时间:2024-05-23
施龙建 文章荣 张世博 王 珏 陆卫平 陆大雷
开花期干旱胁迫对鲜食糯玉米产量和品质的影响
施龙建 文章荣 张世博 王 珏 陆卫平 陆大雷*
扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
为探明开花期(抽雄吐丝期)干旱胁迫对鲜食糯玉米(吐丝后23 d采收)产量和品质的影响, 以苏玉糯5号和渝糯7号为试材, 采用负水头供水控水盆栽装置控制土壤含水量, 设置开花期正常供水(土壤相对含水量80%)和干旱胁迫(土壤相对含水量60%) 2个处理, 研究干旱胁迫对鲜食糯玉米产量(鲜果穗和鲜籽粒)、籽粒组分、糊化和热力学特性的影响。结果表明, 开花期干旱胁迫减少籽粒数量、降低籽粒重量、缩小籽粒体积, 导致鲜果穗和鲜籽粒产量损失。开花期干旱胁迫下鲜食期籽粒淀粉含量升高, 但对于蛋白质含量渝糯7号降低, 苏玉糯5号变化不显著。蛋白质组分中, 对球蛋白含量影响不显著, 清蛋白、谷蛋白和醇溶蛋白均显著降低。开花期干旱胁迫显著降低淀粉粒平均粒径。碘结合力2015年度显著下降, 2014年度受干旱影响不显著。开花期干旱胁迫下籽粒峰值黏度、谷值黏度和终值黏度在苏玉糯5号中降低, 在渝糯7号中升高。开花期干旱胁迫下两品种峰值温度降低, 回生热焓值和回生值升高, 而热焓值仅渝糯7号在2014年度升高。总之, 开花期干旱降低糯玉米鲜果穗和鲜籽粒产量, 增加籽粒淀粉含量, 降低籽粒蛋白质含量、淀粉粒径和支链淀粉中长链比例, 进而使籽粒回生增加, 但糊化黏度两品种表现不同(渝糯7号升高, 苏玉糯5号下降)。
鲜食糯玉米; 开花期干旱; 产量;品质
干旱是影响作物产量的一个重要的非生物逆境因子。干旱对作物生长发育的影响受到全球关注[1-2]。玉米以旱作雨养为主, 各生育时期均易受水分亏缺影响。开花期(抽雄吐丝期)是玉米需水临界期, 水分亏缺会影响开花授粉和籽粒发育并降低产量。开花期缺水影响玉米抽雄, 延迟雌穗吐丝, 延长雌雄间隔, 影响受精, 增加败育籽粒数量[3]。小麦[4-5]、大麦[6]、高粱[7]、水稻[8]等作物的研究表明, 开花期水分亏缺影响植株生长发育并最终降低籽粒产量。不同生育时期干旱胁迫引起作物籽粒组分含量、淀粉结构和品质变化[9-14]。开花期干旱胁迫使大麦灌浆提前终止,籽粒淀粉中直链淀粉含量和支链淀粉链长分布发生变化[6]。开花期干旱胁迫使高粱淀粉积累提前, 淀粉合成相关酶活性降低, 总淀粉积累量减少[7]。干旱胁迫使小麦籽粒花后3 d时的蛋白(清蛋白、球蛋白、醇溶蛋白等)合成相关基因表达受抑[4]。与开花期灌溉相比, 干旱胁迫下小麦籽粒淀粉粒变小, 面粉糊化特征值(峰值黏度、谷值黏度、崩解值)升高[5]。与正常灌溉相比, 干旱(半量灌溉)使玉米淀粉含量降低, 蛋白质含量在正常条件下升高, 高CO2条件下降低[15]。课题组前期研究表明, 结实期干旱胁迫降低鲜食糯玉米籽粒产量, 同时改变品质[16]。本文研究了开花期土壤干旱胁迫对鲜食糯玉米产量和品质的影响, 以期为鲜食糯玉米优质抗逆高产栽培提供理论支持。
试验于2014—2015年在扬州大学进行。品种为国家鲜食糯玉米区域试验南方区对照品种苏玉糯5号(东南区)和渝糯7号(西南区)。7月1日播种, 7月5日移至装过筛壤土30 kg的盆钵中(高38 cm, 直径43 cm), 每盆2株, 拔节期定苗至1株, 每处理10盆。每盆基施(N∶P2O5∶K2O = 15%∶15%∶15%)复合肥10 g, 拔节期追施尿素6.6 g (N为46%)。
