当前位置:首页 期刊杂志

施肥方法对小麦专用控释氮肥肥效的影响

时间:2024-05-23

刘苹,谭德水,徐钰,林海涛,李彦,宋效宗,沈玉文,刘兆辉



施肥方法对小麦专用控释氮肥肥效的影响

刘苹1,谭德水1,徐钰1,林海涛1,李彦1,宋效宗1,沈玉文1,刘兆辉2

(1山东省农业科学院农业资源与环境研究所/农业部黄淮海平原农业环境重点实验室/山东省环保肥料工程技术研究中心,济南 250100;2山东省农业科学院,济南 250100)

【目的】探索小麦生产过程中适宜的控释氮肥品种及其施用方法,为小麦控释肥的一次性机械化施用技术的推广应用提供理论依据。【方法】选取山东省土壤类型、肥力水平、气候条件均不同的3个小麦优势产区,采用田间小区试验的方法,研究了同等优化施肥情况下,自制小麦专用控释氮肥的不同施用方法(撒施旋耕CRF1、种子正下条施CRF2、种子侧下条施CRF3)对小麦产量、养分吸收、土壤硝态氮含量及氮肥利用率等的影响,同时与常规尿素施肥(尿素一半基施一半返青拔节期追施CK1、尿素全部作为基肥撒施旋耕CK2)和不施氮肥(CK0)肥效进行对比。【结果】泰安棕壤小麦产量介于7 021-7 683 kg·hm-2,CRF1与CRF2分别比CK1增产6.1%和3.5%,但差异不显著,CRF3与CK1产量差异不显著,CRF1、CRF2小麦产量显著高于CK2,分别增产9.4%和6.7%。茌平潮土小麦产量介于4 576-5 193 kg·hm-2,CRF1与CK1小麦产量差异不显著,显著高于CK2,增产11.3%。桓台褐土各施氮肥处理的小麦产量介于5 222-5 830 kg·hm-2,CRF1、CRF2、CRF3均与CK1产量无显著差异,CRF1产量显著高于CK2,增产10.8%。三地均以CRF1的小麦产量与氮肥偏生产力较高,CRF2 与CRF3无显著差异。在泰安棕壤,CRF1与CRF3的籽粒氮素分配率显著高于CK1与CK2。桓台褐土CRF1、CRF2和CRF3的氮肥利用率分别为46.7%、49.5%和50.2%,3个处理之间没有显著差异,与CK1和CK2差异不显著。控释氮肥的3种施肥方法对干物质在小麦籽粒与秸秆的分配、籽粒氮含量与积累量以及氮素的盈余量均没有显著的影响。茌平和桓台0-90 cm土层以CRF2和CRF3的硝态氮含量较高,泰安以CK1与CK2的硝态氮含量较高,CRF1相对最低。【结论】自制小麦专用控释氮肥在减量优化施肥的情况下,采用撒施旋耕的施肥方法有利于小麦的稳产或增产以及生产成本的节省。

控释肥;施肥方法;小麦;产量;氮肥利用率;施肥位置

0 引言

【研究意义】控释肥在夏玉米和水稻等粮食作物上的研究与应用技术已日趋成熟[1-5],而冬小麦生育期长,是水稻和玉米的2倍以上,对控释肥的养分释放性能要求更高。因此,研究适宜小麦生产的专用控释氮肥及其最佳施用方法对于小麦生产中一次性施肥技术的应用和推广具有重要的意义。【前人研究进展】化肥施用是促进作物增产和保障我国粮食生产安全的重要措施。施肥量过大、肥料利用率低是我国农业生产中一直普遍存在的问题[6]。过量施肥不仅容易造成经济损失,而且对生态系统和公众健康均有不利的负面影响,尤其是氮素,容易在土壤中发生挥发、淋溶,导致地表水体富营养化、地下水和蔬菜中硝态氮含量超标、氧化亚氮气体排放量增加等环境问题[7-10]。提高肥料利用率与肥料的施用方法(肥料的正确施用)密切相关。肥料的正确施用就是选择正确的肥料产品,根据正确的施用量、在正确的时间,施用在正确的位置上。我国肥料施用方法不合理,用量过大、肥料浅施、表施现象非常普遍,致使肥料易挥发、流失或难以到达作物根部,不利于作物吸收,造成肥料利用率低[6]。有资料表明,在肥料的损失中,约有60%源于不正确的施肥方法,所以确定合理的施肥方法,在提高肥料利用率的措施中占有关键地位[11]。控释肥作为一种新型肥料,不仅能够调节土壤-植物系统中养分的有效性,而且能够提供与作物营养需求相吻合的养分[12-14]。控释肥与普通肥料相比,具有养分损失少,在用量大幅减少的情况下,还能促进作物增产,提高肥料利用率的优势,逐渐成为目前国内外新型肥料领域的研究热点和我国“2020年化肥零增长行动计划”替代肥料的主体之一[15-17]。目前,国内外关于常规肥料施用方法的研究相对较多[18-21]。而随着缓控释肥料的快速发展,其养分释放特征与常规肥料有明显区别,传统的施肥方法可能不适合控释肥料的实际应用。因此,对于控释肥料施用方法的研究需求也更加迫切。【本研究切入点】水性树脂包膜缓/控释肥成膜过程中以水作为溶剂或分散剂,无需回收溶剂,具有安全、环保、吸水保水的特点,近年来逐渐成为缓/控释肥研究的新热点[17]。目前,关于适用于冬小麦生产的水性树脂包膜尿素产品的研发及其适宜施肥方法的研究较少。为此,本研究选取山东省土壤类型、肥力水平、气候条件均不同的3个小麦优势产区,采用田间小区试验的方法,研究了同等优化施肥情况下,自制小麦专用控释氮肥——水性树脂包膜尿素的不同施用方法(撒施旋耕、种子正下条施、种子侧下条施)对小麦产量、养分吸收、土壤硝态氮含量及氮肥利用率等的影响,同时与常规尿素施肥和不施氮肥肥效进行对比。【拟解决的关键问题】本研究旨在探索小麦生产过程中适宜的控释氮肥品种及其最佳施用方法,以期为小麦控释肥的一次性机械化施用技术的推广应用提供理论依据。

