时间:2024-05-23
杨 君,马峙英,王省芬
棉花纤维品质改良相关基因研究进展
杨 君,马峙英,王省芬
(河北农业大学农学院/教育部华北作物种质资源研究与利用重点实验室/河北省作物种质资源重点实验室,河北保定071001)
棉纤维是优良的、使用最为广泛的天然纤维。随着人们生活水平的提高,对天然纯棉织物的需求不断增加,同时对品质的要求也愈来愈高。因此,提高棉纤维产量和品质成为当前棉花遗传育种的重要目标,对棉纤维发育相关基因的克隆与功能研究是实现这一目标的重要基础。棉纤维发育由4个明显但又重叠的时期组成,包括纤维细胞的起始、伸长(初生壁合成)、次生壁合成和脱水成熟。起始是影响纤维细胞数量的重要时期,而纤维长度和强度的决定发生在次生壁合成期和脱水成熟期。棉纤维发育是一个复杂而有序的过程,由大量的基因参与调控。目前,已经有一些在棉纤维发育过程中发挥重要作用的基因被报道,包括各种转录因子、参与激素代谢基因、编码细胞壁蛋白和细胞骨架蛋白基因、活性氧代谢相关基因、以及参与糖和脂类代谢的基因等。文中对已报道的这些与棉花纤维发育相关基因的克隆和功能分析进行了系统总结,以期为棉花纤维发育及品质改良研究提供参考。
棉花;纤维;基因;品质改良
棉花(spp.)是全球重要的经济作物,每年产值近120亿美元[1]。伴随生活水平的提高,人们越来越注重追求绿色和健康,天然纯棉制品像绿色食品一样受到越来越多消费者的青睐。但是,中国棉花产量却不断下降,“缺口”逐年加大。2002年,中国进口原棉69万吨,到2007年,进口猛增至543万吨,占当年纺织用棉的41.6%。更为严峻的是中国优质棉产量严重不足,适纺60支以上高档棉纱的优质原棉95%依赖进口。因而,为了保证中国棉花产业可持续发展、维护中国棉花生产安全、满足棉纺织业迅猛发展和国人生活水平提高之需要,提高棉花产量和改良纤维品质成为中国棉花育种的重要目标,而棉纤维发育相关基因的克隆与功能分析是实现这一目标的基础。中国科学家对于棉花纤维发育机制,特别是关键基因的克隆与功能研究方面取得了丰富的成果,已使中国关于棉花纤维发育的研究跻身世界领先行列。
关于棉纤维发育基因的报道最早见于1992年[2]。随着科学技术的迅猛发展,棉纤维发育相关基因的克隆与功能研究获得了长足进步。棉纤维是由胚珠表皮细胞分化而成,其发育过程可分为4个阶段:起始分化(initiation)(-3—3 days post anthesis,DPA)、细胞伸长(cell elongation)或称为初生壁合成(primary cell wall deposition)(2—20 DPA)、次生壁合成(secondary cell wall deposition)(15—45 DPA)以及脱水成熟(dehydration and maturation)(45—50 DPA)[3-5]。棉花的产量和质量主要取决于前几个阶段:决定每个胚珠上纤维数量的分化起始期与决定纤维长度与强度的初生壁和次生壁形成期[5-6]。因而,目前关于棉纤维发育基因的研究主要集中在这几个时期。本文按照基因编码蛋白的生物学功能进行了分类总结(电子附表1),并综述了这些基因在棉纤维发育中的功能研究进展。
转录因子(transcription factors)在棉纤维细胞发育过程中起重要的调控作用。近年来报道的与棉纤维发育相关的转录因子主要包括MYB(v-myb avian myeloblastosis viral oncogene homolog)、HD-ZIP(homeodomain-leucine zipper)、MADS(MCM1- AGAMOUS-DEFICIENS-SRF)、KNOX(knotted related homeobox)、TCP(teosinte branched1/cycloidea/PCF)等家族成员。拟南芥()是目前基因功能解析最为全面的模式植物,其他植物的许多基因功能研究多源于拟南芥同源基因,棉花功能基因的研究也不例外。棉纤维细胞与拟南芥表皮毛一样是高度伸长的单细胞,两者具有表皮毛发育调控的相似机制[7]。在拟南芥中,研究较为深入的表皮毛发育相关的转录因子如R2R3-MYB家族的GLABRA1 (GL1)[8]、R3-MYB家族的CAPRICE(CPC)[9]、GLABRA2(GL2)[10]等,它们的同源基因在棉花中已被成功克隆。