利用负水头供水控水盆栽装置(专利号为200510123976)控制土壤含水量。抽雄之前将土壤相对含水量控制在75%左右, 开花期(抽雄吐丝期, 从植株雄穗尖端露出顶叶3~4 cm到雌穗花丝露出苞叶4~5 cm)进行干旱胁迫处理, 土壤相对含水量对照和干旱处理分别为80%和60%, 人工辅助授粉后终止处理, 将土壤相对含水量恢复至正常水平(75%)。利用高5 m的透明雨棚防止降雨影响, 结实期平均温度、降雨量和日照时数2014年和2015年分别为24℃、232 mm、70 h和25℃、104 mm、145 h。
鲜食期(吐丝后23 d)收获果穗, 剥除苞叶后测定鲜果穗重(g 株–1), 脱粒后测定每穗粒数(个)、称鲜籽粒产量(g 株–1)和鲜籽粒重(mg)。剥每穗3~5列籽粒(果穗基部至顶部)于100℃烘12 h后测定籽粒含水率(%), 其他籽粒于40℃烘5 d后粉碎过100目筛(= 0.149 mm)用于其他理化指标分析。
采用蒽酮比色法测定籽粒淀粉含量[17], 凯氏定氮法[18]测定蛋白质含量(蛋白质含量 = 氮含量× 6.25)。参照张智猛等[19]的方法分离后用凯氏定氮法[18]测定蛋白质组分。
参照前期已报道的方法[20]。
用激光衍射粒度分析仪(Mastersizer 2000, Malvern)参照前期已报道的方法[20]测定淀粉粒径大小和分布, 以无水乙醇为分散介质。
参照前期已报道的方法[20]测定最大吸收波长和碘结合力。
用差示扫描量热仪DSC (2003 Maia, NETZSCH, Germany)参照前期已报道的方法[21]测定籽粒热力学特性。
用快速黏度分析仪(Model 3D, Newport Scientific, Australia)参照前期已报道的方法[21]测定籽粒糊化特性, 并用TCW (Thermal Cycle for Windows)配套软件分析。用“cP”表示黏度值。
用DPS 7.05进行统计和相关分析, 最小显著差异法(LSD0.05)检验平均数。用Microsoft Excel 2010作图。
开花期干旱胁迫显著影响鲜食糯玉米产量构成(表1)。总体上, 鲜籽粒重、鲜籽粒体积、干籽粒重、每穗粒数、鲜果穗和鲜籽粒产量在干旱胁迫下均显著降低。开花期干旱胁迫下, 籽粒含水率2014年苏玉糯5号升高, 2015年渝糯7号升高。
开花期干旱胁迫显著增加两品种籽粒淀粉含量(表2)。干旱胁迫下, 籽粒蛋白质含量苏玉糯5号影响不显著, 渝糯7号降低。蛋白质组分中, 除球蛋白含量受干旱处理影响不显著外, 清蛋白、谷蛋白和醇溶蛋白含量干旱胁迫下均显著降低。
开花期干旱胁迫显著减小淀粉粒平均粒径(图1), 且苏玉糯5号大于渝糯7号。年度间相比, 2014年淀粉粒径高于2015年度。
各处理下淀粉的最大吸收波长变幅为533.3~ 535.9 nm, 均为典型的糯性特征(图2)。对于最大吸收波长, 干旱胁迫下渝糯7号影响不显著, 而苏玉糯5号均显著降低。对于碘结合力, 2014年两品种受干旱胁迫影响不显著, 2015年度均显著降低。
表1 开花期干旱对鲜食糯玉米产量的影响
同一列中标以不同字母的均值在< 0.05水平差异显著。
Mean values within the same column followed by different lowercases are significantly different at0.05.
表2 开花期干旱对籽粒淀粉和蛋白质组分含量的影响
同一列中标以不同字母的均值在< 0.05水平差异显著。
Mean values within the same column followed by different lowercases are significantly different at0.05.