1 材料与方法

1.1 试验地概况及试验材料

2012-2013年,分别在山东省茌平县大崔村、泰安市农业科学院邱家店科研基地、桓台县生态与可持续发展实验站开展试验。3地试验区土壤的基本情况和耕前养分含量见表1,前茬作物均为夏玉米,供试小麦品种均为济麦22。

1.2 试验设计

主要设5个处理,处理1(CK1):1/2尿素播前撒施,10-15 cm旋耕后播种,1/2尿素返青拔节期追施;处理2(CK2):全部尿素播前撒施,10-15 cm旋耕后播种;处理3(CRF1):全部控释氮肥播前撒施,10-15 cm旋耕后播种;处理4(CRF2):全部控释氮肥条施在种子正下方6-8 cm处,然后播种;处理5(CRF3):全部控释氮肥氮条施在种子侧下方,即垂直距离6-8 cm,横向距离为5-6 cm处,然后播种。每个处理3次重复,小区面积为20 m2,随机区组排列,小区之间筑畦,留有0.5 m隔离,小麦行间距为20 cm。另外,桓台试验点增设了1个空白处理,不施氮肥,只施磷钾肥,记为CK0。

控释氮肥为山东省农业科学院农业资源与环境研究所自行研制的小麦专用水性树脂包膜尿素,含N 44%,不含其他养分,控释期约为180 d。所有处理氮磷钾养分投入量相同,磷肥用重过磷酸钙,钾肥用颗粒状硫酸钾,磷钾肥全部作为底肥基施。3个试验地点的养分投入量根据当地生产情况决定,氮肥投入量相对当地农民习惯施肥量均进行了优化减量,具体试验情况见表2。泰安试验点的土壤肥力相对最高,小麦目标产量在7 500 kg·hm-2以上,因此其施肥量最高。由于茌平试验点的播种时间较晚,为了保证小麦产量,所以加大了播种量。

试验期间采取的其他田间管理措施,诸如浇水、划锄、防病、除草等各试验小区实施水平严格一致。

表1 试验地0-30 cm耕层土壤基本情况和耕前养分含量

表2 试验地养分投入及种植情况

1.3 测定项目及方法

小麦成熟时,各小区(重复)取均匀地段收获长1 m双行样段,齐地平面人工镰刀收割装入网袋,完全风干,脱粒,分别测定该2 m样段的籽粒风干重和秸秆风干重,用于计算籽粒和秸秆的干物质分配率,并保存籽粒和秸秆样品,粉碎后测定籽粒和秸秆全氮含量,全氮含量的测定采用凯氏定氮法[22]。各处理小区选择长势均匀地段,收取5.0 m2的样方麦穗,装入网袋,脱粒、晒干、去杂、称重,计算小麦产量。根据测得的小麦产量、籽粒与秸秆的干物质分配率,推算秸秆生物量。

小麦收获后,在小麦种植行中间分0-30 cm、30-60 cm、60-90 cm不同土层采集土样,分析各处理土壤硝态氮含量,硝态氮含量的测定采用紫外分光光度计法[23]。

1.4 数据处理与统计分析

相关指标的计算分析方法[1-2]:

氮素积累量(nitrogen accumulation)(kg·hm-2)= 籽粒或秸秆生物量×含氮量;

土壤氮素表观平衡(soil apparent N balance)(kg·hm-2)= 氮素投入量-作物收获带走氮量;

氮肥利用率(nitrogen use efficiency)(%)=[施氮区地上部分吸氮量-不施氮区地上部分吸氮量]/施氮量×100;

氮肥偏生产力(nitrogenpartial factor productivity)(kg·kg-1)= 施氮区产量/施氮量。

采用Excel处理试验数据,SPSS16.0进行处理间各指标的差异显著性检验,显著性水平设为α= 0.05, 采用LSD法进行多重比较。

2 结果

2.1 施肥方法对小麦产量与干物质分配的影响

3个试验地点小麦产量与干物质分配的情况见表3。关于控释肥处理,3地控释肥条施于小麦种子正下方的施肥方法(CRF2处理)与条施于侧下方的施肥方法(CRF3处理)相比,对小麦的产量均无显著的影响。在茌平和泰安两地,以控释肥撒施旋耕的方法(CRF1处理)小麦产量最高,在茌平,CRF1处理的产量显著高于CRF2处理,增产9.6%。在泰安,CRF1处理的产量显著高于CRF3处理,增产7.0%;在桓台试验点,CRF1处理的产量相对最高,但与其他2个处理产量没有显著的差别。综合3地结果,以控释肥撒施旋耕的施肥方法(CRF1处理)小麦产量较高,控释肥条施于小麦种子正下方(CRF2处理)和侧下方(CRF3处理)的施肥方法产量无显著差异。

