当前位置:首页 期刊杂志

MT和FGF5调控辽宁绒山羊绒毛生长相关LncRNA的筛选及鉴定

时间:2024-05-23

金梅,张丽娟,曹倩,郭鑫英



MT和FGF5调控辽宁绒山羊绒毛生长相关LncRNA的筛选及鉴定

金梅,张丽娟,曹倩,郭鑫英

(辽宁师范大学生命科学学院/辽宁省生物技术与分子药物研发重点实验室,辽宁大连 116029)

【目的】筛选出辽宁绒山羊皮肤成纤维细胞中与绒毛生长相关的LncRNA,为绒毛生长相关LncRNA的功能及机制研究提供基础性数据。【方法】提取MT和FGF5处理的辽宁绒山羊皮肤成纤维细胞总RNA,通过样品总RNA电泳检测、测序数据质量评估、Mapping比对、样品间相关性检查对提取的总RNA进行质量检测。筛选出差异表达的LncRNA并预测其靶基因,通过GO和KEGG富集分析,筛选出与绒毛生长相关的LncRNA,并通过Real-time PCR对目标LncRNA进行表达验证。【结果】(1)样品总RNA质量检测结果显示:RNA 完整性良好、GC含量相对较高,序列较稳定、样品间表达水平相关性均较高、符合测序要求。(2)差异表达LncRNA的筛选结果显示:1.0g∙L-124h组差异表达LncRNA有32个,其中4个表达上调,28个表达下调;0.2g∙L-124h组差异表达LncRNA 有10个,其中4个表达上调,6个表达下调;0.2g∙L-172h组差异表达LncRNA有113个,其中5个表达上调,108个表达下调。10-4g∙L-124 h组差异表达LncRNA有164个,其中有70个上调,94个下调;10-4g∙L-172 h差异表达LncRNA 有189个,其中有78个上调,111个下调;10-6g∙L-124 h组差异表达的LncRNA有123个,其中有27个上调,96个下调 。(3) 靶基因GO富集分析结果显示:1.0g∙L-124h组差异表达LncRNA靶基因富集在GO的negative regulation of transcription from RNA polymerase II promoter;0.2g∙L-124h组无差异表达LncRNA靶基因富集的GO term;0.2g∙L-172h组差异表达LncRNA靶基因富集在GO的cellular metabolic process biological_process,binding molecular_function,FGF5处理组中只有10-4g∙L-172 h组差异表达LncRNA靶基因富集在cell cellular_component、cell part cellular_component、intracellular cellular_component、binding molecular_function等6个条目。(4)靶基因KEGG富集分析结果显示:1.0g∙L-124h组差异表达LncRNA靶基因富集在Steroid biosynthesis pathway;0.2g∙L-124h组无差异表达LncRNA靶基因富集的Pathway term;0.2g∙L-172h组差异表达LncRNA靶基因富集在Cell cycle,DNA replication,Steroid biosynthesis,TNF,Nod-like receptor,NF-kappa B等信号通路,其中TNF和NF-kappa B信号通路与绒毛生长相关。FGF5处理组中,10-4g∙L-172 h组差异表达的LncRNA靶基因显著富集到Fanconi anemia pathway,Huntington's disease,Metabolic pathway,Aminoacyl-tRNA biosynthesis等9个pathway term,其中Metabolic信号通路与绒毛生长相关;10-4g∙L-124 h组差异表达的LncRNA靶基因无显著富集的pathway term;10-6g∙L-124 h组差异表达的LncRNA靶基因只富集在Taste transduction pathway。(5)NF-κB和TNF两个信号通路中富集的靶基因TNFα、TNFAIP3(A20)、NFKBIA(IkBα)、NFKB2、IL8所对应的LncRNA有2个,分别为(Gene ID):XLOC_005914;XLOC_018763;Metabolic信号通路中靶基因所对应的LncRNA有4个,分别为(Gene ID):XLOC_011424、XLOC_009522、XLOC_009063、XLOC_01115。Real-time PCR结果显示:LncRNA XLOC_011424、XLOC_011157、LncRNA XLOC_005914和XLOC_018763与高通量测序结果一致。【结论】 LncRNA XLOC_011424、XLOC_011157、LncRNA XLOC_005914和XLOC_018763可能通过调控与绒毛生长相关的NF-κB 、TNF或Metabolic信号通路,提高羊绒密度和长度,进而提高辽宁绒山羊绒产量及品质。

