当前位置:首页 期刊杂志

柑橘溃疡病相关基因CsPGIP的克隆与表达

时间:2024-05-23

胡安华,祁静静,张庆雯,陈善春,邹修平,许兰珍,彭爱红,雷天刚,姚利晓,龙琴,何永睿,李强



柑橘溃疡病相关基因的克隆与表达

胡安华,祁静静,张庆雯,陈善春,邹修平,许兰珍,彭爱红,雷天刚,姚利晓,龙琴,何永睿,李强

(西南大学/中国农业科学院柑桔研究所,重庆 400712)

【目的】克隆并分析其表达特性,转化柑橘得到超表达转基因株系,并进行柑橘溃疡病抗性评价,为柑橘溃疡病分子育种提供理论依据。【方法】从晚锦橙和四季橘中克隆柑橘,使用Mega6进行多序列比对并构建系统发育树;采用在线软件BaCelLo和SignalP 4.0进行亚细胞定位和信号肽预测并用GFP瞬时表达确定CsPGIP在细胞内的定位;利用实时荧光定量PCR(qRT-PCR)比较接种溃疡病菌前后高感品种和高抗品种中柑橘的表达特性,分析溃疡病菌侵染与表达的相关性;农杆菌介导遗传转化晚锦橙,采用GUS染色初筛、PCR鉴定和qRT-PCR相结合的方法鉴定超表达转基因株系;观察转基因和野生型株系表型变化,分析其株高、叶片表型;离体针刺法对超表达转基因株系和野生型株系进行柑橘溃疡病抗性评价,统计病斑面积和病情指数,分析表达对柑橘抗、感溃疡病的影响。【结果】晚锦橙和四季橘均编码328个氨基酸,与已报道的柑橘中的同源性高达99.39%,都包含2个基因典型的LRR结构域(LRR_1和LRR_2);构建系统进化树发现甜橙中的CsPGIP与葡萄中的PGIP(GSVIVT01033370001)遗传距离最近,相似度达到62.97%,推测CsPGIP与葡萄中的PGIP具有类似的抗病效果。亚细胞定位和信号肽预测结果表明CsPGIP属于分泌蛋白,GFP洋葱瞬时表达证明柑橘CsPGIP定位在细胞膜和细胞壁,与预测结果一致。高感品种晚锦橙和高抗品种四季橘接种溃疡病菌后的表达特性不同,在高感品种中表达显著下调,而高抗品种中表达显著上调且维持在较高水平,推测与柑橘溃疡病的抗性相关。构建超表达载体并转化晚锦橙,通过PCR鉴定和qRT-PCR确定其中9个(OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14)为超表达阳性株系。通过对转基因株系的表型观察发现OE3、OE14株系表型与野生型株系相比差异明显,植株表现为较矮小,其中OE14出现叶片卷曲、增厚的表型变化。对超表达转基因株系(8个株系)进行离体抗溃疡病评价,结果显示超表达转基因株系可以使柑橘溃疡病病斑面积降至野生型的24.11%—83.88%,其中OE1株系的病斑面积最小;从病情指数来看,除OE3株系外,其余株系的病情指数均比野生型显著下降(为野生型的23.12%—75.49%),其中OE1下降最显著,综上结果可知超表达可以有效抑制柑橘溃疡病菌的生长。【结论】是柑橘响应溃疡病菌侵染的重要基因,可抑制或减轻柑橘溃疡病的发病程度,在柑橘抗溃疡病机理研究方面具有较大的应用价值,也可作为柑橘抗溃疡病分子育种的一个候选基因。