MYB转录因子家族在植物内数量庞大,而R2R3类型基因不仅在MYB家族中数量最多,而且关于它们参与棉纤维细胞发育的研究也最为深入。Loguerico等[11]从陆地棉()开花前3 d的胚珠cDNA文库中筛选到6个R2R3-MYB类型转录因子基因(–),它们在棉纤维发育的不同时期表达水平有不同的变化,暗示其在调控棉纤维细胞发育中具有不同的功能特异性。之后,Wang等[7]通过酵母单杂交(yeast one hybrid)技术证明其中的MYB2能够调控棉花纤维发育基因()[12]的转录。Suo等[13]从棉纤维起始早期胚珠分离到55个包含不同MYB保守域的基因片段,并克隆其中一个R2R3-MYB类型基因,其在初始分化和伸长期的棉纤维细胞中特异表达。通过RNAi和扫描电镜技术进一步证明参与纤维细胞起始与分化[14],其可能调控的与棉纤维发育相关基因包括、[6]、[15]和[16]。通过比较无纤维棉突变体与野生型(wild-type,WT)转录组,Machado等[17]分离了另一R2R3-MYB—。通过RNAi和过表达正反向验证,表明不仅参与调控棉纤维伸长,还能够调控纤维起始分化数量和时间。GhMYB25-like与GhMYB25有69%氨基酸序列相似性,并且二者在棉纤维中的转录水平变化和趋势一样。RNAi研究进一步证明对棉纤维发育具有重要的调节功能,很可能在和上游发挥作用[18]。最近,Wan等[19]首次通过图位克隆获得了一个调控棉花短绒发育的关键基因(MYBMIXTA-like transcription factor 3/GhMYB25-like in chromosome A12)。在光子突变体N1中的表达极低,这与其反义启动子驱动产生的NAT(natural antisense transcripts)密切相关。小RNA深度测序结果进一步表明的双向转录可能会形成dsRNA,进而产生21—22 nt的小RNA。可能通过这些小RNA进行自我剪切而实现表达下调,从而影响棉纤维发育[19]。此外,其他报道的参与棉纤维发育调控的R2R3类型MYB基因如和,它们在棉纤维伸长期优势表达并潜在调控脂转移蛋白LTP3(lipid transfer protein)[20],以及和[21]等。
在拟南芥中,GL1、bHLH(basic helix-loop-helix)蛋白GL3(GLABRA3)、TTG1(TRANSPARENT TESTA GLABRA1)三者能够结合,形成的复合体正向调控表皮毛发育[22]。CPC是一个含不完全重复区域R3类型的MYB,与GL1之间存在互作竞争,可阻止复合体形成,从而负向调控表皮毛发育[9]。Liu等[19]从陆地棉中克隆一个,其过表达不仅导致棉纤维起始分化发生延迟,而且导致纤维长度显著降低。酵母双杂交(yeast two-hybrid,Y2H)试验表明,棉花GhCPC同样与GhTTG1/4、GhMYC1(GL3)之间存在互作。由此可推测拟南芥CPC与GL1-GL3-TTG复合体之间互作调控表皮毛发育的模式在棉花纤维调控中同样存在。GhMYC1能够与启动子中的顺式元件E-box结合,因而推测这个互作调控的下游基因可能为[19]。
拟南芥GL2是HD-ZIP IV家族转录因子。已报道的参与棉纤维发育的同源性基因包括(meristem layer 1)[23]、[24]及[25-26]。在棉纤维发育中不仅具有与相似的表达方式,而且过量表达使拟南芥叶片和茎上的表皮毛数量显著增加。能够结合L-box顺式元件,因而具有调控其他棉纤维发育基因的可能,如[12,27]。GbML1与GhMYB25之间通过START- domain(GbML1)和SAD-domain(GhMYB25)可以形成物理互作,因此,GbML1可能作为伴侣分子增强GhMYB25对棉纤维发育的调控[23]。与具有较高同源性,其沉默不仅使棉纤维细胞起始分化数量减少,而且时间延后。超表达显著增加棉纤维细胞起始分化的数量。GhHD1可能作用于GhMYB25-like调控的下游过程,但不在GhMYB25和GhMYB109调控的下游。