图1 开花期干旱对鲜食糯玉米淀粉粒体积分布的影响
图2 开花期干旱对鲜食糯玉米籽粒淀粉最大吸收波长和碘结合力的影响
开花期干旱胁迫对鲜食糯玉米籽粒糊化特性的影响在品种间、年度间均有显著差异(表3)。在开花期干旱胁迫下, 渝糯7号回复值2014年升高, 2015年变化不显著, 其他糊化特征值均显著升高。苏玉糯5号的崩解值和糊化温度受开花期干旱胁迫影响不显著, 而峰值黏度、谷值黏度、终值黏度和回复值显著降低, 且2014年降幅较大。
表3 开花期干旱对鲜食糯玉米籽粒糊化特性的影响
同一列中标以不同字母的均值在< 0.05水平差异显著。
Mean values within the same column followed by different lowercases are significantly different at0.05. PV: peak viscosity; TV: trough viscosity; BD: breakdown viscosity; FV: final viscosity; SB: setback viscosity;temp: pasting temperature.
由表4可知, 籽粒热焓值除渝糯7号2014年在开花期干旱胁迫下升高外, 其他处理受干旱胁迫影响不显著。苏玉糯5号的胶凝温度(起始温度、峰值温度和终值温度)开花期干旱下显著降低。渝糯7号的起始温度受干旱胁迫影响不显著, 峰值温度显著降低, 终值温度2014年降低, 2015年无显著变化。胶凝样品4℃冷藏7 d后发生回生, 回生热焓值和回生值在开花期干旱胁迫下显著升高, 且升幅2014年较大。
表4 开花期干旱胁迫对鲜食糯玉米籽粒热力学特性的影响
同一列中标以不同字母的均值在< 0.05水平差异显著。
Mean values within the same column followed by different lowercases are significantly different at0.05.Dgel: gelatinization enthalpy;o: onset temperature;p: peak temperature;c: conclusion temperature;Dret: retrogradation enthalpy; %: retrogradation percentage.
干旱胁迫是玉米生长过程中易遭遇的重要非生物逆境之一。开花期(抽雄吐丝期)是玉米生长的需水临界期, 此阶段水分供应不足会影响植株抽雄、吐丝、授粉、受精和结实, 最终减少籽粒数量[3]。本研究表明, 开花期干旱胁迫下籽粒数量减少12.8%, 鲜籽粒产量降低20.2%, 鲜果穗产量降低16.2%, 而前人盆栽试验表明玉米籽粒产量在抽雄后持续7 d的干旱胁迫下降低50%[22], 池栽试验表明玉米籽粒产量在抽雄前3 d至吐丝后7 d的干旱胁迫下降低45.3%~61.0%[23], 造成这种差异的原因是本研究进行了人工辅助授粉, 籽粒数量减少低于自然授粉。本研究发现, 鲜籽粒体积和重量在开花期干旱胁迫下均低于正常条件下, 表明籽粒发育亦受开花期干旱胁迫的负向影响。另外, 由于单穗重是评价糯玉米果穗商品价值的关键指标[24], 开花期干旱胁迫下鲜穗重、鲜籽粒重均显著降低, 其商品价值亦显著降低, 因此鲜食糯玉米生产中应根据气象条件调控土壤水分, 提高产品价值。
Wang和Frei[10]总结前人研究结果发现, 总体上干旱胁迫使籽粒淀粉含量降低, 蛋白质含量增加。不同生育时期减量灌溉使普通玉米[25]籽粒淀粉含量降低, 蛋白质含量升高。本课题组前期研究[16]表明, 结实期干旱胁迫对鲜食糯玉米籽粒淀粉含量无显著影响, 但使蛋白质含量升高。本研究表明, 开花期干旱胁迫使籽粒淀粉含量升高, 渝糯7号蛋白质含量降低, 蛋白质组分中除球蛋白含量影响较小外, 清蛋白、谷蛋白和醇溶蛋白均显著降低。这与前人研究结果显著不同, 其原因可能是由于胁迫时期、胁迫方法(盆栽控水、田间灌溉)、胁迫持续时间和收获时期不同。鲜食糯玉米籽粒中淀粉含量升高, 蛋白质含量降低可能是开花期干旱增加籽粒败育数, 复水后同化物分配优先供应果穗基部和中部籽粒, 同时较少的穗粒数导致库容降低, 库充分调动源中同化物向籽粒运输, 使籽粒灌浆充分所致[3]。对小麦的研究[26]亦表明, 适度干旱(土壤水分降低至-40 kPa后复水)有利于增强可溶性淀粉合成酶活性, 促进籽粒淀粉积累。
本研究表明, 开花期干旱胁迫导致鲜食糯玉米籽粒中淀粉粒变小, 短链比例增多, 这与结实期干旱胁迫对成熟期糯玉米籽粒淀粉结构的影响相似[27], 大麦上亦有相似的报道[6]。干旱胁迫下短链比例较多可能是淀粉粒较小所致[28]。小麦上的研究[29]也发现干旱胁迫使花后18 d的小型淀粉粒比例增多。不同生育时期水分亏缺灌溉亦导致普通玉米籽粒淀粉粒变小[25]; 结实期水分亏缺亦使小麦淀粉粒径变小[5]。但亦有研究表明小麦淀粉粒径对干旱的响应因胁迫阶段和持续时期而异[30-31]。
籽粒组分和淀粉结构的不同导致鲜食糯玉米籽粒糊化和热力学特性变化。本研究表明, 开花期干旱胁迫使苏玉糯5号峰值黏度降低, 渝糯7号峰值黏度升高。但结实期干旱胁迫则使糯玉米鲜食期[16]和成熟期[32]籽粒黏度降低, 普通玉米[25]籽粒黏度降低。但对面粉[5]和米粉[33]的研究发现结实期干旱胁迫导致籽粒黏度升高, 其原因是干旱胁迫下淀粉转葡糖苷酶和α-淀粉酶水解后释放出较多还原糖, 蛋白水解酶水解后降低了淀粉持水力, 淀粉粒易破损所致[5]。由于本文两品种黏度特性对开花期干旱胁迫响应存在显著差异, 因此进一步分析籽粒其他组分构成与淀粉形态结构利于阐明其变化差异的相应机制。本文结果与前人研究结果的不同可能是小麦和水稻上的胁迫阶段是结实期, 试验为大田实验, 干旱可能是轻度干旱; 另外, 胁迫的持续时期不同亦会显著影响试验结果。本研究结果表明, 开花期土壤干旱导致鲜食糯玉米籽粒回生值升高, 这与结实期干旱胁迫使糯玉米鲜食期[16]和成熟期[32]籽粒回生值升高的结果相似。回生值升高的原因可能是小淀粉粒在加热过程中抗剪切力较强, 不易破坏, 这些没有破坏的籽粒在冷藏过程中发生回生, 重新加热过程中被破坏, 导致回生热焓值升高, 进而增加回生[34]。