辽宁绒山羊;褪黑激素;FGF5;LncRNA;RNA-seq; 信号通路

0 引言

【研究意义】辽宁绒山羊是中国代表性的绒山羊品种,其体型较大,适应能力强,遗传稳定性好。辽宁绒山羊是绒肉兼用的地方良种,该种绒山羊产绒量高,绒毛品质好,其绒毛是珍贵的纺织原料。因此,研究如何提高辽宁绒山羊羊绒产量及品质尤为重要。【前人研究进展】毛囊是皮肤中的附属结构,可分为初级毛囊和次级毛囊,初级毛囊产毛,次级毛囊产绒[3]。哺乳动物被毛的生长替换是一个复杂的生理过程,被毛的替换与毛囊的周期性生长密切相关,一般一个生长周期内毛囊要经历生长期、退行期和休止期三个阶段[4]。环境、代谢水平和基因调控等因素都可影响绒山羊毛囊的周期性生长过程,有研究表明,很多的信号分子都在毛囊的形态发生过程中具有很重要的作用,褪黑激素(melatonin,MT)、催乳素(prolactin)、成纤维细胞生长因子5(fibroblast growth factor 5, FGF5)、甲状腺素(thyroxine)等[5-6]。MT是由松果体分泌出来的一种高度保守的吲哚类激素[7]。它在很多细胞、组织和器官中都起到重要作用[8]。IBRAHEEM 等研究发现,催乳素和褪黑激素对次级毛囊的毛干伸长具有刺激作用[9]。Logan等发现,褪黑激素能够抑制由α-黑素细胞刺激素(MSH)引起的黑素生成的增加[10]。有学者发现,皮肤组织是除松果体外,MT合成与代谢的又一重要的场所[11]。近年来,很多研究表明MT可能在毛发生理学中起重要作用,其受体(MT2和RORα)以毛发周期依赖性方式在小鼠皮肤中表达,抑制角质形成细胞凋亡[12-13]。另外,MT能够改变山羊中羊绒生长周期的时间,外源性的MT能够促进毛囊从休止期向生长初期转变,延长生长初期[14-15]。有学者发现,褪黑激素可作为自由基清除剂和DNA修复诱导剂,代谢和增殖活性高的毛发生长初期毛球也可以利用褪黑素合成作为自身细胞保护策略[16]。FGF5是目前所发现的一种与绒毛生长有直接关系的基因之一。最早发现的安哥拉鼠被毛增长就是由于FGF5基因突变所致[17]。此后,很多研究者们开始了一系列有关FGF5与毛发生长的研究。2007年JAMES等人利用家猫作为实验动物进行研究,结果显示FGF5是影响家猫毛发长度的主要因素[18]。SUZUKI等利用体外注射蛋白产物的方法进行了验证实验,结果表明FGF5的蛋白产物在毛囊生长的不同时期都具有影响[19]。此外,有些学者发现FGF5在毛发生长及某些老鼠的脱毛过程中也具有调节作用[20]。KREGE等人发现FGF5能够通过影响Sox2的表达从而对皮肤毛囊的再生起到非常重要的影响[21]。笔者一直致力于如何提高辽宁绒山羊的绒毛产量及品质的研究,通过大量的试验,最终筛选出了MT和FGF5这两种药物,其中MT处理组中1.0g∙L-124h、0.2g∙L-124h、0.2g∙L-172h三个处理条件最有利于辽宁绒山羊皮肤成纤维细胞的增殖与生长,FGF5处理组中10-4g∙L-124 h、10-4g∙L-172 h、10-6g∙L-124 h三个处理条件最适宜辽宁绒山羊皮肤成纤维细胞的增殖与生长。长链非编码RNA(long noncoding RNA, LncRNA)是由RNA聚合酶Ⅱ转录的无蛋白质编码功能的调节性非编码RNA,是一类新型的真核生物转录物[22]。目前,人们将其分为:正义LncRNA、反义LncRNA、双向LncRNA、基因内LncRNA和基因间LncRNA 5种主要类型[23]。很多学者研究发现lncRNA在多种生命过程中发挥重要作用,并且在细胞及生物体中的调节方式有多种,例如某些LncRNA可作为转录调控因子(或共调控因子)上调或下调某些基因的表达[24]。某些LncRNA在一定程度上对细胞的分化与增殖、生长发育、器官生成、免疫应答及肿瘤发生等多个生命活动都有一定的调节作用[25-26]。Ren等通过将幽州黑山羊和渝东白山羊作为实验动物进行研究,他们对色素沉着早期阶段皮肤细胞中的LncRNA进行结构和表达分析,筛选出差异表达的LncRNA,并对LncRNA进行顺式和反式靶基因的预测[27]。ZHU等发现,长链非编码RNA H19转录物与毛囊重建的真皮乳头细胞的诱导能力有关,在次生毛囊中,lncRNA-H19转录物在毛发生长初期阶段的相对表达显着高于毛发生长终期阶段和毛发生长中期阶段,表明lncRNA-H19转录物可能在山羊绒绒纤维的形成和生长中起重要作用[28]。LIN等在毛乳头细胞中发现了有助于毛发生长相关基因表达的LncRNA的表达[29]。有学者通过高通量测序技术对绵羊的LncRNA进行了生物信息学分析, 对绵羊基因组的研究有重大帮助[30]。【本研究切入点】近年来,关于如何提高羊绒产量及品质的研究越来越多。但是,有关MT和FGF5两种药物能否通过影响相关LncRNA的表达进而提高羊绒产量及品质的研究非常少。【拟解决的关键问题】本试验以辽宁绒山羊为研究对象,分别用MT和FGF5处理辽宁绒山羊皮肤成纤维细胞,通过高通量测序技术筛选出差异表达的LncRNA,预测差异表达LncRNA的靶基因,并通过GO和KEGG富集分析筛选出与绒毛生长相关的LncRNA并进行Real-time PCR验证。

1 材料与方法

1.1 细胞培养与药物处理

试验于2016年在辽宁师范大学生命科学学院,辽宁省生物技术与分子药物研发重点实验室进行。辽宁绒山羊皮肤成纤维细胞原代培养,用不同浓度及时间的MT和FGF5进行处理, 处理的条件分别为:MT处理组 1.0g∙L-124h(M1_24H)、0.2g∙L-124h(M2_24H)、0.2g∙L-172h(M2_72H); FGF5处理组,10-4g∙L-124 h(F4_24H)、10-4g∙L-172 h(F4_72H)、10-6g∙L-124 h(F6_24H)。