利用基因芯片(microarray)对GhHD1沉默和超表达棉株进行分析,表明GhHD1可能通过WRKY和钙离子信号通路(calcium-signaling pathway)改变乙烯(ethylene,ETH)和活性氧(reactive oxidation species,ROS)水平,进而影响其他参与细胞扩张与伸长基因的表达[24]。中国科学院上海生命科学研究院陈晓亚院士团队先后在棉花中克隆了3个GL2同源基因—、、。其中,和显示出与棉花纤维发育相关[25-26]。来自于亚洲棉()的与拟南芥具有较高同源性,主要在发育早期的棉纤维细胞中表达。可互补拟南芥突变体缺陷,即使其重新长出表皮毛[26]。超表达能够使棉纤维变得更长,而将该基因沉默则导致棉纤维长度缩短超过80%。通过数字化基因表达分析(digital gene expression analysis),发现了300多个可能受GhHOX3调控表达的差异基因[25]。在拟南芥中,L1-box被证明是HD-ZIP类转录因子结合的顺式元件[28]。据此,18个启动子中具有该元件的基因被推测是受GhHOX3调控的下游基因,其中,包括2个具有使细胞壁松弛功能的基因—[12,27]和[29]。GhHOX3不仅与GhHD1存在互作,还与受赤霉素(gibberellin,GA)调控的DELLA蛋白GhSLR1存在互作[30]。因而,总结出GhHOX3介导的棉纤维发育的机制为棉纤维细胞内GA水平正常或较低时,HOX3与其阻遏蛋白GhSLR1结合;当GA水平升高后,GhSLR1被蛋白酶降解,使HOX3构象改变,并与调控增强子GhHD1结合,进而调控启动子序列含有L1-box的棉纤维发育相关基因表达,最终使棉纤维变长[25]。
MADS蛋白家族都含有一个保守的MADS-box结构域,是植物内另外一个大的转录因子家族[31]。在棉花中已经发现几个,其中与棉纤维发育相关的如[32]、[33]、[34]、[35]、[36]等。除在转录水平表明这些基因参与棉纤维的发育外,进一步的超表达试验表明可促进酵母细胞伸长[35],但则使拟南芥下胚轴长度显著降低,且GA相关合成基因的表达量显著下降,表明可能通过调控GA合成参与棉纤维发育[36]。
Gong等[37]克隆了一个棉花KNOX(knotted related homeobox)Ⅱ型转录因子—KNL1(KNOTTED1- LIKE),它在纤维次生壁加厚期优势表达。显著抑制棉株的纤维长度和细胞壁厚度,比WT显著降低。在拟南芥中,过量表达和基因抑制都可导致植株茎基部细胞壁厚度降低。具有转录因子的序列特征和互补拟南芥转录因子KNAT7的功能,却不具有转录激活功能。然而,GhKNL1能够与其他参与细胞壁形成相关的转录因子如OFP4(OVATE FAMILY PROTEIN4)[38]和MYB75[39]等发生互作,所以其可能是通过调节其他转录因子活力而影响棉纤维的发育[37]。
Hao等[40]克隆了一个海岛棉Ⅰ型TCP基因—,它在棉纤维伸长期优势表达。沉默后,棉纤维长度和品质显著降低。Solexa测序、Affymetrix基因芯片分析及JA含量测定等试验结果表明,正向调控JA合成,进而影响其他下游基因参与棉纤维伸长。之后Wang等[41]从陆地棉中也克隆了一个TCP家族Ⅰ型基因—,该基因主要在起始及伸长阶段的纤维细胞中高表达。在拟南芥中异源表达促进了茎和花序等部位表皮毛以及根毛的起始和伸长,以及改变了生长素在拟南芥体内的分布。进一步的凝胶阻滞电泳(electrophoretic mobility shift assay,EMSA)试验显示,GhTCP14蛋白能够直接与AUX1、IAA3和PIN2等生长素途径关键基因的启动子结合。这些结果表明是通过激素调控棉纤维发育的。
激素在调节植物生长发育和抗逆过程中具有核心重要性。目前,可作为植物激素的共有10种结构不相关的小分子[42]。其中,被报道对棉纤维发育具有明显影响的有ETH、油菜素内酯(brassinosteroid,BR)、GA、细胞激动素(cytokinin,CK)、生长素(auxin,AUX)及脱落酸(abscisic acid,ABA)。
2.1 ETH