柑橘溃疡病;多聚半乳糖醛酸酶抑制蛋白;;超表达;溃疡病抗性

0 引言

【研究意义】柑橘是我国南方最重要的果树作物,其中柑橘溃疡病(citrus bacterial canker,CBC)是影响柑橘产业发展最为严重的病害之一。柑橘溃疡病是由地毯黄单胞柑橘致病变种(subsp.,)引起的世界性检疫病害[1-3]。目前为控制柑橘溃疡病危害通常采取化学防治为主,生物防治为辅的综合防治策略[4]。由于以上防治措施对环境不友好,需要投入大量的人力、物力,因此培育抗病新品种是减少柑橘溃疡病危害的根本途径。近年来日趋成熟的分子育种技术具有效率高、周期短、可对性状进行定向改良等优点,愈来愈受到关注。通过分子育种挖掘溃疡病相关的候选基因对于柑橘产业的发展具有重要意义。【前人研究进展】多聚半乳糖醛酸酶抑制蛋白(polygalacturonase inhibitor protein,PGIP)基因是一个常用的抗病基因,陈波等通过挖掘、分析柑橘中的(登录号:BAA31841.1)编码蛋白质序列,证明是一个编码327个氨基酸并包含两个富含亮氨酸重复序列(leucine-rich repeat,LRR)LRR-2、LRR-1的基因[5]。LRR结构域在植物生长发育和抗病反应等方面发挥着重要作用[6],与识别病原体的特异性有一定关系,且决定与配体结合的专一性[7],PGIP通过抑制病原菌多聚半乳糖醛酸酶(polygalacturonase,PGs)的活性防止病原菌侵染植物组织[8-15]。大量的研究证明PGIP可提高植物对真菌病害的抗性,例如棉花[16]、烟草[9,17-18]、小麦[19]、拟南芥[8,20]、谷子[21-22]等。但是越来越多的研究发现PGIP在抗细菌病方面也发挥重要的作用。组成型表达梨后发现PcPGIP对细菌叶缘焦枯菌()有明显的抗性[23];Hwang等在烟草和结球甘蓝中转入芜菁的后,发现该基因增强了对细菌性病害软腐病菌()的抗性[14];青枯菌()中PGs的活性可被番茄茎中提取的PGIP强烈抑制[24];纹枯病菌()中PGs活性可以被水稻的原核表达产物抑制[25];FENG等[26]的研究则发现超表达可增强水稻对条斑病菌()的抗性,而抑制表达使水稻对条斑病更加敏感。【本研究切入点】前期转录组研究发现,溃疡病高感品种晚锦橙()和高抗品种四季橘()在感染溃疡病菌前后表达差异显著,推测可能与柑橘溃疡病的抗性相关。【拟解决的关键问题】以柑橘溃疡病抗性品种四季橘和感性品种晚锦橙为材料,通过生物信息学分析、亚细胞定位、表达分析和转基因功能验证等研究,探索与柑橘溃疡病抗、感性的关系,为柑橘抗溃疡病分子育种提供理论依据。

1 材料与方法

试验于2016年12月至2018年8月在西南大学/中国农业科学院柑桔研究所国家柑桔工程技术研究中心完成。

1.1 植物材料与病原菌

选取4年生晚锦橙和四季橘叶片(完全展开的3个月叶龄的春稍叶片)、2年生资阳香橙()砧木为供试材料。材料取自西南大学温网室和国家柑桔品种改良中心育种圃(19° 51′ N,106° 37′ E)。晚锦橙种子取自成熟果实,消毒后无菌条件下播种于MS培养基,3周后取上胚轴切成1 cm茎段作为转化外植体;溃疡病菌是由西南大学柑桔研究所保存的亚洲种A株系。

1.2 CsPGIP的克隆与分析

晚锦橙和四季橘RNA提取采用RNA快速提取试剂盒(Aidlab),并反转录为cDNA(TaKaRa);根据Phytozome甜橙基因组[27]中基因序列(ID: orange1.1g020203m)设计特异引物OE-CsPGIP-f/r(表1)并分别以晚锦橙和四季橘cDNA为模板PCR扩增;PCR产物连接pGEM-T easy载体(Promega)并转化感受态菌株DH5(TaKaRa),阳性克隆委托擎科生物有限公司测序;利用Mega6[28]进行氨基酸多序列比对分析并绘制NJ系统发育树。

1.3 CsPGIP的亚细胞定位

利用BaCelLo[29]和SignalP4.0[30]进行CsPGIP的亚细胞定位和信号肽预测;根据序列设计不含终止密码子的特异引物SCL-CsPGIP-f/r(表1)并以晚锦橙cDNA为模板进行PCR扩增,产物与pSAT6- mGFP-N1载体连接,构建CsPGIP::mGFP融合基因,再将融合基因连接到pLGN-2x35s载体,最终得到pLGN::CsPGIP::mGFP载体;将含有pLGN::CsPGIP:: mGFP载体和pLGN::mGFP载体的EHA105农杆菌(OD=0.1)注射洋葱下表皮,28℃暗培养36 h,制片并用荧光显微镜(OLYMPUS:BX51)观察明、暗视野下的表达情况。

下划线标注的为酶切位点The enzyme sites are marked with underline

1.4 柑橘溃疡病菌对CsPGIP的诱导表达分析

将高感品种晚锦橙和高抗品种四季橘叶片用自来水清洗干净并用75%的乙醇擦拭消毒,无菌水冲净后置于无菌培养皿。将OD600=0.5的溃疡病菌菌悬液注射到晚锦橙和四季橘叶片下表皮,对照组注射无菌LB液体培养基,于28℃光照培养。分别于0、12、24、36、48 h取样,切取叶片的接种部位提取总RNA并反转录。根据基因特异性区域和柑橘内参基因设计定量PCR引物qPCR-CsPGIP-f/r and qPCR-Actin-f/r(表1)。利用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)分析的相对表达量。每个处理进行3次生物学重复和3次技术重复。

