十二五”农村领域国家科技计划项目(2013AA102604-3)。

作者简介李翔宇(1991-),男,山西临汾人,硕士研究生,研究方向:植物细胞工程与细胞全能型表达。*通讯作者,教授,博士,硕士生导师,从事药用植物细胞工程研究。

收稿日期2016-04-13

中图分类号S 188+.2

文献标识码A

文章编号0517-6611(2016)13-129-06

CytochromeP450sand Their Function in Plant Metabolism

LI Xiang-yu, WANG Zhu-qian, SUN Chun-yu, WANG Yi*et al

(Research Center for Ginseng Genetic Resources, Jilin Agricultural University, Changchun, Jilin 130118)

AbstractWe summarized the known functions of cytochrome P450s, reviewed the important functions of cytochrome P450s in plant basic metabolism and non-basic metabolism. This research provided references for the further research on this gene family and the function of each member.

Key wordsPlant; Cytochrome P450s; Metabolism; Function

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!