在棉花胚珠培养中,外源添加乙烯能够显著促进棉纤维细胞伸长,而添加乙烯合成抑制剂硫代硫酸银则显著抑制棉纤维伸长。此外,棉纤维cDNA文库测序和基因芯片分析等分子试验结果也证明乙烯及其代谢途径在棉花纤维细胞伸长过程中发挥非常重要的作用[6]。Shi等[6]从陆地棉纤维cDNA文库中克隆到编码乙烯合成途径的最后一个酶ACO(1-aminocyclopropane-1-carboxylic acid oxidase,1-氨基环丙烷-1-羧酸氧化酶)的3个同源基因,它们在纤维快速伸长期特异高效表达。特别是在体外试验中,胚珠释放乙烯量、表达水平、纤维伸长速度三者保持一致,进一步表明ACO是通过控制乙烯合成参与调控棉纤维细胞发育。虽然ACS(1-aminocyclopropane-1-carboxylicacid synthase,1-氨基环丙烷-1-羧酸合酶)是乙烯合成的限速酶,但其并不像ACO一样通过上调转录参与乙烯合成进而影响棉纤维发育。ACS活力增强可能是由于转录后修饰,即受CPK1(Ca2+-dependent protein kinase 1)作用而发生磷酸化[43]。
2.2 BR
体外试验中,应用浓度非常低的BR能显著促进棉纤维细胞的生长,而添加BR合成抑制则导致纤维细胞的发育受到抑制[44],这表明BR在棉花纤维细胞伸长过程中发挥重要的作用。类固醇5α还原酶(steroid 5α-reductase)是BR合成中的主要限速酶。Luo等[45]从陆地棉中克隆到一个具有编码类固醇5α还原酶活力的基因—,它在棉纤维细胞起始分化和伸长阶段高表达。反义RNA抑制的表达和类固醇5α还原酶抑制剂处理胚珠的结果一致,均导致纤维细胞伸长受到抑制。种皮特异表达GhDET2能够使棉纤维数量和长度显著增加。编码棉花BR受体蛋白BRI1(brassinosteroid insensitive 1)的基因早在2004年就已经被克隆,并在转录水平初步证明其参与棉纤维发育[44, 46]。近来,Sun等[47]通过过表达和基因沉默进一步分析了在棉纤维发育中的功能。过表达对纤维长度几乎没有影响,但却使纤维素显著积累。沉默使细胞次生壁的发育受到强烈抑制,导致纤维成熟度降低。这表明介导的BR信号是通过调控纤维素在次生壁中的沉积,进而影响棉纤维的成熟度。Yang等[48]从棉花中克隆到一个编码细胞色素P450的基因—,其编码蛋白与拟南芥CYP734A1同源。突变体不仅导致棉株表现BR缺少的典型症状,即植株矮小和叶片黑绿,而且棉纤维长度显著变短。应用RNA-Seq分析,推测PAG1可能是通过调控BR信号通路而影响乙烯信号、钙离子信号、及细胞壁和细胞骨架相关基因表达,进而影响棉纤维发育。
2.3 GA
外施GA确实能够促进棉纤维细胞的伸长[49]。检测表明,棉花开花当天胚珠中的内源GA浓度有一个显著提升,并在纤维细胞伸长过程中保持较高含量;而叶片中的GA浓度无明显变化[50],说明GA在棉花纤维细胞伸长过程中发挥重要的正向调控作用。GA-20氧化酶是重要的GA生物合成和调控酶。Xiao等[51]从陆地棉中克隆到3个GA-20氧化酶同源基因,即、和。主要在正在伸长的棉纤维细胞中表达,而和的转录更多是发生在胚珠中。过量表达的转基因棉,不但表现为棉纤维和胚珠中GA含量的增加,而且每个胚珠上棉纤维的初始数量和纤维长度显著增加。DELLA作为阻遏蛋白,是GA信号传导途径中重要的负调控因子[52]。目前,在棉花中共有8个含有DELLA保守域的编码基因被报道,包括[50]、、、、[53]、[54]、和[55]。虽然转录水平上的变化初步表明这些DELLA基因参与棉纤维的发育,但还需进一步在转基因棉花中进行功能验证与机制解析。
2.4 CK
CK能促进体外培养的胚珠发育,但阻碍纤维细胞的发育[49]。开花前,CK能够刺激纤维起始发育,而开花后CK对棉纤维发育产生抑制作用[56]。细胞激动素脱氢酶(cytokinin dehydrogenase,CKX)是植物内源CK合成的关键负调控因子。Zeng等[57]成功克隆了一个具有CKX活力的陆地棉基因,其在胚珠表皮中特异表达;超表达能使棉花胚珠内CK含量显著降低,从而导致棉纤维起始分化数量明显减少。该实验室进一步研究发现,抑制表达可使棉纤维细胞内CK含量提高,其中CK含量提高20.4%和55.5%的转基因棉株表现出叶片衰老推迟、光合作用升高、果枝增加、棉铃和棉籽增大,从而使皮棉产量相应提高了15.4%和20.0%,但CKX表达变化导致CK含量的变化对棉纤维品质没有产生显著影响[58]。