1.5 CsPGIP超表达载体构建与转化

将克隆的具有I和I酶切位点的片段和pLGNe-2×35S-MCS-nos超表达载体用I和I双酶切,酶切后的基因片段和载体片段连接构建pLGNe-CsPGIP-2×35S-MCS-nos超表达载体并转化农杆菌(EHA105)。柑橘转化参照PENG等[31]的方法。含有重组质粒的农杆菌于LB液体培养基28℃培养至OD600=0.5,侵染晚锦橙外植体(1 cm上胚轴茎段)15 min,外植体用灭菌滤纸擦干后均匀摆放到共培养基(含2 mg·L-1IP、1 mg·L-1IAA和2,4-D、0.1 mg·L-1AS的MS培养基)于28℃暗培养,72 h后转移到筛选培养基(含2 mg·L-1BA、1 mg·L-1IAA、50 mg·L-1Kana的MS培养基)于28℃暗培养,7 d后转移到28℃光照培养。

1.6 转基因株系鉴定

光照培养约50 d后,待不定芽生长到1 cm左右,切取少量芽进行GUS染色,显色为蓝色的芽初步认定为拟转化芽。初筛得到的拟转化芽嫁接到砧木,待长大后取其叶片提取基因组DNA,以此为模板用特异基因验证引物OE-f(35s)/OE-r(CsPGIP)(表1)进行PCR鉴定。阳性转基因株系提取RNA并反转录为cDNA,利用qRT-PCR分析各株系中的表达量。

1.7 转基因株系的抗性评价

转基因株系的抗病性评价参照PENG等[32]的方法进行。选取完全展开的3个月叶龄转基因株系及野生型晚锦橙叶片,进行离体抗性评价。用接种针在每片叶片的背面刺4—6组孔,每组6个,每个针孔接种溃疡病菌1 μL(OD600=0.5),同时对照组接种无菌LB培养基。28℃光照培养10 d,拍照记录病斑。用软件Image J V1.47(National Institutes of Health,Bethesda,MD)统计病斑面积(lesion area,LA,mm2)。按照病斑面积大小将病情分为8个级别,用字母LA表示病斑面积,0级(LA≤0.5 mm2),1级(0.5 mm2<LA≤1.0 mm2),2级(1.0 mm2<LA≤1.5 mm2),3级(1.5 mm2<LA≤2.0 mm2),4级(2.0 mm2<LA≤2.5 mm2),5级(2.5 mm2<LA≤3.0 mm2),6级(3.0 mm2<LA≤3.5 mm2),7级(LA>3.5 mm2)。根据以下公式计算病情指数(disease index,DI):DI=100×Σ(各级病斑数×相应级数值)/(病斑总数×最大级数)。

1.8 qRT-PCR与统计分析

相对表达量采用2-ΔΔCt法(ΔCt = CtCsPGIP-CtActin)计算,使用Excel进行数据统计分析并绘图。<0.05表示差异显著,<0.01表示差异极显著。

2 结果

2.1 CsPGIP生物信息学分析

晚锦橙和四季橘的Cs编码的CsPGIP均含有328个氨基酸,与已报道柑橘PGIP(BAA31841.1)[5]同源性为99.39%,3个基因编码的PGIP均含有PGIP关键结构域LRR_1和LRR_2,属于同源基因(图1)。

通过对CsPGIP与其他8个物种(拟南芥、高粱、水稻、亚麻属、苜蓿、杨树、谷子和葡萄)共38条PGIP序列进行系统发育分析,结果显示不同物种间PGIP序列具有很强的保守性,相同物种具有较高的相似度;单子叶和双子叶植物单独聚在一起,分成两个大组;柑橘CsPGIP与葡萄PGIP(GSVIVT01033370001)遗传距离最近,相似度达到62.97%(图2)。

2.2 CsPGIP亚细胞定位

利用BaCelLo进行CsPGIP亚细胞定位预测,定位于细胞膜上的预测分值(2.272)显著高于其他部位(≤1.494),CsPGIP可能定位在细胞膜上。信号肽预测结果显示其N端有含23个氨基酸的信号肽:MSNTSLLSLFFFLCLCISPSLSD,表明CsPGIP为分泌蛋白。为验证亚细胞定位和信号肽的预测,以柑橘与构建融合表达载体,通过洋葱表皮瞬时表达进行亚细胞定位,显微观察显示融合蛋白定位在细胞膜和细胞壁结合部(图3 A1-A3),进一步进行质壁分离后观察显示融合蛋白在细胞膜和细胞壁中都有积累(图3 B1-B3),而对照组定位在整个细胞中(图3 C1-C3、D1-D3)。CsPGIP定位在细胞膜和细胞壁中的观察结果与预测一致。