1.2 提取RNA

参照宝生物工程(大连)有限公司的 DNase I(RNase Free)使用说明进行操作。

1.3 RNA-Seq文库测序

由北京诺禾致源生物信息科技有限公司提供测序服务,测序平台为 Illumina HiseqTM2500,以PE125的测序策略进行测序。利用fastx_toolkit(v0.0.14)软件对得到的Raw reads进行分析。应用Illumina Casva1.8软件通过QPhred=-10log10(e)公式对碱基的质量进行检测。

1.4 Mapping以及样品相关性检验

利用Tophat 2(V2.0.9)对过滤后的测序序列与山羊参考基因组进行比对分析,应用cufflinks和scripture软件进行转录本的拼接。

1.5 差异表达LncRNA的筛选

首先通过五步筛选法进行基本的筛选,然后利用CPC、CNCI、pfam蛋白结构域及PhyloCSF分析方法进行编码潜能的筛选,这几种方法筛选的交集为候选的LncRNA。然后从候选LncRNA中筛选出差异表达的LncRNA

1.6 差异表达的LncRNA靶基因预测

LncRNA是通过与其靶基因mRNA相互作用来发挥作用的,因此采用Pearson相关系数法分析各样本中LncRNA与蛋白编码基因的表达量相关性和共表达分析方法来预测其靶基因。使用cuffdiff(http:// cufflinks.cbcb.umd.edu/manual.html#cuffdiff)软件对筛选所得到的LncRNA进行定量分析,从而得到各样品中LncRNA的FPKM信息。

1.7 差异表达LncRNA靶基因的功能富集分析

将差异表达LncRNA的cis和trans靶基因分别做GO和KEGG富集分析。

1.8 目标LncRNA的表达验证

首先培养辽宁绒山羊皮肤成纤维原代细胞,用0.2g∙L-1的MT和10-4g∙L-1的FGF5分别处理细胞72h后,提取RNA并反转录成cDNA,接下来通过Real-time PCR对差异表达的LncRNA进行验证,引物见表1。

2 结果

2.1 样品总RNA电泳检测

经过 DNase I(RNase Free)处理,得到辽宁绒山羊皮肤成纤维细胞总RNA样品,然后对各组样品进行琼脂糖凝胶电泳。结果显示试验中提取的辽宁绒山羊皮肤成纤维细胞样品的总RNA 琼脂糖凝胶电泳检测条带清晰,无拖尾和降解现象,表明提取的 RNA 完整性良好,可以用于后续分析(图1)。

表1 RT-PCR引物序列

2.2 测序数据质量评估

对RNA-Seq测序得到的数据质量进行检测的结果如表2.1所示。通过表中数据可知,Error rate表示测序错误率,它与碱基质量有关,同时也受测序仪本身、测序试剂、样品等多个因素共同影响,由表中数据可知碱基错误率较低。Q = -10log10p,其中p值是由Phred计算出,它表示一个碱基被识别错误的可能性,Q 值为 10 表示这个碱有90%的概率是正确的, 20 就是 99%。各个样品中绝大部分reads的Q值均大于20。基GC含量相对较高,表明测序序列较稳定。综上,我们认为各个样品的测序序列都具有较高的质量,可以进行后续分析。

图A为MT处理组,图B为FGF5处理组。图A中泳道1、2、3、4分别为M2_72H组、M2_24H组、M1_24H组和对照组C;图B中泳道1、2、3、4分别为F4_24H组、F6_24H组、F4_72H和对照组C

2.3 Mapping

通过Tophat 2软件将试验中样品的clean reads分别与NCBI中山羊参考基因组进行比对分析,发现试验中所产生的测序序列定位百分比均低于70%,其中具有多个定位的测序序列占总体的百分比也均低于10%,表明试验中参考基因组选择合适,不存在污染。而且所有样品中Unique Mapping Rate均为80%以上,因此可进行下一步分析。从图2中可以更加直观看出染色体长度和reads总数的关系,染色体的长度与定位到该染色体内reads总数呈正相关,MT处理组和FGF5处理组样品比对到山羊1号、2号染色体上的reads相对来说都比较多。

2.4 样品间相关性检查

样品间表达水平相关性是检验试验可靠性和样本选择是否合理的重要指标。如图3所示,可知各处理组与对照组相比较,2值均大于0.8, 表明样品间表达水平相关性均较高。因此本试验所选择的样品均符合测序要求,可以继续进行下一步分析。

2.5 差异表达的LncRNA的筛选

筛选的条件是P-adjust <0.05,log2(Fold change) >1。由图4可知,在M1_24H与C进行比较,获得32个差异表达的LncRNA,其中有4个LncRNA上调,28个下调;M2_24H与C组进行比较,获得10个差异表达的LncRNA,其中有4个LncRNA上调,6个下调;M2_72H与C组中进行比较,获得113个差异表达的LncRNA,其中有5个LncRNA上调,108个下调;F6_24H与C进行比较,获得123个差异表达的LncRNA,27个上调,96个下调;F4_24H与C进行比较,获得164个差异表达的LncRNA,70个上调,94个下调;F4_72H与C组中进行比较,获得189个差异表达的LncRNA,其中有78个上调,111个下调。

根据不同样品中差异表达的LncRNA表达水平的高低,进行层次聚类(hierarchical clustering)分析,从而判断这些LncRNA在不同试验条件下的表达模式(图5)。结果显示在F4_24H组和M2_72H中差异表达的LncRNA表达水平相对较高。