2.5 AUX
外施吲哚-3-乙酸(indole-3-acetic acid,IAA,AUX)或利用FBP7表皮特异启动子将外源IAA合成基因(如来源于农杆菌的)转入棉花,不仅能够推动棉纤维起始,还能增加纤维数量[59-60]。Yang等[61]对来源于棉花胚珠的32 798个ESTs进行了表达分析,并富集了许多与IAA合成(、、和)、信号传导(、、和)及转运(和)相关的ESTs。虽然IAA对棉纤维发育的调控具有重要作用,但目前还未见关于这些基因的克隆与调控棉纤维发育功能等方面的深入报道。
2.6 ABA
目前,虽然关于ABA在棉纤维发育中的研究还不够深入,但其参与棉纤维发育调控的重要作用早已被证实[62]。随着棉铃发育,ABA的含量从10 DPA开始增加,到20 DPA逐渐降低,而到30—50 DPA时含量又有所增加[62]。高浓度的ABA对棉纤维发育具有明显的抑制作用。在不同棉种中的研究发现,内源ABA含量高的品种其棉纤维会较短[63]。
在植物细胞生长过程中,许多蛋白在细胞壁中积累,如各种结构蛋白,包括富含脯氨酸蛋白(proline- rich protein,PRP)、阿拉伯半乳聚糖蛋白(arabinogalactan protein,AGP)、伸展蛋白(extensin,EXT),还有与多糖作用的扩展蛋白(expansin,EXPA或Exp)及各种酶[64]。Feng等[65]利用抑制性消减杂交(suppression subtractive hybridization,SSH)方法在快速伸长的棉纤维细胞中分离到5个基因家族,其中就包括PRP、AGP和EXPA。许文亮等[66]从棉花cDNA文库中分离了5个PRP基因,其中和表达受纤维发育调节。进一步分析显示,抑制导致棉纤维发育相关基因表达发生了显著变化,并促进棉花纤维细胞伸长。据此推测是棉纤维发育的负向调控因子[67]。Huang等[68]在陆地棉中克隆到19个类成束阿拉伯半乳聚糖蛋白(Fasciclin-like arabinogalactan protein,FLA)基因,、和特异性的或主要在10 DPA棉纤维细胞中表达,而、、和虽不仅仅在纤维中表达,但其水平也相对较高。Liu等[69]从海岛棉中也克隆到一个FLA基因—,转录水平上的变化表明其参与棉纤维发育。过量表达能够促进棉纤维细胞伸长,并促进其他初生细胞壁合成基因的表达显著升高。相反,抑制表达则显著降低棉纤维起始分化和伸长,且导致其他初生细胞壁合成基因表达显著降低。不仅如此,的过表达和沉默还影响棉纤维初生细胞壁中葡萄糖(glucose)、阿拉伯糖(arabinose)及半乳糖(galactose)含量。由此表明可能通过影响初生细胞壁中AGP组成和完整度参与棉纤维起始分化与伸长[70]。Harmer等[29]从陆地棉中克隆到6个-expansin基因(–),其中和在纤维中特异性表达,暗示它们参与棉纤维发育。此外,还有一些其他参与棉纤维发育的蛋白定位于细胞壁,如,其编码蛋白含有BURP(BNM2/USP-like/RD22/PG1b)域,主要在伸长的棉纤维细胞中表达[12, 27]。过量表达不仅显著提高了棉纤维长度,还可使棉花种子明显增大。GhRDL1与另一个参与棉纤维发育的细胞壁蛋白GhEXPA1之间存在蛋白互作。将这两个基因共同超表达,除了能够使棉铃显著增大及棉产量明显提高外,还能显著改善棉纤维品质,包括纤维长度、强度和马克隆值(micronaire)[27]。