深蓝色为相同氨基酸序列,浅蓝色为不同的氨基酸序列,LRR_1和LRR_2为LRR结构域

以上基因均来自Phytozome(http://www.phytozome.com/)基因组数据库Genes in this study are all from Phytozome (http://www.phytozome.com/)

A1:明视野观察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under bright field;A2:暗视野观察CsPGIP-GFP融合蛋白Image of CsPGIP-GFP under dark field;A3:A1、A2视野叠加Overlap of A1 and A2;B1:明视野观察CsPGIP-GFP融合蛋白质壁分离Image of CsPGIP-GFP under bright field (plasmolysis);B2:暗视野观察CsPGIP-GFP融合蛋白质壁分离Image of CsPGIP-GFP under dark field (plasmolysis);B3:B1、B2视野叠加Overlap of B1 and B2;C1:明视野观察GFP表达Image of GFP under bright field;C2:暗视野观察GFP表达Image of GFP under dark field;C3:C1、C2视野叠加Overlap of C1 and C2;D1:明视野观察GFP质壁分离GFP of plasmolysis under bright field;D2:暗视野观察GFP质壁分离GFP of plasmolysis under dark field;D3:D1、D2视野叠加Overlap of D1 and D2;标尺Scale:100 μm

2.3 柑橘溃疡病菌对CsPGIP的诱导表达分析

实时荧光定量PCR结果分析显示柑橘在5个时间点(0、12、24、36和48 h)表达水平存在不同程度的差异(图4),其中高感品种晚锦橙在接种溃疡病菌12 h后的表达出现显著下调并维持在较低的水平。而高抗品种四季橘在接种溃疡病菌后表达出现不同程度上调,在12 h时表达量最高,为0 h的2.91倍,12 h后仍维持在较高水平。结果表明表达与溃疡病菌的侵染具有密切关系,经溃疡病菌诱导而显著上调可能是四季橘抗溃疡病的原因之一。

2.4 转基因株系的鉴定及CsPGIP表达分析

经GUS染色初筛(结果未显示)结合PCR鉴定,共获得9个转基因株系,分别为OE1、OE3、OE4、OE5、OE6、OE9、OE10、OE12和OE14(图5-A)。以转基因株系和野生型对照同期叶片提取RNA,qRT-PCR进行表达量测定,相对于野生型对照,以上9个株系表达量均出现不同程度的上调表达,其中OE10上调表达最高(图5-B)。

不同小写字母表示差异显著(P<0.05)Different lowercases indicate significant difference (P<0.05)

A:CsPGIP转基因株系的PCR鉴定PCR amplification of CsPGIP in over-expression transgenic lines;B:转基因株系中CsPGIP的相对表达量检测The relative expression level of CsPGIP in over-expression transgenic lines。 M:分子量标准Marker;OE1—OE14:Gus初筛的转基因材料lines verified from Gus staining;WT:野生型wild-type;阳性株系特异扩增条带为1 530 bp PCR product size of positive lines is 1 530 bp

2.5 转基因株系的表型分析

观察分析9株转基因株系表型,3个树龄一年的株系OE1、OE3和OE4中,OE3与野生型对照差异明显,植株较矮小(图6-A、6-D)。7个树龄6个月的株系OE5、OE6、OE9、OE10、OE12和OE14与野生型比较,OE14株系出现了异常,植株矮小(图6-B、6-E)、叶片卷曲、增厚(图6-C)。

A:树龄1年的转基因株系(OE1、OE3、OE4)和野生型对照(WT1)植株The phenotype of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (WT1);B:树龄6个月的转基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型对照(WT2)植株Phenotype of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control (WT2);C:野生型对照WT2和转基因株系OE14的叶片Leaves of WT2 and OE14;D:树龄1年的转基因株系(OE1、OE3、OE4)和野生型对照(WT1)的株高(测量方法:从嫁接口到顶梢的距离)Height of 1-year-old transgenic lines (OE1, OE3, OE4) and the wild-type control (measurement method: distance from the graft to the top tip);E:树龄6个月的转基因株系(OE5、OE6、OE9、OE10、OE12、OE14)和野生型对照(WT2)的株高Height of 6-month-old transgenic lines (OE5, OE6, OE9, OE10, OE12, OE14) and the wild-type control