尿素的2种施肥方法相比,在茌平和桓台两地,尿素一半基施一半追施的方法(CK1处理)小麦产量显著高于全部作为基肥撒施旋耕的方法(CK2处理),在泰安试验点,两者无显著差别。控释肥处理与尿素CK1处理相比,在茌平,CRF1处理与CK1处理小麦产量差异不显著,CRF2、CRF3处理小麦产量显著低于CK1处理;在泰安,CRF1与CRF2处理分别比CK1处理增产6.1%和3.5%,但差异没有达到显著水平,CRF3处理与CK1处理产量差异不显著;在桓台,CRF1、CRF2、CRF3处理均与CK1处理小麦产量无显著差异。控释肥处理与尿素CK2处理相比,3地控释肥的3种施肥方法产量均高于CK2处理,其中,在茌平和桓台,CRF1处理小麦产量显著高于CK2处理,分别增产11.3%和10.8%,在泰安,CRF1、CRF2处理小麦产量显著高于CK2处理,分别增产9.4%和6.7%。在桓台,施尿素和控释氮肥的处理小麦产量均显著高于不施氮肥的空白CK0处理。

表3 施肥方法对小麦产量与干物质分配率的影响

同一试验点不同处理比较,不同字母表示差异达到0.05显著水平。下同

In comparison between different treatments of the same test point, different letters mean significant differences at 0.05 level. The same as below

关于干物质在小麦籽粒和秸秆的分配,在茌平和桓台两地,施肥处理对干物质的分配率没有显著的影响。在泰安,CRF3和CK1处理的籽粒分配率显著高于CK2处理,其秸秆分配率显著低于CK2处理,其他处理之间干物质的分配率没有显著差别。

2.2 施肥方法对小麦籽粒与秸秆氮含量的影响

3个试验点小麦籽粒与秸秆氮含量见图1。控释氮肥和尿素的不同施肥方法对3地小麦籽粒氮的含量均没有显著的影响。在茌平,各施肥处理之间秸秆氮含量没有显著差别,在泰安和桓台试验点小麦秸秆氮含量差异较大。在泰安,以CRF2处理的秸秆氮含量最高,显著高于其他处理,而CRF1和CRF3处理的秸秆氮含量相对最低,均显著低于CK1处理。在桓台,以CRF3处理的秸秆氮含量最高,显著高于CRF1处理,其他施氮肥处理之间无显著差异;与不施氮的CK0处理相比较,所有施氮肥处理均显著提高了小麦籽粒的氮含量,秸秆氮含量除CRF1处理外,其他处理均显著高于CK0处理。

同一试验点籽粒与秸秆的氮含量分别比较,柱上不同字母代表不同处理间差异达到0.05显著水平

The nitrogen content of grain and straw at the same test point was compared respectively, and different letters above the column represented significant differences between different treatments at 0.05 level

图1 施肥方法对小麦籽粒秸秆氮含量的影响

Fig. 1 Effect of fertilization methods on N content in wheat grain and straw

2.3 施肥方法对氮素积累与分配的影响

3个试验地点小麦籽粒和秸秆氮素积累与分配的情况见表4。控释肥3种施肥方法与尿素2种施肥方法相比较,在茌平和桓台,对小麦籽粒和秸秆的氮素积累均没有显著的影响;在泰安,对籽粒氮素的积累没有显著的影响,对秸秆的氮素积累存在一定的影响,CRF2处理显著高于CK1与CK2处理,CRF1处理显著低于CK1与CK2处理,CRF3处理显著低于CK1处理。控释肥3种施肥方法相比较,在3地对小麦籽粒的氮素积累均没有显著的影响;在茌平,对小麦秸秆的氮素积累亦没有显著影响,在泰安,CRF2处理的秸秆氮素积累量显著高于CFR1和CRF2处理,在桓台,CRF3处理的秸秆氮素积累量显著高于CRF1处理。

表4 施肥方法对小麦氮素积累量与分配的影响

关于氮素在籽粒和秸秆之间的分配,控释肥3种施肥方法与尿素2种施肥方法相比较,在茌平和桓台,对籽粒和秸秆的氮素分配率均没有显著的影响。在泰安,CRF1与CRF3处理的籽粒氮素分配率显著高于CK1与CK2处理,CRF2处理的籽粒氮素分配率显著低于CK1与CK2处理,秸秆氮素分配率规律正好相反。控释肥3种施肥方法相比较,在茌平和桓台,对籽粒和秸秆的氮素分配率均没有显著的影响。在泰安,CRF1与CRF3处理的籽粒氮素分配率显著高于CRF2处理,相应的,CRF1与CRF3处理的秸秆氮素分配率显著低于CRF2处理,CRF1与CRF3处理之间籽粒和秸秆的氮素分配率没有显著差别。单从数值来看,在3地均以控释肥撒施旋耕施肥方法(CRF1处理)的籽粒氮素分配率较高。在桓台,施氮肥处理与不施氮肥(CK0处理)相比较,显著增加了小麦籽粒和秸秆的氮素积累量,但是对分配率没有明显的影响(CFR3处理除外)。