植物细胞骨架主要由微管(microtubule)和肌动蛋白微丝(actin filament)组成[71]。在高等植物中,微管能够指导纤维素微纤丝在细胞壁中的沉积方向,从而参与细胞形态的建成。早在20世纪90年代,微管就已经被证实参与棉纤维发育[72-74]。微管的主要结构组成是一种异源二聚体蛋白——微管蛋白(tubulin,TUB),它由和2个保守的亚基组成。Whittaker等[75]通过基因特异性探针检测到5个-TUB基因在棉纤维细胞中的表达发生积累。Li等[15]克隆到一个编码亚基的陆地棉基因——,其在棉纤维中优势表达。He等[76]在陆地棉中鉴定到795个微管蛋白ESTs(expressed sequence tags),其中19个-TUB基因被克隆。通过比较WT和无绒无絮突变体(fuzzless-lintless,)转录组,明确其中9个-TUB基因参与棉花纤维发育。肌动蛋白微丝由肌动蛋白(actin)分子螺旋状聚合成。Li等[16]在陆地棉中发现了15个编码肌动蛋白的基因——,其中主要在棉纤维细胞中表达。抑制表达会破坏棉纤维细胞骨架网络,进而影响棉纤维伸长。通过酵母双杂交和体外F-actin结合试验,一些肌动蛋白结合蛋白(actin binding protein,ABP)被鉴定,如GhPLIM1[77]、GhWLIM5[78]、GhCFE1A[79]、GhPFN2[80]、ADF1(actin depolymerizing factor)[81-82]、WLIM1a[83]等。转录水平上的显著变化表明它们参与棉纤维发育,且可能通过与肌动蛋白互作参与调节棉纤维细胞骨架。体外试验表明GhPLIM1与GhWLIM5能够保护F-actin不被微丝解聚素B(Latrunculin B)解聚[77-78]。过量表达GhCFE1A或GhPFN2能够显著抑制棉纤维细胞伸长,可能是ABPs的过量表达打乱了肌动蛋白骨架网络,从而导致纤维细胞伸长的终止[79-80]。下调表达显著增加了棉纤维细胞中肌动蛋白微丝的丰度、细胞壁厚度和纤维素含量,使棉纤维长度和强度显著提高[81],而在烟草中过表达则显著降低其下胚轴长度和根毛数量,这表明可能在棉纤维发育中起重要的负调控作用。但过量表达,棉纤维细胞壁变得更薄和紧密,纤维长度、强度和细度得到改善。这可能与在陆地棉纤维发育中的双重作用有关。WLIM1a不仅是肌动蛋白的成束者,还可作为转录因子激活苯丙氨酸脱氨酶-box(Phe ammonia lyase-box)类基因的表达,通过苯丙烷合成途径参与棉纤维细胞壁木质素(lignin)的合成[83]。
木聚糖(xylan)是棉纤维细胞壁的一种重要的半纤维素(hemicellulose)组成成分。Li等[84]在棉纤维中鉴定了2个编码糖基转移酶(glycosyltransferases)的基因—和,其中在15 DPA和20 DPA棉纤维中特异表达。在拟南芥中分别过量表达这两个基因,均能显著增加木聚糖的积累,表明这两个糖基转移酶基因可能通过调节棉纤维细胞壁中木聚糖积累来影响棉纤维发育。尿苷二磷酸木糖(uridine diphosphatexylose,UDP-Xyl)是合成半纤维素(hemicellulose)和果胶多糖(pectic polysaccharide)等非纤维素物质的重要底物。在陆地棉中,Pan等[85-86]成功克隆了3个合成UDP-Xyl的重要基因—(UDP-glucuronate decarboxylase,尿苷二磷酸葡萄醛酸脱羧酶),转录水平上的变化表明它们参与棉纤维发育,但功能分析与调节机制还有待进一步的研究。木葡聚糖内转糖苷酶/水解酶(xyloglucan endotransglucosylase/hydrolase,XTH)是植物细胞壁重构过程中的关键酶,拥有使细胞壁松弛的功能,因而具有通过调节棉纤维细胞壁的可塑性参与棉纤维发育的潜在性[87-89]。Michailidis等[87]在陆地棉中发现2个,但只有在棉纤维伸长期特异表达。Lee等[88]通过将在棉花中超表达进一步证实了该基因参与棉纤维伸长。Shao等[89]通过短纤维棉突变体(11)进一步明确9—15DPA是XTH活力增加和上调棉纤维伸长的关键时期。
通过转基因的方法,Ruan等[90]证明了蔗糖合酶(sucrose synthase,Sus)在棉纤维细胞起始和伸长过程中发挥重要作用。之后,Jiang等[91]从陆地棉中克隆了一个Sus基因,发现过量表达能够改善棉纤维长度和强度,这可能与其增加了棉纤维细胞壁的厚度相关。另外,半乳糖醛酸转移酶(galacturonosyltransferase)[92]、果胶裂解酶(pectate lyase)[93]、磷脂酰肌醇4-激酶(phosphatidylinositol 4-kinase)[94]等也被报道参与棉纤维的发育。