开花期干旱胁迫减少果穗每穗粒数并降低籽粒重量和体积, 进而降低鲜食糯玉米果穗和籽粒产量。开花期干旱胁迫增加籽粒淀粉含量, 减少籽粒蛋白质及其组分含量, 降低淀粉粒径和支链淀粉长链比例, 进而使鲜食糯玉米回生值升高, 但对于糊化特性渝糯7号变优, 苏玉糯5号变劣。
[1] Service R F. Green energy. The promise of drought-tolerant corn., 2009, 326: 517
[2] Cooper M, Gho C, Leafgren R, Tang T, Messina C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product., 2014, 65: 6191–204
[3] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对穗发育及产量的影响. 中国生态农业学报, 2015, 23: 383–391Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize., 2015, 23: 383–391 (in Chinese with English abstract)
[4] Begcy K, Walia H. Drought stress delays endosperm development and misregulates genes associated with cytoskeleton organization and grain quality proteins in developing wheat seeds., 2015, 240: 109–119
[5] Li C, Li C Y, Zhang R Q, Liang W, Kang X L, Jia Y, Liao Y C. Effects of drought on the morphological and physicochemical characteristics of starch granules in different elite wheat varieties., 2015, 66: 66–73
[6] Gous P W, Hasjim J, Franckowiak J, Fox G P, Gilbert R G. Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition., 2013, 58: 414–419
[7] Yi B, Zhou Y F, Gao M Y, Zhang Z, Han Y, Yang G D, Xu W J, Huang R D. Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains., 2014, 13: 2399–2406
[8] Haider Z, Farooq U, Naseem I, Zia S, Alamgeer M. Impact of drought stress on some grain quality traits in rice ()., 2015, 4: 132–138
[9] Tester R F, Karkalas J. The effects of environmental conditions on the structural features and physicochemical properties of starches., 2001, 53: 513–519
[10] Wang Y X, Frei M. Stressed food: the impact of abiotic environmental stresses on crop quality., 2011, 141: 271–286
[11] Thitisaksakul M, Jimenez R C, Arias M C, Beckles D M. Effects of environmental factors on cereal starch biosynthesis and composition., 2012, 56: 67–80
[12] Beckles D M, Thitisaksakul M. How environmental stress affects starch composition and functionality in cereal endosperm, 2014, 66: 58–71
[13] Jagadish K S V, Kadam N N, Xiao G, Melgar R J, Bahuguna R N, Quinones C, Tamilselvan A, Prasad P V V. Agronomic and physiological responses to high temperature, drought, and elevated CO2interactions in cereals., 2014, 127: 111–156
[14] Patindol J A, Siebenmorgen T J, Wang Y J. Impact of environmental factors on rice starch structure: A review., 2015, 67: 42–54