2.4 施肥方法对氮肥偏生产力和氮肥利用率的影响

3个试验地点氮肥的偏生产力见图2,泰安和桓台 的氮肥偏生产力介于29-34 kg·kg-1,茌平介于21-25 kg·kg-1。在桓台,各处理的氮肥偏生产力没有显著差异,在茌平和泰安,氮肥的偏生产力变化规律与小麦籽粒产量一致,其中在泰安,CRF1和CRF2处理的氮肥偏生产力略高于CK1处理。单从数值来看,3地控释肥的3种施肥方法的氮肥偏生产力均高于尿素全部作为基肥撒施旋耕的施肥方法(CK2处理),其中以控释肥撒施旋耕的方法(CRF1处理)氮肥偏生产力较高。

同一试验点不同处理比较,柱上不同字母代表差异达到0.05显著水平

桓台试验点的氮肥利用率见图3。由图3可知,控释肥3种施肥方法CRF1、CRF2和CRF3处理的氮肥利用率分别为46.7%、49.5%和50.2%,3个处理之间没有显著差异,与尿素的2种施肥方法相比较,氮肥利用率亦不存在显著差异。尿素一半基施一半追施方法(CK1处理)的氮肥利用率显著高于全部作为基肥撒施旋耕方法(CK2处理)。

柱上不同字母代表不同处理间差异达到0.05显著水平

2.5 施肥方法对土壤氮素表观平衡的影响

3个试验地点氮素表观平衡见表5。总体来看,茌平和桓台各施氮肥处理表现为氮盈余,氮盈余量介于34.0-68.6 kg·hm-2,泰安各施肥处理表现为氮亏缺,氮亏缺量介于22.4-84.7 kg·hm-2。在茌平和桓台,控释肥3种施肥方法CRF1、CRF2和CRF3处理的氮盈余量差异不显著,与尿素的2种施肥方法相比较,氮盈余量亦不存在显著差异,其中在桓台,CK1处理的氮盈余量显著低于CK2处理。在泰安,以CRF3处理的氮亏缺量最低,显著低于CK1和CRF2处理,其他施肥处理间的氮亏缺量没有显著差异。

2.6 施肥方法对土壤硝态氮含量的影响

小麦收获后3个试验点0-90 cm土层土壤硝态氮含量的情况见表6。总体来看,随着土层深度的增加,硝态氮含量有降低的趋势。在茌平和桓台,各土层均以CRF2和CRF3处理的硝态氮含量较高,茌平的0-30 cm土层,CRF3处理硝态氮含量显著高于CK1与CK2处理,CRF2处理硝态氮含量显著高于CK1处理,60-90 cm土层CRF2处理硝态氮含量显著高于CK1与CRF1处理,CRF3处理显著高于CK1处理;桓台的0-30 cm土层,CRF3处理硝态氮含量显著高于CK0、CK2、CRF1与CRF2处理,30-60 cm土层,CRF3处理硝态氮含量显著高于CK0、CK2与CRF1处理,CRF2处理显著高于CK0与CRF1处理。

表5 施肥方法对土壤氮素表观平衡的影响

表6 施肥方法对小麦收获后土壤硝态氮含量的影响

在泰安试验点,各土层以尿素处理CK1与CK2处理的硝态氮含量较高,CRF1处理的硝态氮含量相对最低。在0-30 cm土层,CK1处理的硝态氮含量显著高于CRF1与CRF3处理,在30-60和60-90 cm土层,CK1与CK2处理的硝态氮含量均显著高于CRF1处理。

3 讨论

肥料施用的位置效应是指肥料按不同的施肥位置施入土壤后取得的植物生长效应、肥料利用效应、土壤转化效应及环境承受效应等综合效应。施肥的具体位置效应与作物的种类、土壤特性、肥料形态及地理位置等因素有关,施肥位置的不同直接关系到肥效的发挥、作物产量的高低[24-25]。土壤是衔接肥料养分供应和作物养分吸收过程的中介和枢纽,施肥位置效应受到土壤类型、土壤含水量、土壤肥力、质地、盐分等多方面的影响[26-28]。本研究发现,在减量优化施肥的情况下,自制控释氮肥撒施旋耕的施肥方法与尿素一半基施一半返青拔节期追施的施肥方法相比较,在泰安地区土壤肥力水平和生产水平较高的棕壤上,对小麦的产量、氮素在籽粒的分配率有一定的促进作用,而在茌平和桓台地区土壤肥力水平和生产水平较低的潮土和褐土上,对小麦的产量和氮素的分配没有明显的影响,这可能与3地土壤类型、土壤肥力水平、土壤质地、施肥量不同等因素有关。

目前,关于常规肥料施肥位置的研究较多,NKEBIWE等[29]总结了1982—2015年发表的全球各地40个田间试验的1 022套数据资料,发现总体上肥料定位施肥(点状施肥、表层带状施肥、深层施肥等)比撒施能够增产3.7%,作物地上部养分浓度与含量能够分别提高3.7%和11.9%。关于小麦生产过程中控释氮肥施肥方法的研究较少。刘永哲等[30]在江苏砂壤土的研究表明,控释期为60 d的包膜尿素在小麦播种行侧方3 cm深度5 cm处一次基施处理的增产效果最好,比当地习惯施肥增产6.5%,氮肥利用率较习惯施肥提高17.3%,侧施处理优于种下深施。张务帅[31]的研究表明,控释氮肥5 cm、15 cm、25 cm3种施用深度中,施用深度5 cm、15 cm较普通复合肥撒施翻耕15 cm处理,显著提高了0-20 cm土层土壤全氮、速效氮、有效磷和速效钾的含量,施用深度15 cm比普通肥撒施翻耕增产15%左右;施用深度25 cm处理在小麦生长前期养分供应不足,不利于小麦分蘖和生长,在小麦生产中建议控释肥施用深度为15 cm。郭新送等[32]研究认为,小麦控释肥深施(土表下20 cm)可作为宅基复垦地上小麦氮肥施用的推广利用模式。