脂肪酸不仅是棉籽作为油料作物的主要成分,其代谢也影响着棉纤维的发育,特别是极长链脂肪酸(very long-chain fatty acid,VLCFA),它具有显著促进棉纤维发育的作用[95]。通过应用乙烯合成抑制剂和检测转录水平,Qin等[95]初步推测VLCFA合成在乙烯合成的上游,意味着VLCFA是通过调控乙烯合成促进棉纤维伸长。Wang等[96]通过同位素标记相对和绝对定量(isobaric tag for relative and absolute quantitation,iTRAQ)技术和RNA-Seq技术,在陆地棉胚珠蛋白组中发现2 005个蛋白参与花期棉纤维发育过程,其中很多基因/蛋白富集到脂肪酸代谢路径。目前,已经有几个参与棉纤维发育的脂肪酸合成基因被报道,如VLCFA合成第3步反应的(3-hydroxyacyl-CoA dehydratase,3-酮酯酰-CoA脱水酶)[96]、脂肪酸延长第4步反应的(-2- enoyl-CoA reductase,反式烯脂酰-CoA还原酶)[97]、(3-ketoacyl-CoA synthase,3-酮酯酰乙酰辅酶A合成酶)[6, 98-99]及(3-ketoacyl-CoA reductase,3-酮酯酰乙酰辅酶A还原酶)[100]等。利用酵母遗传互补法很好地确定了这些棉花基因的脂肪酸合成功能,但关于这些基因参与棉纤维发育的研究还仅限于转录水平。因而,关于脂肪酸代谢及其相关基因调控棉纤维发育的机制还有待进一步研究。
活性氧(reactive oxygen species,ROS)是氧分子的活跃形态,包括羟自由基(HO-)、超氧阴离子(O2·-)、过氧化氢(H2O2)、单态氧(1O2)[101],其在棉纤维发育过程中具有重要作用。1999年,Potikha等[102]首次发现H2O2在棉纤维次生细胞壁分化过程中可作为发育信号分子。Mei等[103]从陆地棉中克隆到一个编码第三类过氧化物酶(peroxidase)的基因,其主要在快速伸长的棉纤维细胞中表达,可能通过影响ROS的产生参与调节棉纤维伸长。APX(ascorbate peroxidase)是另一种重要的ROS清除酶。GhAPX1A/D在棉纤维伸长期优势表达[104]GhAPX1A/D,其对H2O2含量的调节被认为是棉花纤维伸长发育的关键调控机制之一[105]。最近,Zhang等[106]发现,的表达与棉花纤维品质显著相关,并证明了能够通过调控Ca2+流、ROS稳态等影响棉纤维的伸长及次生细胞壁的合成。
8.1 水通道蛋白(aquaporin)
Naoumkina等[107]利用RNA-seq技术对陆地棉单基因显性突变体(Ligon lintless-1)和(Ligon lintless-2)的研究中发现,水通道蛋白是这两个突变体中下调表达最显著的基因家族之一,由此表明该家族在棉纤维发育过程中发挥重要作用。陆地棉中至少包含71个编码水通道蛋白的基因[108],但目前被进一步证明与棉纤维发育相关的有5个PIPs(plasma- membrane intrinsic proteins)基因,其中属于亚组[109],其余4个属于亚组[110],根据在棉纤维中的优先或特异表达推测它们参与棉纤维的发育。在棉花中敲除GhPIP2亚组基因能够显著抑制棉纤维的伸长,而在酵母中过量表达这些基因则可使宿主细胞纵向显著伸长。酵母双杂交等试验表明,GhPIP2;3能够与GhPIP2;4和GhPIP2;6相互作用,推测这些棉花PIP2组蛋白通过选择性地形成异源寡聚体参与棉纤维的快速伸长[110]。
8.2 14-3-3蛋白