横坐标:染色体的长度信息(以百万碱基为单位);纵坐标:log2(reads的密度的中位数);绿色为正链,红色为负链

表2 RNA-Seq数据一览表

样品名称:_1代表左端的reads,_2代表右端的reads;Raw reads:统计原始序列数据;Clean reads:过滤后的测序数据;Clean bases:测序序列个数与其长度的积;Error rate:碱基错误率;Q20、Q30:Phred 数值大于20、30的碱基与总碱基数之比;GC含量:含有G和C的碱基数量与占总碱基数之比

Sample_name: _1 represents reads of the left side, _2 represents reads of the right side; Raw reads: The original sequence data; Clean reads: The filtered sequencing data; Clean bases: The product of the number of sequencing sequence and the length of sequencing sequence; Error rate: Base error rate; Q20, Q30: The percentage of the bases that phred values are greater than 20 or 30 and all the bases; GC content: The percentage of the number of G and C bases and all the bases

图3 各处理组中样品间相关性检查

有显著性差异表达的转录本用红色点(上调LncRNA)和绿色点(下调LncRNA)表示;横坐标代表LncRNA表达水平变化;纵坐标代表LncRNA表达变化的统计学意义

2.6 差异表达的LncRNA靶基因Gene Ontology功能显著性富集分析

分别根据LncRNA临近位置的(上下游10k /100k)蛋白编码基因和LncRNA与蛋白编码基因的表达量相关性分析或共表达分析方法来预测其cis/trans靶基因。再对靶基因分别进行cis和trans的GO富集分析,分别从生物过程(biological process,BP)、分子功能(molecular function,MF)和细胞组分(cellular component,CC)三个层面对靶基因进行GO注释。结果如表3、4所示:M2_24H vs C、F4_24H vs C和 F6_24H vs C组中差异表达的LncRNA均无显著富集的条目;M1_24H vs C组中差异表达LncRNA的trans靶基因无显著富集的GO term,其cis靶基因只在BP中有一个显著富集的GO term,即negative regulation of transcription from RNA polymerase II promoter;M2_72H vs C和F4_72H vs C组中差异表达的LncRNA的cis靶基因均无显著富集的GO term,而M2_72H vs C组trans靶基因主要富集在BP的cellular metabolic process biological_process、nitrogen compound metabolic process biological_process;MF中的binding molecular_function、catalytic activity molecular_function;CC中的membrane- bounded organelle cellular_component、F4_72H vs C组中差异表达的LncRNA的 rans靶基因主要富集在BP的cellular metabolic process biological_process、cellular macromolecule metabolic process biological_process,CC的cell cellular_component、cell part cellular_component、intracellular cellular_component,MF的binding molecular_ function中。

2.7 差异表达的LncRNA靶基因Pathway显著性富集分析

通过KEGG数据库,对样品中差异表达LncRNA的靶基因进行通路富集分析,得到各比较组合中显著性富集(Qvalue<0.05)的pathway term。结果如表5—9所示:M2_24H vs C和F4_24H vs C组中均无显著富集的pathway term;F6_24H vs C组中差异表达的LncRNA的trans靶基因无显著富集的pathway term,其cis靶基因只富集在Taste transduction通路;M2_72H vs C、M1_24H vs C和F4_72H vs C组中差异表达的LncRNA的cis靶基因均无显著富集的pathway term,M2_72H vs C 组差异表达的LncRNA的trans靶基因显著富集到15个pathway term,其中TNF和NF-kappa B 信号通路与毛囊发育及绒毛周期性生长相关,其通路中差异表达的靶基因、M1_24H vs C组差异表达的LncRNA的trans靶基因只富集在Steroid biosynthesis通路、F4_72H vs C组中差异表达的LncRNA的trans靶基因显著富集到9个pathway term,其中只有Metabolic信号通路与毛囊发育及绒毛周期性生长相关,其通路中差异表达的靶基因。

每列代表一个样品,每行代表一种基因;红色代表高表达LncRNA,蓝色代表低表达LncRNA

2.8 目标LncRNA的表达验证

M2_72H组LcRNA靶基因富集的NF-κB信号通路中靶基因所对应的LncRNA有两个,分别为(Gene ID):XLOC_005914;XLOC_018763。F4_72H 组靶基因富集的Metabolic 信号通路中靶基因所对应的LncRNA有4个,分别为(Gene ID):XLOC_011424、XLOC_009522、XLOC_009063、XLOC_01115。通过Real-time PCR对筛选出的6个LncRNA进行验证,结果如图7所示,MT作用相关的两个LncRNA在RNA- Seq中的表达量上调,Real-time PCR检测结果与RNA- Seq测序结果一致,进一步验证了RNA-Seq测序结果的准确性。FGF5处理辽宁绒山羊皮肤成纤维细胞后,Real-time PCR结果为LncRNA XLOC_011424和XLOC_011157表达量下调;LncRNAXLOC_009063表达量上调; LncRNA XLOC_009522表达量无显著性差异。结合RNA-Seq测序中4个LncRNA表达量均下调的结果,表明LncRNA XLOC_011424、LncRNA XLOC_011157与前期结果一致。

表3 M2_72H vs C组差异表达LncRNA靶基因GO term分类

 *:P<0.05

表4 F4_72H vs C组差异表达LncRNA靶基因的GO term分类

表5 M2_72H vs C组Pathways富集数据表

样本编号:已注释到该条通路中,同时在表达水平上有统计学意义的基因总数;背景编号:该条通路中所有的基因数

Sample number: The number of comment the differentially expressed genes in this pathway;Background number: The number of all genes in this pathway

表6 M2_72H vs C组差异表达基因富集的绒毛生长相关信号通路

表7 FGF处理组,KEGG富集分析

表8 FGF处理组,Pathways显著性富集数据表

样本编号:已注释到该条通路中,同时在表达水平上有统计学意义的基因总数;背景编号:该条通路中所有的基因数

Sample number: The number of comment the differentially expressed genes in this pathway;Background number: The number of all genes in this pathway