在本研究中,除了设置控释肥正下和侧下条施处理外,还设置了撒施旋耕处理的施肥方法,并且发现在减量优化施肥的情况下,自制控释氮肥撒施旋耕的施肥方法小麦产量较高,分析其原因,可能与以下两个因素有关。首先,与本研究中采用的自制控释氮肥的养分释放特征密切相关。我们近几年在桓台潮褐土上的田间试验表明(待发表),自制控释氮肥的氮素释放峰有2个,分别在苗期和拔节期,占全年氮素释放量的30.8%和23.5%,而小麦植株的吸氮量高峰在返青期与孕穗期,各滞后于氮素释放高峰一个生育期,在苗期的吸氮量排第3位。由于小麦根系发育最旺盛的时期是在返青到孕穗期[33],苗期根系不发达,因此,控释肥撒施旋耕的施肥方法相对于种子正下和侧下条施来说,小麦植株在苗期能够吸收到更多的氮素,利于促进基本苗和冬前分蘖的发生。如果采用的控释肥的氮素释放与小麦需氮量完全同步的话,控释氮肥种子正下或侧下条施方法在返青期后给小麦生长带来的优势估计会抵消甚至超过撒施旋耕在苗期产生的优势,这有待于开展进一步的研究来进行验证。其次,在本研究中的3个试验点均实现了秸秆周年全量还田,自制控释氮肥在苗期的氮素释放量又最高,因此,控释肥撒施旋耕的方法相比较种子正下或侧下条施,能够为耕层微生物的活动提供更多的氮素,从而缓解秸秆腐解与小麦生长争氮的矛盾[34],这亦有助于促进冬小麦在苗期的生长。

土壤养分表观平衡是衡量施肥方法是否合理的指标之一[35]。本研究发现,在茌平和桓台试验点,虽然相比当地农民习惯施肥氮肥投入量降低,各施氮肥处理在小麦收获后氮素仍表现为盈余,盈余量占氮素总投入量的19%-33%,因此,在今后的小麦生产中可以再适当降低氮肥的施用量。而在泰安试验点,各施氮肥处理在小麦收获后氮素表现为亏缺,亏缺量占氮素总投入量的10%-38%,若长期保持这样的施氮量,很可能会逐渐耗竭土壤中的氮素,不利于小麦生产,因此建议适当提高氮肥的施用量。在氮素亏缺的情况下,自制控释氮肥播前撒施旋耕的施肥方法对泰安棕壤的小麦产量仍有一定的促进作用,加大施用量后的肥效有待于进一步的研究。

前人研究发现,施用控释肥在作物增产的效果不仅明显,而且还能够减少氮素淋溶,提高耕层土壤的速效氮含量,减少对地下水污染[36-38]。由于受降水和灌溉的影响,施入土壤中的氮素会在土壤水分的作用下扩散迁移,因此,本研究中采用收获后在小麦种植行中间取样的方法能基本反映出不同施肥方法对土壤硝态氮残留的影响情况。本研究的结果表明,在茌平和桓台试验点氮素盈余的情况下,自制控释氮肥与等量尿素比较,虽然对小麦没有明显的增产效果,但是条施于种子正下方和侧下方的施肥方法,0-90 cm土层土壤硝态氮含量较高,从而减轻了硝态氮向深层地下水淋溶损失的风险,而且有助于下一季作物的养分吸收。在泰安试验点氮素亏缺的情况下,自制控释氮肥处理的土壤硝态氮含量较低,尤其是撒施旋耕的处理最低,可能是由于该施肥方法小麦产量最高,从而消耗了土壤中更多的氮素。

综合来看,关于冬小麦控释肥适宜的施肥方法,单就本研究中采用的这种控释氮肥产品而言,在减量优化施肥的情况下,小型农户或不具备种肥同播机械化生产条件的地区,可以采用与磷钾肥一同撒施再旋耕的一次性施肥方法;对于大型农场或合作社,建议采用种子侧下条施的机械化一次性施肥技术,最好适当减少小麦种子与肥料的垂直距离,比如由6-8 cm调整到4-6 cm,这样有助于苗期冬小麦对氮素的吸收和劳动力投入成本的节省,从而进一步提高产量、增加收益。

具备不同氮素释放特征的小麦控释肥品种,其适宜的最佳施肥方法,包括最佳施用量、施肥位置等,还需要在不同生态区、不同土壤类型和地力条件下开展更为广泛的田间试验研究来进行筛选总结。

4 结论

在减量优化施肥的情况下,自制小麦专用控释氮肥撒施旋耕的施肥方法小麦产量、氮肥偏生产力较高,控释肥条施于种子正下方和侧下方6-8 cm深处的施肥方法小麦产量和氮肥偏生产力无显著差异。3种施肥方法对于干物质在小麦籽粒与秸秆的分配、籽粒氮素的含量和积累量、氮肥的利用率(桓台褐土)以及氮素的盈余量均没有显著的影响。本研究的结果初步表明,自制的小麦专用控释氮肥在减量优化施肥的情况下,采用撒施旋耕的施肥方法有利于小麦的稳产或增产,同时,包膜生产成本较低,施肥方法容易操作,后期不用追肥,减少了劳动力的投入,节省了生产成本。

[1] 赵斌, 董树亭, 张吉旺, 刘鹏. 控释肥对夏玉米产量和氮素积累与分配的影响. 作物学报, 2010, 36(10): 1760-1768.