[15] Erbs M, Manderscheid R, Huther L, Schenderlein A, Wieser H, Danicke S, Weigel H J. Free-air CO2enrichment modifies maize quality only under drought stress., 2015, 35: 203–212
[16] Lu D, Cai X, Zhao J, Shen X, Lu W. Effects of drought after pollination on grain yield and quality of fresh waxy maize., 2015, 95: 210–215
[17] Hansen J, Moller I. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone., 1975, 68: 87–94
[18] AACC. Approved Methods of the American Association of Cereal Chemists, Method 46 (1990) 10–01, AACCI, St Paul, MN
[19] 张智猛, 戴良香, 胡昌浩, 董树亭, 王空军. 氮素对不同类型玉米籽粒氨基酸、蛋白质含量及其组分变化的影响. 西北植物学报, 2015, 25: 1415–1420 Zhang Z M, Dai L X, Hu C H, Dong S T, Wang K J. Effect of nitrogen on amino acid and protein and protein component contents in the grains of different types of maize., 2005, 25: 1415–1420 (in Chinese with English abstract)
[20] Lu D L, Shen X, Cai X M, Yan F B, Lu W P, Shi Y C. Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch., 2014, 143: 313–318
[21] Lu D L, Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours., 2012, 64: 874–881
[22] Robins J S, Domingo C E. Some effects of severe soil moisture deficits at specific growth stages in corn., 1953, 45: 618–621
[23] 刘永红, 何文铸, 杨勤, 柯国华, 高强.花期干旱对玉米籽粒发育的影响. 核农学报, 2007, 21: 181–185 Liu Y H, He W Z, Yang Q, Ke G H, Gao Q. Effect of drought on grain growth at maize flowering stage., 2007, 21: 181–185 (in Chinese with English abstract)
[24] 刘萍, 杜庆平, 徐月明, 王祥菊. 糯玉米果穗不同计产方法对产量评价的影响. 江苏农业科学, 2013, 41(4): 85–87 Liu P, Du Q P, Xu Y M, Wang X J. Effects of different ear yield calculating methods on yield evaluation in waxy corn., 2013, 41(4): 85–87 (in Chinese)
[25] Liu L M, Klocke N, Yan S P, Rogers D, Schlegel A, Lamm F, Chang S I, Wang D. Impact of deficit irrigation on maize physical and chemical properties and ethanol yield., 2013, 90: 453–462
[26] Zhang W, Gu J, Wang Z, Wei C, Yang J, Zhang J. Comparison of structural and functional properties of wheat starch under different soil drought conditions., 2017, 7(1): 12312
[27] Lu D, Cai X, Lu W. Effects of water deficit during grain filling on the physicochemical properties of waxy maize starch., 2015, 67: 692–700
[28] Lindeboom N, Chang P R, Tyler R T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review., 2004, 56: 89–99
[29] Yu X, Li B, Wang L, Chen X, Wang W, Gu Y, Wang Z, Xiong F. Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat., 2016, 96: 2746–2754.