表9 F4_72H vs C组差异表达基因富集的绒毛生长相关信号通路

3 讨论

本试验通过KEGG富集分析,共筛选出了3个与绒毛生长相关的信号通路,分别为TNF、NF-κB和Metabolic信号通路。

KLOEPPERT等研究发现,NF-κB在维持人类毛囊的生长期阶段具有功能重要性。人类毛发生长初期,头皮毛囊快速增殖的毛发基质上皮中,NF-κB活性非常显著,关键的毛发生长调节剂如TNFα和IL-1通过调控NF-κB信号通路从而影响绒毛生长[35]。核因子(NF)-κB途径参与毛囊的形态发生,Gilon M、Sher N、Cohen S和 Gat U通过瞬时转染技术分析了p65 / RelA(一种NF-kB效应子)对毛发角蛋白(HK)调节区的影响,结果表明p65能够诱导人和小鼠来源的几种酸性毛发角蛋白5(Ha5)的转录激活,p65与Ha5基因调节区域中的NF-κB/ RelA结合位点直接结合[36]。NF-κB/ Rel转录因子和IkappaB激酶(IKK)参与骨形态发生,皮肤增殖和分化等过程。另外,Schmidt-Ullrich等研究发现,抑制NF-κB的小鼠会出现毛囊缺陷[37]。皮肤干细胞可以再生表皮附属物。然而,由于受伤而损失的毛囊几乎没有再生。Wang等研究显示,伤口中的巨噬细胞激活毛囊干细胞,导致伤口周围的毛囊在休止期向生长期过渡,毛囊再生等过程,主要通过TNF信号传导调控[38]。LAURIKKALA等发现,外异蛋白(ED1)和外异蛋白A受体(EDAR)作为新的TNF配体-受体对的鉴定表明,TNF信号在胚胎形态发生中的作用,另外他们认为ED1/EDAR信号传导也调节毛囊的形态发生[39]。

蛋白质是生命活动的主要承担者,而氨基酸是构成蛋白质分子的基本单位。L-半胱氨酸目前被认为是条件必需的硫氨基酸,不仅是角蛋白的关键组分,还可以促进许多生物途径[40]。角蛋白相关蛋白8.1基因(KAP8.1)是一种负责羊绒的结构基因。KAP8.1蛋白含有高甘氨酸和酪氨酸,参与基质结构纤维的调节。ZHAO等认为KAP8.1基因的多态性可能与纤维直径有关[41]。TONG等发现,原代培养物中的角蛋白17(K17)无效时,皮肤角质形成细胞对TNFα选择性更敏感。K17与TNF受体1(TNFR1)相关的死亡域蛋白(TRADD)相互作用,这是一种必需的死亡适配体TNFR1依赖性信号传递,而且NF-κB(TNFα的下游靶标)的活性在K17无效皮肤中增加[42]。Wnt信号通路是毛囊发育中重要的途径之一,次级毛囊中成纤维细胞生长因子21和酪蛋白激酶是Wnt途径中β-连环蛋白的重要调节因子。天冬酰胺和丝氨酸可能在初级毛囊生长过程中具有重要作用[43]。由此可见,Metabolic、NF-kB 、TNF三个信号通路对绒毛生长发育有着十分重要的作用。

LncRNA是影响绒毛生长的重要因素之一。近几年,关于LncRNA影响绒毛生长的研究越来越多。BAIA等研究表明,LncRNA(LncRNA-599618、-599556、-599554、-599547、-599531和-599509)在毛发生长初期阶段的表达量显着高于毛发生长终期阶段[31]。CAI 等发现,LncRNA5322能够通过靶向毛囊干细胞中miR-21介导的PI3K-AKT信号传导途径来促进毛囊干细胞的增殖和分化[32]。ZHOU 等在山羊皮肤中鉴定了1 122种已知的和403种新的LncRNA,其中173种在毛发生长初期和退化期之间差异表达。另外他们发现,LncRNA和miRNA在毛囊生长转变中协同作用,并且退行期诱导因子(TGFβ1和BDNF)在miRNA-miRNA-mRNA网络中由miR-873和Lnc108635596调节[33]。Song等研究表明,LncRNA XLOC_539599,XLOC_556463,XLOC_015081,XLOC_1285606,XLOC_297809和XLOC_764219对原发性羊毛毛囊诱导具有潜在的重要性,且差异表达的LncRNA的潜在靶基因在NF-κB信号通路显著富集[34]。

本试验,利用高通量测序和Real-time PCR技术在Metabolic、NF-kB 、TNF 3个信号通路靶基因对应的LncRNA中共筛选出4个与辽宁绒山羊绒毛生长相关的LncRNA,分别为:LncRNA XLOC_ 011424、XLOC_011157、XLOC_005914、XLOC_ 018763。因此,可以认为MT和FGF5两种药物处理,可通过影响某些相关LncRNA的表达,进而影响绒毛生长。

4 结论

LncRNA XLOC_011424、XLOC_011157、XLOC_ 005914和XLOC_018763可能通过增加羊绒密度及长度,进而提高辽宁绒山羊羊绒产量及品质。其中,前两个LncRNA通过调节其上游或下游的靶基因,调节TNF或NF-kB信号通路,进而影响绒毛的生长。LncRNA XLOC_011424和XLOC_011157通过调节其与Metabolic pathway相关的靶基因从而影响绒毛生长。笔者所选择的两种药物中,MT更能引起某些与绒毛生长相关LncRNA的差异表达从而影响绒毛生长。但是这4种LncRNA具体的功能和作用机制尚不清楚,后续试验研究将集中探讨LncRNA促进绒毛纤维生长的作用机制。

[1] YANG M, SONG S, DONG K, CHEN X, LIU X, ROUZI M, ZHAO Q, HE X, PU Y, GUAN W, MA Y, JIANG L. Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions.2017, 7(1):135.