2.6 转基因株系的溃疡病抗性评价

对8个转基因株系(OE1、OE3、OE4、OE5、OE6、OE9、OE10和OE12)进行了抗病性评价。采用针刺法离体接种溃疡病菌,以接种LB培养基的叶片作为对照。10 d后,接种LB培养基的叶片均未发病(图7-A),而接种溃疡病菌的叶片均不同程度发病,病斑大小存在一定的差异(图7-B);经过统计分析,转基因株系病斑面积显著小于野生型对照(图7-C),仅为野生型对照病斑面积的24.11%—83.88%;转基因株系病情指数仅为野生型对照的23.12%—86.52%(图7-D)。从转基因株系接种溃疡病菌抗性评价结果得出株系OE1、OE4、OE5、OE6、OE9、OE10和OE12可显著减小叶片溃疡病病情指数,其中OE1株系对柑橘溃疡病抗性得到极显著提高。

3 讨论

植物细胞壁是抵御病菌入侵的第一道防线,病原细菌和真菌必须通过植物细胞壁在植物体内建立生物营养感染的定殖位点后进行扩大感染[33]。PGIP是植物细胞壁产生的LRR类防御蛋白,能特异性的抑制病原菌分泌的PGs,从而抑制病原菌对植株的侵染。LRR基序是参与蛋白质之间互作的结构域[34],PGIP通过LRR基序抑制PGs的活性[35]。有研究表明PGIP在多种物种中对提高病害的抗性有显著作用,棉花可增强植株对黄萎病和镰孢菌枯萎病的抗性[16];过表达增强了结球甘蓝对细菌性软腐病的抗性[14];CaPGIPs在植物的抗病方面起着重要作用[36];葡萄VvPGIP1可以降低转基因烟草对灰霉病菌的敏感性,并对病原菌的PGs有不同程度的抑制作用[17]。本研究结果表明,晚锦橙中的超量表达可增强柑橘对溃疡病菌的抗性。

A:接种LB培养基的转基因株系和野生型对照叶片Disease spots of transgenic lines and the wild-type inoculated with LB;B:接种溃疡病菌的转基因株系和野生型对照叶片Disease spots of transgenic lines and the wild-type inoculated with Xcc;C:接种溃疡病菌的转基因株系和野生型对照病斑面积Lesion area of transgenic lines and the wild-type inoculated with Xcc;D:接种溃疡病菌的转基因株系和野生型对照病情指数Disease index of transgenic lines and the wild-type inoculated with Xcc。WT:野生型对照wild-type control;OE1—OE12:转基因株系transgenic lines。*表示差异显著(P<0.05),**表示差异极显著(P<0.01)* represents significant difference (P<0.05), ** represents extremely significant difference (P<0.01)

在溃疡病菌的诱导下,在高感品种晚锦橙中下调表达而在高抗品种四季橘中显著上调表达。晚锦橙和四季橘中的CsPGIP蛋白仅存在3个氨基酸的差异,但它们具有相同的LRR类防御蛋白特有的结构域LRR_1和LRR_2(图1),因而这两种蛋白本身对病原菌的抵抗能力可能差异不大。导致在不同溃疡病抗性的柑橘品种中差异表达的原因可能是调控机制的差异。柑橘抵抗溃疡病菌的入侵是一个复杂的调控网络。溃疡病病原菌主要的效应因子pthA4通过III型分泌系统进行柑橘基因组后,与柑橘体内的溃疡病感病基因结合[37]。研究表明,不同溃疡病抗性的柑橘品种中都含有,但在不同抗性的柑橘品种中存在启动子序列的差异[31],这种启动子序列的差异可能会引起基因表达的差异。在不同的抗、感溃疡病柑橘品种中,虽然相同,但其转录后可能存在转录后修饰现象,转录呈现多态性,这种转录后的修饰也会导致在不同抗性的柑橘品种中表达的差异。因而进一步克隆晚锦橙和四季橘中的启动子,分析启动子序列差异;同时对不同溃疡病抗性的柑橘品种中转录的结构多态性进行研究,有望阐明在不同溃疡病抗性的柑橘品种中差异表达的原因。

本研究对9个转基因株系进行表型分析,发现仅有两个转基因株系出现了植株矮小的现象,其中一个株系(OE14)的叶片卷曲增厚。多个物种的已在不同的植株中进行超表达,但转基因并未引起植株表型的差异[16-26]。本研究中转基因植株表型变化可能是随机整合到柑橘基因组中时引起某些基因或调控序列失活造成的。由于仅有两个株系出现了表型变化且其中一株过于矮小无法进行表型相关研究,后期将会对溃疡病抗性评价、插入位点、基因表达和细胞组织结构进行综合研究,以探究对植物生长发育的影响。