[30] Singh S, Singh G, Singh P, Singh N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties., 2008, 108: 130–139
[31] Zhang T, Wang Z, Yin Y, Cai R, Yan S, Li W. Starch content and granule size distribution in grains of wheat in relation to post-anthesis water deficits., 2010, 196: 1–8
[32] 陆大雷, 孙旭利, 王鑫, 闫发宝, 陆卫平. 灌浆结实期水分胁迫对糯玉米粉理化特性的影响. 中国农业科学, 2013, 46: 30–36Lu D L, Sun X L, Wang X, Yan F B, Lu W P. Effects of water stress during grain filling on physicochemical properties of waxy maize flour., 2013, 46: 30–36 (in Chinese with English abstract)
[33] Gunaratne A, Ratnayaka U K, Sirisena N, Ratnayaka J, Kong X, Arachchi L V, Corke H. Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour., 2011, 63: 283–290
[34] Perera C, Hoover R. Influence of hydroxypropylation on retrogradation properties of native, defatted and heatmoisture treated potato starches., 1999, 64: 361–375
Effects of Water Deficit at Flowering Stage on Yield and Quality of Fresh Waxy Maize
SHI Long-Jian, WEN Zhang-Rong, ZHANG Shi-Bo, WANG Jue, LU Wei-Ping, and LU Da-Lei*
Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
In order to clarify the influence of water deficit at flowering stage (tasseling silking stage) on yield and quality of fresh waxy maize (harvest at 23 d after silking), the fresh ear/grain yield and kernel components, pasting and thermal properties were measured using Suyunuo 5 and Yunuo 7. The soil moisture content was controlled by negative-pressure water supply and controlling pot device, and the relative soil moisture content for control and drought treatments was 80% and 60%, respectively. The drought at flowering stage decreased grain number, weight and volume, leading to the yield loss of fresh ear and grain. Under water deficit condition, grain starch content was increased, while protein content was increased in Yunuo 7 and unchanged in Suyunuo 5. For protein components, globulin contents was not affected by drought, while albumin, zein and glutenin contents were decreased when plants suffered water deficit at flowering stage. The starch granule size was reduced by drought for both varieties in both years, while starch iodine binding capacity for both varieties was decreased in 2015 and not affected in 2014 by drought. The peak, trough and final viscosities of grains were increased in Yunuo 7 and decreased in Suyunuo 5. Under drought condition, the grain peak gelatinization temperatures were decreased, retrogradation enthalpy and percentage were increased, while gelatinization enthalpy was only increased in Yunuo 7 in 2014. In conclusion, drought at flowering stage decreases fresh ear/grain yield, increases grain starch content, decreases protein content, starch granule size and the proportion of long chains in amylopectin, and increases the grain retrograde, while viscosities in response to water deficit are dependent on varieties (increases in Yunuo 7 and decreases in Suyunuo 5).
fresh waxy maize; water deficit at flowering stage; yield; quality
2018-06-12;
2018-06-19.
10.3724/SP.J.1006.2018.01205
陆大雷, E-mail: dllu@yzu.edu.cn
E-mail: 412950386@qq.com
2018-02-04;
本研究由国家自然科学基金项目(31471436, 31771709, 31271640), 国家重点研发计划项目(2016YFD0300109), 江苏省现代农业产业技术体系(SXGC[2017]307), 江苏省青蓝工程和江苏省高校优势学科建设工程项目资助。
This study was supported by the National Natural Science Foundation of China (31471436, 31771709, 31271640), the National Key Research and Development Program of China (2016YFD0300109), the Technology System of Modern Agriculture Industry in Jiangsu Province (SXGC[2017]307), the Qing Lan Project of Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
URL: http://kns.cnki.net/kcms/detail/11.1809.S.20180619.1210.004.html
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!