[2] JIN M, GUO C L, HU J H, GAO W B, WANG W. Correlation Analysis of Economic Traits in Liaoning New Breed of Cashmere Goats Using Microsatellite DNA Markers.2006, 33(3): 230- 235.

[3] ZHANG C Z, SUN H Z, LI S L, SANG D, ZHANG C H, JIN L, ANTONINI M, ZHAO C F. Effects of photoperiod on nutrient digestibility, hair follicle activity and cashmere quality in Inner Mongolia white cashmere goats., 2018, 27.

[4] ZHANG Q L, LI J P, CHEN Y, CHANG Q, LI Y M, YAO J Y, JIANG H Z, ZHAO Z H, GUO D. Growth and viability of Liaoning Cashmere goat hair follicles during the annual hair follicle cycle.2014 , 13(2): 4433-4443.

[5] YU F, LIU Z, JIAO S, ZHANG X, BAI C, ZHANG J, YAN S. A nonsense mutation in the FGF5 gene is associated with the long- haired phenotype in domestic guinea pigs ()., 2018 , 49(3): 269.

[6] 付绍印, 赵宏丽, 郑竹清, 李金泉, 张文广. 褪黑激素对绒山羊皮肤中毛囊周期相关miRNAs表达模式的影响. 遗传, 2014, 36(12): 1235-1242.

FU S Y, ZHAO H L, ZHENG Z Q, LI J Q, ZHANG W G. Melatonin regulating the expression of miRNAs involved in hair follicle cycle of cashmere goats skin., 2014, 36(12): 1235-1242. (in Chinese)

[7] YANG Q, DAI S, LUO X, ZHU J, LI F, LIU J, YAO G, SUN Y. Melatonin attenuates postovulatory oocyte dysfunction by regulating SIRT1 expression., 2018, 156(1): 81-92.

[8] FISCHER T W, SWEATMAN T W, SEMAK I, SAYRE R M, WORTSMAN J, SLOMINSKI A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems., 2006, 20(9): 1564-1566.

[9] IBRAHEEM M, GALBRAITH H, SCAIFE J, EWEN S. Growth of secondary hair follicles of the Cashmere goat in vitro and their response to prolactin and melatonin., 1994 , 185(1): 135-142.

[10] LOGAN A, WEATHERHEAD B. Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles., 1980, 74(1): 47-50.

[11] GE W, WANG S H, SUN B, ZHANG Y L, SHEN W, KHATIB H, WANG X. Melatonin promotes Cashmere goat () secondary hair follicle growth: a view from integrated analysis of long non-coding and coding RNAs., 2018, 17(10): 1255-1267.

[12] FISCHER T W. The influence of melatonin on hair physiology.t, 2009, 60(12): 962-972.

[13] KOBAYASHI H, KROMMINGA A, DUNLOP T W, TYCHSEN B, CONRAD F, SUZUKI N, MEMEZAWA A, BETTERMANN A, AIBA S, CARLBERG C, PAUS R. A role of melatonin in neuroectodermal-mesodermal interactions: the hairfollicle synthesizes melatonin and expresses functional receptors., 2005, 19(12): 1710-1712.

[14] FOLDES A, HOSKINSON R M, BAKER P, MCDONALD B J, MAXWELL C A, RESTALL B J. Effect of immunization against melatonin on seasonal fleece growth in feral goats., 1992, 13(2): 85-94.

[15] NIXON A J, CHOY V J, PARRY A L, PEARSON A J. Fiber growth initiation in hair follicles of goats treated with melatonin., 1993, 267(1): 47-56.

[16] FISCHER T W, SLOMINSKI A, TOBIN D J, PAUS R. Melatonin and the hair follicle., 2008, 44(1): 1-15.

[17] HÉBERT J M, ROSENQUIST T, GǑTZ J, MARTIN G R. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations., 1994, 78(6): 1017-1025.

[18] KEHLER J S, DAVID V A, SCHÄFFER A A, BAJEMA K, EIZIRIK E, RYUGO D K, HANNAH S S, O'BRIEN S J, MENOTTI- RAYMOND M .L. Four independent mutations in the feline fibroblast growth factor 5 gene determine the long-haired phenotype in domestic cats.2007, 98(6): 555-566.

[19] SUZUKI S, OTA Y, OZAWA K, IMAMURA T. Dual-mode regulation of hair growth cycle by two FGF5 gene products., 2000, 114(3): 456-463.

[20] KONYUKHOV B V, MARTYNOVA M Y, NESTEROVA A P. Gene angora as a modifier of the mouse hairless gene.2007, 43(2): 254-260.

[21] JOHNSTON A P, NASKA S, JONES K, JINNO H, KAPLAN D R, MILLER F D. Sox2-Mediated Regulation of Adult Neural Crest Precursors and Skin Repair., 2013, 1(1): 38-45.

[22] ULITSKY I, BARTEL D P. lincRNAs: genomics, evolution and mechanisms., 2013, 154(1): 26-46.