ZHAO B, DONG S T, ZHANG J W, LIU P. Effects of controlled-release fertilizer on yield and nitrogen accumulation and distribution in summer maize., 2010, 36(10): 1760-1768. (in Chinese)

[2] 王贺. 华北平原砂质土壤夏玉米对肥料类型及施肥方法的响应研究[D]. 北京: 中国农业科学院, 2012.

WANG H. Summer maize response to fertilizer sources and their application methods in the sandy soils of north china plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)

[3] 孙浩燕. 施肥方式对水稻根系生长、养分吸收及土壤养分分布的影响[D]. 武汉: 华中农业大学, 2015.

SUN H Y. Effects of fertilization methods on root growth, nutrition absorption of rice and soil nutrition distribution[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)

[4] 郑圣先, 聂军, 熊金英, 肖剑, 罗尊长, 易国英. 控释肥料提高氮素利用率的作用及对水稻效应的研究. 植物营养与肥料学报, 2001, 7(1): 11-16.

ZHENG S X, NIE J, XIONG J Y, XIAO J, LUO Z C, YI G Y. Study on role of controlled release fertilizer in increasing the efficiency of nitrogen utilization and rice yield., 2001, 7(1): 11-16. (in Chinese)

[5] SUN H J,ZHANG H L,MIN J, FENG Y F, SHI W M. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater., 2016, 14(1): 105-111.

[6] 杨青林, 桑利民, 孙吉茹, 季志强, 袁文利, 郭玉炜, 盖颜欣. 我国肥料利用现状及提高化肥利用率的方法. 山西农业科学, 2011, 39(7): 690-692.

YANG Q L, SANG L M, SUN J R, JI Z Q, YUAN W L, GUO Y W, GAI Y X. Current situation of fertilizer use in China and the method to improve chemical fertilizer utilization efficiency., 2011, 39(7): 690-692. (in Chinese)

[7] HUANG S, LV W S, BLOSZIES S, SHI Q H, PAN X H, ZENG Y J. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis., 2016, 192: 118-125.

[8] GILDOW M, ALOYSIUS N, GEBREMARIAM S, MARTIN J. Fertilizer placement and application timing as strategies to reduce phosphorus loading to Lake Erie., 2016, 42(6): 1281-1288.

[9] 张学军, 赵营, 陈晓群, 吴礼树, 胡承孝. 滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响. 中国农业科学, 2007, 40(11): 2535-2545.

ZHANG X J, ZHAO Y, CHEN X Q, WU L S, HU C X. Effects of application of nitrogen on vegetable yield, nitrogen balance and soil nitrogen accumulation under two years’ drip fertigation., 2007, 40(11): 2535-2545. (in Chinese)

[10] PAN S G, WEN X C, WANG Z M, ASHRAF U, TIAN H, DUAN M Y, MO Z W, FAN P S, TANG X R. Benefits of mechanized deep placement of nitrogen fertilizer indirect-seeded rice in South China., 2017, 203: 139-149.

[11] 白由路, 杨俐苹. 我国农业中的测土配方施肥. 中国土壤与肥料, 2006(2): 3-7.

BAI Y L, YANG L P. Soil testing and fertilizer recommendation in Chinese agriculture., 2006(2): 3-7. (in Chinese)

[12] 刘宁, 孙振涛, 韩晓日, 战秀梅, 杨劲峰. 缓/控释肥料的研究进展及存在问题. 土壤通报, 2010, 41(4): 1005-1009.

LIU N, SUN Z T, HAN X R, ZHAN X M, YANG J F. Research progress and existing problems on slow/controlled release fertilizers., 2010, 41(4): 1005-1009. (in Chinese)

[13] 张玉树, 丁洪, 卢春生, 李卫华, 陈磊. 控释肥料对花生产量、品质以及养分利用率的影响. 植物营养与肥料学报, 2007, 13(4): 700-706.

ZHANG Y S, DING H, LU C S, LI W H, CHEN L. Effect of controlled release fertilizers on the yield and quality of peanut and nutrient use efficiency., 2007, 13(4): 700-706. (in Chinese)

[14] 杨俊刚, 张冬雷, 徐凯, 倪小会, 肖强, 曹兵, 刘宝存, 邹国元. 控释肥与普通肥料混施对设施番茄生长和土壤硝态氮残留的影响. 中国农业科学, 2012, 45(18): 3782-3791.

YANG J G, ZHANG D L, XU K, NI X H, XIAO Q, CAO B, LIU B C, ZOU G Y. Effects of mixed application of controlled-release fertilizer and common fertilizers on greenhouse tomato growth, yield, root distribution, and soil nitrate residual., 2012, 45(18): 3782-3791. (in Chinese)

[15] ZVOMUYA F, ROSEN C J, RUSSELLE M P, GUPTA S C. Nitrate leaching and nitrogen recovery following application of polyolefin- coated urea to potato., 2003, 32(2): 480-489.

[16] HALVORSON A D, DEL GROSSO S J, REULE C A. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems., 2008, 37(4): 1337-1344.

[17] 戴建军, 樊小林, 喻建刚, 刘芳, 张桥. 水溶性树脂包膜控释肥料肥效期快速检测方法研究. 中国农业科学, 2007, 40(5): 966-971.