溃疡病抗性评价结果显示不同的转基因株系可不同程度显著减小叶片病情指数,其中OE1株系对柑橘溃疡病抗性极显著提高且表型正常。目前对柑橘溃疡病抗性机理尚未清楚,因而筛选出的抗溃疡病的转基因柑橘可以作为材料进一步研究的作用机理。

4 结论

CsPGIP为定位于细胞壁和细胞膜的蛋白,受溃疡病菌诱导表达。的表达特性表明该基因是柑橘响应溃疡病侵染的重要基因,超表达该基因可以提高柑橘对溃疡病的抗性,该基因在柑橘抗溃疡病机理研究方面具有较大的应用价值,可作为柑橘抗溃疡病分子育种的一个候选基因。

[1] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses., 2015, 2: 15042.

[2] 贾瑞瑞, 周鹏飞, 白晓晶, 陈善春, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 陈敏, 何永睿, 李强. 柑橘响应溃疡病菌转录因子CsBZIP40 的克隆及功能分析. 中国农业科学, 2017, 50(13): 2488-2497.

JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus., 2017, 50(13): 2488-2497. (in Chinese)

[3] 杨枫, 陈传武, 范七君, 石春梅, 谢宗周, 郭大勇, 刘继红. 温度和多胺对柑橘溃疡病发生的影响及作用机制. 中国农业科学, 2018, 51(10): 1899-1907.

YANG F, CHEN C W, FAN Q J, SHI C M, XIE Z Z, GUO D Y, LIU J H. Influence of temperature and polyamines on occurrence of citrus canker disease and underlying mechanisms., 2018, 51(10): 1899-1907. (in Chinese)

[4] 陈力, 王中康, 黄冠军, 曹月青, 夏玉先, 殷幼平. 柑橘溃疡病生防菌株CQBS03的鉴定及其培养特性研究. 中国农业科学, 2008, 41(8): 2537-2545.

CHEN L, WANG Z K, HUANG G J, CAO Y Q, XIA Y X, YIN Y P. Evaluation ofstrain CQBS03 againstpv., 2008, 41(8): 2537-2545. (in Chinese)

[5] 陈波, 罗庆华, 谭雅芹, 闫慧清. 柑橘PGIP的B细胞抗原表位分析和原核表达. 现代食品科技, 2018, 34(4): 18-22.

CHEN B, LUO Q H, TAN Y Q, YAN H Q. B cell epitopes analysis and prokaryotic expression of PGIP in citrus., 2018, 34(4): 18-22. (in Chinese)

[6] FREIBERG A, MACHNER M P, PFELI W, SCHUBERT W D, HEINZ D W, SECKLER R. Folding and stability of the leucine-rich repeat domain of internal in B from., 2004, 337(2): 453-461.

[7] LEHMANN P. Structure and evolution of plant disease resistance genes., 2002, 43(4): 403-414.

[8] FERRARI S, GALLETTI R, VAIRO D, GERVONE F, DE LORENZO G. Antisense expression of thegene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to., 2006, 19(8): 931-936.

[9] JOUBERT D A, KARS I, WAGEMAKERS L, BERGMANN C, KEMP G, VIVIER M A, VAN KAN J A. A polygalacturonase- inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 frominleaves without any evidence forinteraction., 2007, 20(4): 392-402.

[10] CHENG Q, CAO Y Z, PAN H X, WANG M X, HUANG M R. Isolation and characterization of two genes encoding polygalacturonase- inhibiting protein from., 2008, 35(10): 631-638.

[11] HEGEDUS D D, LI R, BUCHWALDT L, PARKIN I, WHITWILL S, COUTU C, BEKKAOUI D, RIMMER S R.possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response toinfection, wounding and defense hormone treatment., 2008, 228(2): 241-253.

[12] JANNI M, SELLA L, FAVARON F, BLECHL A E, DE LORENZO G, D’OVIDO R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen., 2008, 21(2): 171-177.

[13] DI C X, LI M, LONG F, BAI M P, LIU Y J, ZHENG X L, XU S J, XIANG Y, SUN Z L, AN L Z. Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase- inhibiting protein in., 2009, 231(1): 169-178.

[14] HWANG B H, BAE H, LIM H S, KIM K B, KIM S J, IM M H, PARK B S, KIM D S, KIM J. Overexpression of polygalacturonase- inhibiting protein 2 () of chinese cabbage (ssp.) increased resistance to the bacterial pathogenssp.., 2010, 103(3): 293-305.