[23] KAPRANOV P, CHENG J, DIKE S, NIX D A, DUTTAGUPTA R, WILLINGHAM A T, STADLER P F, HERTEL J, HACKERMÜLLER J, HOFACKER I L, BELL I, CHEUNG E, DRENKOW J, DUMAIS E, PATEL S, HELT G, GANESH M, GHOSH S, PICCOLBONI A, SEMENTCHENKO V, TAMMANA H, GINGERAS T R. RNA maps reveal new RNA classes and a possible function for pervasive transcription., 2007, 316(5830): 1484-1488.

[24] FEJES-TOTH K, SOTIROVA V, SACHIDANANDAM R, ASSAF G, HANNON GJ, KAPRANOV P, FOISSAC S, WILLINGHAM A T, DUTTAGUPTA R, DUMAIS E, GINGERAS T R. Post- transcriptional processing generates a diversity of 59-modified long and short RNAs., 2009, 457(7232): 1028-1032.

[25] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA., 2011, 147(2): 358-369.

[26] KLATTENHOFF C A, SCHEUERMANN J C, SURFACE L E, BRADLEY R K, FIELDS P A, STEINHAUSER M L, DING H, BUTTY V L, TORREY L, HAAS S, ABO R, TABEBORDBAR M, LEE R T, BURGE CB, BOYER LA. Braveheart, A long noncoding RNA required for cardiovascular lineage commitment., 2013, 152(3): 570-583.

[27] REN H, WANG G, CHEN L, JIANG J, LIU L, LI N, ZHAO J, SUN X, ZHOU P. Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus)., 2016, 17: 67.

[28] ZHU Y B, WANG Z Y, YIN R H, JIAO Q, ZHAO S J, CONG Y Y, XUE H L, GUO D, WANG S Q, ZHU Y X, BAI W L. A LncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: Identification, regulatory network and expression regulated potentially by its promoter methylation., 2018, 30, 641:78-85.

[29] LIN C M, LIU Y, HUANG K, CHEN X C, CAI B Z, LI H H, YUAN Y P, ZHANG H, LI Y. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation., 2014, 453(3): 508-514.

[30] BAKHTIARIZADEH M R, HOSSEINPOUR B, AREFNEZHAD B, SHAMABADI N, SALAMI S A. In silico prediction of long intergenic non-coding RNAs in sheep., 2016, 59(4): 263-275.

[31] BAI W L, ZHAO S J, WANG Z Y, ZHU Y B, DANG Y L, CONG Y Y, XUE H L, WANG W, DENG L, GUO D, WANG S Q, ZHU Y X, YIN R H. LncRNAs in Secondary Hair Follicle of Cashmere Goat: Identification, Expression, and Their Regulatory Network in Wnt Signaling Pathway., 2018, 29(3): 199-211.

[32] CAI B, ZHENG Y, MA S, XING Q, WANG X, YANG B, YIN G, GUAN F. Long non‑coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway., 2018, 17(4): 5477-5483.

[33] ZHOU G, KANG D, MA S, WANG X, GAO Y, YANG Y, WANG X, CHEN Y. Integrative analysis reveals LncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goat. 2018, 19(1):222.

[34] NIE Y, LI S, ZHENG X, CHEN W, LI X, LIU Z, HU Y, QIAO H, QI Q, PEI Q, CAI D, YU M, MOU C. Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in carpet sheep fetal skin., 2018, 9: 446.

[35] KLOEPPER J E, ERNST N, KRIEGER K, BODÓ E, BÍRÓ T, HASLAM I S, SCHMIDT-ULLRICH R, PAUS R. NF-κB activity is required for anagen maintenance in human hair follicles in vitro., 134(7): 2036-2038.

[36] GILON M, SHER N, COHEN S, GAT U. Transcriptional activation of a subset of hair keratin genes by the NF-κB effector p65/RelA., 2008, 76(5): 518-530.

[37] SCHMIDT-ULLRICH R, AEBISCHER T, HÜLSKEN J, BIRCHMEIER W, KLEMM U, SCHEIDEREIT C. Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices., 2001, 128(19):3843-3853.

[38] WANG X, CHEN H, TIAN R, ZHANG Y, DRUTSKAYA MS, WANG C, GE J, FAN Z, KONG D, WANG X, CAI T, ZHOU Y, WANG J, WANG J, WANG S, QIN Z, JIA H, WU Y, LIU J, NEDOSPASOV SA, TREDGET EE, LIN M, LIU J, JIANG Y, WU Y. Macrophages induce AKT/-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF., 2017, 8:14091.

[39] LAURIKKALA J, PISPA J, JUNG HS, NIEMINEN P, MIKKOLA M, WANG X, SAARIALHO-KERE U, GALCERAN J, GROSSCHEDL R, THESLEFF I. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar., 2002, 129(10): 2541-2553.

[40] MINIACI M C, IRACE C, CAPUOZZO A, PICCOLO M, DI PASCALE A, RUSSO A, LIPPIELLO P, LEPRE F, RUSSO G, SANTAMARIA R. Cysteine prevents the reduction in keratin synthesis induced by iron deficiency in human keratinocytes., 2016, 117(2): 402-412.

[41] ZHAO M, CHEN H, WANG X, YU H, WANG M, WANG J, LAN X Y, ZHANG C F, ZHANG L Z, GUO Y K, ZHANG B, HU S R. aPCR-SSCP and DNA sequencing detecting two silent SNPs at KAP8.1 gene in the cashmere goat., 2009, 36(6): 1387-1391.

[42] TONG X, COULOMBE P A. Keratin 17 modulates hair follicle cycling in a TNF alphadependent fashion., 2006, 20(10): 1353-1364.