DAI J J, FAN X L, YU J G, LIU F, ZHANG Q. Longevity of controlled release modified resin fertilizer., 2007, 40(5): 966-971. (in Chinese)

[18] JOSé DA SILVA M, HENRIQUE C, FRANCO J, PAULO S, MAGALHãES G. Liquid fertilizer application to ratoon cane using a soil punching method., 2017, 165: 279-285.

[19] SU W, LIU B, LIU X, LI X, REN T, CONG R, LU J. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (L.)., 2015, 62: 38-45.

[20] BORGES R, MALLARINO A P. Grain yield, early growth, and nutrient uptake of no-till soybean as affected by phosphorus and potassium placement., 2000, 92: 380-388.

[21] PFAB H, PALMER I, BUEGGER F, FIEDLER S, MüLLER T, RUSER R. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil., 2012, 150(3): 91-101.

[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.

BAO S D.. Beijing: China Agriculture Press, 2000. (in Chinese)

[23] 宋歌, 孙波, 教剑英. 测定土壤硝态氮的紫外分光光度法与其他方法的比较. 土壤通报, 2007, 44(2): 288-293.

SONG G, SUN B, JIAO J Y. Comparison between ultraviolet spectrophotometry and other methods in determination of soil nitrate-N., 2007, 44(2): 288-293. (in Chinese)

[24] NYBORG M, MALHI S S, MUMEY G, PENNEY D C, LAVERTY D H. Economics of phosphorus fertilization of barley as influenced by concentration of extractable phosphorus in soil., 1999, 30(11/12): 1789-1795.

[25] NUTTALL W F, BUTTON R G. The effect of deep banding N and P fertilizer on the yield of canola (L.) and spring wheat (L.)., 1990, 70(4): 629-639.

[26] EGHBALL B, MARANVILLE J W. Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses., 1962, 85(1): 147-152.

[27] 罗小娟, 冯淑怡, 石晓平, 曲福田. 太湖流域农户环境友好型技术采纳行为及其环境和经济效应评价—以测土配方施肥技术为例. 自然资源学报, 2013, 28(11): 1891-1902.

LUO X J, FENG S Y, SHI X P, QU F T. Farm households' adoption behavior of environment friendly technology and the evaluation of their environmental and economic effects in Taihu Basin—taking formula fertilization by soil testing technology as an example., 2013, 28(11): 1891-1902. (in Chinese)

[28] 章明奎, 方利平. 砂质农业土壤养分积累和迁移特点的研究. 水土保持学报, 2006, 20(2): 46-49.

ZHANG M K, FANG L P. Accumulation and transport of nutrients in agricultural sandy soils., 2006, 20(2): 46-49. (in Chinese)

[29] NKEBIWE P M, WEINMANN M, BAR-TAL A, MüLLER T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis., 2016, 196: 389-401.

[30] 刘永哲, 陈长青, 尚健, 王火焰, 周健民, 陈照明, 刘晓伟. 沙壤土包膜尿素释放期与小麦适宜施用方式研究. 植物营养与肥料学报, 2016, 22(4): 905-912.

LIU Y Z, CHEN C Q, SHANG J, WANG H Y, ZHOU J M, CHEN Z M, LIU X W. Release durations and suitable application patterns of coated urea on winter wheat in sandy loam soil., 2016, 22(4): 905-912. (in Chinese)

[31] 张务帅. 控释氮钾肥配比及施肥方式对玉米、小麦生长和土壤养分变化的影响[D]. 泰安: 山东农业大学, 2015.

ZHANG W S. Effects of controlled release nitrogen and potassium fertilizers with ratios and application methods on growth of corn-wheat and soil nutrients[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)

[32] 郭新送, 丁方军, 孟庆羽, 陈士更, 路艳艳, 朱福军. 控释肥不同施用量及深度对宅基复垦地小麦产量与氮肥利用率的影响. 土壤通报, 2016, 47(4): 928-934.

GUO X S, DING F J, MENG Q Y, CHEN S G, LU Y Y, ZHU F J. Effects of controlled-release fertilizer dosage and depth on wheat yield and nitrogen utilization efficiency in reclamation land., 2016, 47(4): 928-934. (in Chinese)

[33] 邱新强, 高阳, 黄玲, 李新强, 孙景生, 段爱旺. 冬小麦根系形态形状及分布. 中国农业科学, 2013, 46(11): 2211-2219.

QIU X Q, GAO Y, HUANG L, LI X Q, SUN J S, DUAN A W. Temporal and spatial distribution of root morphology of winter wheat., 2013, 46(11): 2211-2219. (in Chinese)

[34] 张杰, 王备战, 冯晓, 李国强, 赵巧丽, 胡峰, 郑国清. 氮肥调控对冬小麦干物质量、产量和氮素利用效率的影响. 麦类作物学报, 2014, 34(4): 516-520.

ZHANG J, WANG B Z, FENG X, LI G Q, ZHAO Q L, HU F, ZHENG G Q. Effect of nitrogen fertilizer management on the dry matter quantity, yield and utilization in winter wheat., 2014, 34(4): 516-520. (in Chinese)

[35] 许仙菊, 赵坚, 张维理, 张永春, 姚政. 不同轮作模式农田钾养分表观平衡及其对土壤速效钾含量的影响. 中国土壤与肥料, 2016(3): 37-42.