[15] D’OVIDIO R, RAIOLA A, CAPODICASA C, DEVOTO A, PONTIGGIA D, ROBERTI S, GALLETTI R, CONTI E, O’SULLIVAN D, DE LORENZO G. Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects., 2004, 135(4): 2424-2435.

[16] LIU N N, ZHANG X Y, SUN Y, WANG P, LI X C, PEI Y K, LI F G, HOU Y X. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance toandwilts in cotton., 2017, 7: 39840.

[17] JOUBERT D A, SLAUGHTER A R, KEMP C, BECKER J V, KROOSHOF C H, BERGMANN C, BENEN C, PRETORIUS I S, WIER M A. The polygalacturonase-inhibiting protein (VvPGIPl) reducesin transgenic tobacco and differentially inhibits fungal polygalacturonases., 2006, 15(6): 687-702.

[18] BORRAS-Hidalgo O, CAPRARI C, HERNANDEZ-Estevezi, DE Lorenzo G, CERVONE F. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance againstand two oomycetes., 2012, 3: 268.

[19] WANG A Y, WEI X N, RONG W, DANG L, DU L P, QI L, XU H J, SHAOY J, ZHANG Z Y. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat., 2015, 15(3): 375-381.

[20] MANFREDINI C, SICILIA F, FERRARI S, PONTIGGIA D, SALVI G, CAPRARI C, LORITO M, DE Lorenzo G. Polygalacturonase- inhibiting protein 2 ofinhibits BcPGl, a polygalacturonase ofimportant for pathogenicity, and protects transgenic plants from infection., 2005, 67(2): 108-115.

[21] PRABHU S A, WAGENKNECHT M, MELVIN P, KUMAR B S G, VEENA M, SHAILASREE S, MOERSCHBACHER B M, KINI K R. Immuno-affinity purification ofPGIP1, a polygalacturonase inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen., 2015, 42(6): 1123-1138.

[22] PRABHU S A, KINI K R, RAJ S N, MOERSCHBACHER B M, SHETTY H S. Polygalacturonase-inhibitor proteins in pearl millet: possible involvement in resistance against downy mildew., 2012, 44(5): 415-423.

[23] AGÜERO C B, URATSU S L, GREVE C, POWELL A T, LABAVITCH J M, MEREDITH C P, DANDEKAR A M. Evaluation of tolerance to Pierce’s disease andin transgenic plants ofL. expressing the pear PGIP gene., 2005, 6(1): 43-51.

[24] SCHACHT T, UNGER C, PICH A, WYDRA K. Endo- and exopolygalactuonases ofare inhibited by polygalactuonase-inhibiting protein (PGIP) activity in tomato stem extracts., 2011, 49(4): 377-387.

[25] WANG R, LU L, PAN X, HU Z, LING F, YAN Y, LIU Y, LIN Y. Functional analysis of, 2015, 87(1/2): 181-191.

[26] FENG C S, ZHANG X, WU T, YUAN B, DING X H, YAO F Y, CHU Z H. The polygalacturonase-inhibiting protein 4 (), a potential component of thelocus, confers resistance to bacterial leaf streak in rice., 2016, 243(5): 1297-1308.

[27] GOODSTEIN D M, SHU S, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: a comparative platform for green plant genomics., 2012, 40(Database issue): D1178-D1186.

[28] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0., 2013, 30(12): 2725-2729.

[29] PIERLEONI A, MARTELLI P L, FARISELLI P, CASADIO R. BaCelLo: a balanced subcellular localization predictor., 2006, 22(14): e408-e416.

[30] PETERSEN T N, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 4.0: discriminating signal peptides from transmembrane regions., 2011, 8(10): 785-786.

[31] PENG A H, XU L Z, HE Y R, LEI T G, YAO L X, CHEN S C, ZOU X P. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Osbeck) with enhanced resistance to citrus canker using a Cre/site-recombination system., 2015, 123(1): 1-13.

[32] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility genepromoter in citrus., 2017, 15(12): 1509-1519.

[33] POWELL A L, VAN KAN J, TEN HAVE A, VISSER J, GREVE L C, BENNETT A B, LABAVITCH J M. Transgenic expression of pear PGIP in tomato limits fungal colonization., 2000, 13(9): 942-950.

[34] DE LORENZO G, D’OVIDIO R, CERVONE F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi., 2001, 39(1): 313-335.

[35] KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif., 2001, 11(6): 725-732.