[43] DONG Y, XIE M, JIANG Y, XIAO N, DU X, ZHANG W, TOSSER-KLOPP G, WANG J, YANG S, LIANG J, CHEN W, CHEN J, ZENG P, HOU Y, BIAN C, PAN S, LI Y, LIU X, WANG W, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W, SHEN Y, ZHAO R, ZHANG G, LI J, FARAUT T, WOMACK J, ZHANG Y, KIJAS J, COCKETT N, XU X, ZHAO S, WANG J, WANG W. Sequencing and automated whole-genome optical mapping of the genome of adomestic goat ()., 2013, 31(2): 135-141.

(责任编辑 林鉴非)

The Screening and Identification of Lncrna Related to Villus Growth in Liaoning Cashmere Goats by MT and FGF5

Jin Mei, Zhang LiJuan, Cao Qian, Guo XinYing

(Liaoning Normal University School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Molecular Drug Development, Dalian 116029, Liaoning)

【Objective】 The aim of this study was to screen out the LncRNA associated with villus growth in Liaoning cashmere goat skin fibroblasts, and provide basic data for the study of the function and mechanism of LncRNA related to villus growth. 【Method】The total RNA of MT and FGF5 treated Liaoning cashmere goat skin fibroblasts was extracted, and the total RNA extracted was detected by total RNA electrophoresis detection, sequencing data quality evaluation, mapping comparison and inter-sample correlation test. The differentially expressed LncRNA was screened and its target gene was predicted. The LncRNA related to villus growth was screened by GO and KEGG enrichment analysis, and the target LncRNA was verified by Real-time PCR. 【Result】(1) The total RNA quality of the sample showed that the RNA was in good integrity, the GC content was relatively high, the sequence was stable, and the expression level between samples was high, which met the sequencing requirements.(2) Screening of differentially expressed LncRNA showed that there were 32 differentially expressed LncRNA in 1.0g∙L-124h group, 4 of which were up-regulated and 28 of which were down-regulated. There were 10 differentially expressed LncRNA in 0.2g∙L-124h group, 4 of which were up-regulated and 6 were down-regulated. There were 113 differentially expressed LncRNA in the 0.2g∙L-172h group, of which 5 were up-regulated and 108 were down-regulated. There were 164 differentially expressed LncRNA in the 10-4g∙L-124 h group, of which 70 were up-regulated and 94 were down-regulated. There were 189 differentially expressed LncRNA in the10-4g∙L-172 h group, of which 78 were up-regulated and 111 were down-regulated. There were 123 LncRNA differentially expressed in the 10-6g∙L-124 h group, among which 27 up and 96 down.(3) Target gene GO enrichment analysis showed that the 1.0g∙L-124h group differentially expressed LncRNA target gene enrichment in GO's negative regulation of transcription from RNA polymerase II promoter; 0.2g∙L-124h group did not differentially express LncRNA target gene enriched GO term;0.2g∙L-172h group Differentially expressed LncRNA target gene enrichment in GO's cellular metabolic process biological_process, binding molecular_function, FGF5 treatment group only10-4g∙L-172 h group differentially expressed LncRNA target gene enriched in cell cellular_component, cell part cellular_component, intracellular cellular_component, binding molecular_function and other six items. (4) Target gene KEGG enrichment analysis showed that the differential expression of LncRNA target gene in 1.0g∙L-124h group was enriched in Steroid biosynthesis pathway; in 0.2g∙L-124h group, there was no differential expression of LncRNA target gene enrichment Pathway term; 0.2g∙L-172h group differentially expressed LncRNA target gene enrichment in Cell cycle, DNA replication, Steroid biosynthesis, TNF, Nod-like receptor, NF-kappa B and other signaling pathways, in which TNF and NF-kappa B signaling pathways are involved in villus growth. In FGF5-treated group, differentially expressed LncRNA targets in 10-4g∙L-172 h group The gene was significantly enriched into nine path termes such as Fanconi anemia pathway, Huntington's disease, Metabolic pathway, Aminoacyl-tRNA biosynthesis, among which Metabolic pathway was associated with villus growth; the differentially expressed LncRNA target gene in 10-4g∙L-124 h group had no significant enriched pathway term;10-6g∙L-124 h The differentially expressed LncRNA target genes were only enriched in the Taste transduction pathway. (5) There are two LncRNA corresponding to the target genes TNFα, TNFAIP3 (A20), NFKBIA (IkBα), NFKB2 and IL8 enriched in NF-κB and TNF signaling pathways, respectively (Gene ID): XLOC_005914; XLOC_018763; There are four LncRNA corresponding to the target genes in the Metabolic pathway, namely (Gene ID): XLOC_011424, XLOC_009522, XLOC_009063, XLOC_01115. Real-time PCR results showed that LncRNA XLOC_011424, XLOC_011157, LncRNA XLOC_005914 and XLOC_018763 were consistent with high-throughput sequencing results. 【Conclusion】 LncRNA XLOC_011424, XLOC_011157, LncRNA XLOC_005914 and XLOC_018763 may increase the density and length of cashmere by regulating NF-κB, TNF or Metabolic signaling pathways related to villus growth, and thus improve the yield and quality of cashmere in Liaoning cashmere goat.

Liaoning cashmere goat; melatonin; FGF5; LncRNA; RNA-seq; signaling pathway

10.3864/j.issn.0578-1752.2019.04.014

2018-09-03;

2018-12-03

国家自然科学基金(31772557)、辽宁省自然科学基金(20170540577)

金梅,E-mail:jm6688210@163.com

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!