XU X J, ZHAO J, ZHANG W L, ZHANG Y C, YAO Z. Potassium nutrient balance and its impact on soil available K content in Shanghai suburb farmlands., 2016(3): 37-42. (in Chinese)

[36] 王慧, 张民, 尹秀华, 付伟. 控释肥在黑麦草草坪中氮素淋失的研究. 水土保持学报, 2009, 23(1): 64-67.

WANG H, ZHANG M, YIN X H, FU W. Nitrogen leaching loss of controlled-release fertilizers on ryegrass turfgrass., 2009, 23(1): 64-67. (in Chinese)

[37] PARAMASIVAMS, ALVA A K. Leaching of nitrogen forms from controlled-release nitrogen fertilizers., 1997, 28(17/18): 1663-1674.

[38] 杜建军, 毋永龙, 田吉林, 王益权, 崔英德. 控/缓释肥料减少氨挥发和氮淋溶的效果研究. 水土保持学报, 2007, 21(2): 49-52.

DU J J, WU Y L, TIAN J L, WANG Y Q, CUI Y D. Effect of several controlled/slow-release fertilizers on decreasing ammonia volatilization and N leaching., 2007, 21(2): 49-52. (in Chinese)

(责任编辑 李云霞,杨鑫浩)

Effects of Fertilization Methods of Self-made Wheat-specific Controlled-release Nitrogen Fertilizer on Fertilizer Efficiencies

LIU Ping1, TAN DeShui1, XU Yu1, LIN HaiTao1, LI Yan1, SONG XiaoZong1, SHEN YuWen1, LIU ZhaoHui2

(1Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment of Huang-Huai-Hai Plain, Ministry of Agriculture/Shandong Provincial Engineering Research Center of Environmental Protection Fertilizers, Jinan 250100;2Shandong Academy of Agricultural Sciences, Jinan 250100)

【Objective】The objective of this study was to explore the suitable controlled-release nitrogen fertilizer varieties and their application methods in the wheat production process, so as to provide a theoretical basis for the popularization and application of the one-off mechanized application technology of wheat controlled-release fertilizer. 【Method】Three dominant wheat producing areas with different soil types, fertility levels and climatic conditions in Shandong province were selected to study effects of different application methods of controlled-release nitrogen fertilizer for wheat (surface broadcasting and rotary tillage (CRF1), banding below seeds (CRF2), and banding below and away from seeds (CRF3)) on wheat yield, nutrient absorption, soil nitrate nitrogen content and nitrogen use efficiency under the same optimal fertilization conditions by the method of field plot experiment. At the same time, the application methods were compared with the conventional urea fertilization (half urea was used as the base fertilizer, and half of urea was used at jointing of wheat (CK1), and all of urea was used as the base fertilizer by surface broadcasting and rotary tillage (CK2)) and no nitrogen fertilizer (CK0). 【Result】The yield of wheat grown in Taian brown soil ranged from 7 021 to 7 683 kg·hm-2, and the yields of CRF1 and CRF2 increased by 6.1% and 3.5% respectively compared with CK1, but the difference did not reach a significant level. The yield of CRF3 and CK1 was not significantly different, and the yield of CRF1 and CRF2 wheat was significantly higher than that of CK2, which increased by 9.4% and 6.7%, respectively. The yield of wheat grown in Chiping tidal soil ranged from 4 576 to 5 193 kg·hm-2, and the yield of CRF1 and CK1 wheat was not significantly different, but significantly higher than that of CK2, with an increase of 11.3%. The yield of wheat treated with nitrogen fertilizer in the Huantai cinnamon soil ranged from 5 222 to 5 830 kg·hm-2. The yield of CRF1, CRF2 and CRF3 had no significant difference with CK1, while the yield of CRF1 was significantly higher than that of CK2, with an increase of 10.8%. The wheat yield and partial factor productivity of nitrogen fertilizer of CRF1 were higher in all three sites, but there was no significant difference between CRF2 and CRF3. In Taian brown soil, the distribution rates of grain nitrogen of CRF1 and CRF3 were significantly higher than those of CK1 and CK2. The nitrogen use efficiency of CRF1, CRF2 and CRF3 in Huantai cinnamon soil was 46.7%, 49.5% and 50.2%, respectively. There was no significant difference among the three treatments, and no significant difference with CK1 and CK2. The three kinds of fertilization methods of controlled-release nitrogen fertilizer had no significant effect on the distribution of dry matter in wheat grain and straw, the nitrogen content and accumulation of grain and the surplus of nitrogen. In Chiping and Huantai, the content of nitrate nitrogen of CRF2 and CRF3 in 0-90 cm soil layer was higher. The content of nitrate nitrogen under CK1 and CK2 in Taian was higher, while that under CRF1 was the lowest. 【Conclusion】In the case of optimized dosage, the surface broadcasting and rotary tillage method for self-made wheat-specific controlled-release nitrogen fertilizer was conducive to stable or higher yield and production costs savings.

controlled-release fertilizer; fertilization methods; wheat; yield; nitrogen use efficiency; fertilizer placement

10.3864/j.issn.0578-1752.2018.20.008

2018-01-17;

2018-06-15

国家公益性行业(农业)科研专项(201303103,201503130)、国家重点研发计划(2017YFD0301002,2017YFD0201700)、国家小麦产业技术体系(CARS-03)、山东省重点研发计划(2017CXGC0304)、山东省重点研发计划(重大关键技术)(2016ZDJS08A02)、山东省农业科学院创新工程项目(CXGC2016A05)

刘苹,E-mail:liuapple5326@sina.com。通信作者刘兆辉,E-mail:liuzhaohui6666@sina.com

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!