[36] WANG X J, ZHU X P, TOOLEY P, ZHANG X G. Cloning and functional analysis of three genes encoding polygalacturonase- inhibiting proteins fromand transgenicin tobacco in relation to increased resistance to two fungal pathogens., 2013, 81(4/5): 379-400.

[37] HU Y, ZHANG J L, JIA H G, SOSSO D, LI T, FROMMER W B, YANG B, WHITE F F, WANG N, JONES J B.is a disease susceptibility gene for citrus bacterial canker disease., 2014, 111(4): E521-E529.

(责任编辑 岳梅)

Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Genein Citrus

HU AnHua, QI JingJing, ZHANG QingWen, CHEN ShanChun, ZOU XiuPing, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, LONG Qin, HE YongRui, LI Qiang

(Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712)

【Objective】The objective of this study is to cloneand analyze its expression characteristics, constructtransgenic citrus and evaluate the resistance to citrus bacterial canker (CBC), and to provide a theoretical basis for molecular breeding of citrus bacterial canker.【Method】was annotated from the genomic databases and cloned from Wanjincheng and Calamondin. Mega6 was used for multiple sequence alignment and phylogenetic tree was constructed. Two online softwares BaCelLo and SignalP 4.0 were used for the prediction of subcellular localization and signal peptide. The predicted result was then demonstrated by GFP transient expression. The expression profile ofinduced bysubsp.() was also analyzed in Wanjincheng and Calamondin by using qRT-PCR method. The correlation betweeninfection andexpression was analyzed. Genetic transformation of Wanjincheng was conducted by-mediated method. The over-expressed lines were identified by Gus staining, PCR and qRT-PCR. The phenotypic changes of transgenic and wild-type lines were observed, plant height and leaf phenotype were analyzed.acupuncture was used to evaluate the resistance of transgenic lines and wild-type lines to citrus bacterial canker. The effect ofexpression on resistance and susceptibility to citrus bacterial canker was analyzed by statistical analysis of lesion area (LA) and disease index (DI). 【Result】Thecloned from Wanjincheng and Calamondin encodes 328 amino acids, which is 99.39% homology with the reportedfrom Clementina, and contains two typical LRR domains (LRR_1 and LRR_2). In the phylogenetic tree, the genetic distance between CsPGIP and grape PGIP (GSVIVT01033370001) was the closest, and the similarity was 62.97%. It is inferred that CsPGIP and grape PGIP have similar resistance to disease. The prediction of subcellular localization and signal peptide indicated that CsPGIP was a secretory protein, and GFP transient expression proved that CsPGIP located on cell membrane and cell wall, which was consistent with the predicted results. The expression ofin canker sensitive plant Wanjincheng and canker resistant plant Calamondin was different after inoculated with. the expression ofwas significantly down-regulated in Wanjincheng, but significantly up-regulated and maintained at a high level in Calamondin. It is speculated thatwas related to resistance to citrus bacterial canker.over-expression vector was constructed and transformed into Wanjincheng, and nineover-expression lines (OE1, OE3, OE4, OE5, OE6, OE9, OE10, OE12 and OE14) were identified asover-expression positive lines by PCR identification and qRT-PCR. Through the phenotypic observation of transgenic lines, it was found that the phenotypes of OE3 and OE14 lines were significantly different from those of wild-type lines. The plant was short, in which OE14 was also abnormal with curly property and greater thickness. Thecanker resistance of eightover-expression lines was evaluated. The results showed that the lesion area on the eightover-expression lines was smaller compared to that on the wild-type (24.11%-83.88%), and the lesion area of OE1 was the smallest. In terms of disease index, the disease index ofover-expression lines (except OE3) was significantly lower than that of wild-type (23.12%-75.49%), and the decrease of OE1 was the most significant. The above results showed that over-expression ofcould effectively inhibit the growth of citrus bacterial canker.【Conclusion】is an important gene which can inhibit or reduce the incidence of citrus bacterial canker, and has a great application value in the mechanism study of citrus resistance to bacterial canker. In the same time, it can be used as a candidate gene for molecular breeding of citrus bacterial cankerresistance.

citrus bacterial canker (CBC); polygalacturonase inhibitor protein;; over-expression; CBC resistance

10.3864/j.issn.0578-1752.2019.04.006

2018-10-13;

2018-11-26

国家现代农业产业技术体系建设资金(CARS-26)、重庆市社会事业与民生体系保障科技创新专项(cstc2016shms-ztzx80001,cstc2017shms-xdny80051)、广西科技重大专项(桂科AA18118046)

胡安华,E-mail:782497097@qq.com。 通信作者李强,E-mail:liqiang@cric.cn。通信作者何永睿,E-mail:heyongrui@cric.cn

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!