在植物中,14-3-3蛋白是一种能够与其他蛋白发生互作的、具有调节功能的酸性蛋白。目前,已报道的与棉纤维发育相关的编码14-3-3蛋白的基因共6个,分别是[111]、、、、和[112]。Q-PCR表明它们在棉纤维快速伸长期高水平表达。在裂殖酵母()中分别表达、和3个基因,均能促进酵母细胞纵向生长[112]。在棉花中过表达能够促进棉纤维伸长,而抑制、和则导致棉纤维细胞起始分化和伸长减缓[113]。这进一步表明在棉纤维细胞发育中发挥重要作用。此外,在转(、和)棉花内,、、、、和等基因的表达也受到了显著影响。蛋白互作试验证明Gh14-3-3L与GhBZR1间能够互作,并且GhBIN2对GhBZR1的磷酸化可增强这种作用。酵母单杂交表明GhBZR1能够与和启动子发生结合。综合这些结果,推测Gh14-3-3可能通过作用于GhBZR1使其调控下游基因转录而参与棉纤维细胞发育[113]。
目前,中国科研工作者已经率先完成了A、D 2个二倍体棉,四倍体陆地棉和海岛棉的基因组测序工作[114-119]。如果把基因比作一个个文字,那么基因组就像一本厚厚的字典,今后的工作就是为这些“字”加上注释,并最终付诸于育种应用。全基因组生物信息学分析和转录组测序技术可以更快和更系统地发现目的基因,但棉花的转基因不仅费时费力,而且许多基因型并不适合遗传转化,这使得棉花基因功能的验证工作进展缓慢。虽然模式生物酵母细胞的伸长和拟南芥表皮毛的发育模型使研究棉纤维发育相关基因变得简单,但这毕竟不能替代在棉花上进行基因功能验证,而VIGS技术的出现为快速验证棉纤维发育基因功能带来了希望,因为该技术不需要棉花遗传转化,而且似乎不受棉种的基因型影响[120]。虽然在棉纤维发育相关基因的研究方面已经取得了可喜的成绩,但与转基因抗虫棉相比,棉纤维品质遗传改良还需要更扎实的理论积累和技术开发。
[1] Wilkins T A, Rajasekaran K, Anderson D M. Cotton biotechnology., 2000, 19(6): 511-550.
[2] John M E, Crow L J. Gene expression in cotton (L.) fiber: cloning of the mRNAs., 1992, 89(13): 5769-5773.
[3] Basra A S, Malik C P. Development of the cotton fiber., 1984, 89: 65-113.
[4] Kim H J, Triplett B A. Cotton fiber growth in planta and. Models for plant cell elongation and cell wall biogenesis., 2001, 127(4): 1361-1366.
[5] 潘玉欣, 马峙英, 方宣钧. 棉花纤维发育的遗传机制及分子标记. 河北农业大学学报, 2005, 28(3): 6-11.
Pan Y X, Ma Z Y, Fang X J. The genetic mechanism of cotton f ibre developmentand its molecular tagging., 2005, 28(3): 6-11. (in Chinese)
[6] Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation., 2006, 18(3): 651-664.
[7] Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene., 2004, 16(9): 2323-2334.
[8] Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M D. Agene required for leaf trichome differentiation inis expressed in stipules., 1991, 67(3): 483-493.
[9] Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation indetermined by ahomolog,., 1997, 277(5329): 1113-1116.
岗位巡检,他给自己加码,不仅增加频次而且扩大检查范围,甚至连每个设备附件都不放过,即使是令人畏惧的超高压反应釜前、高压管道架上也绝不马虎。一次,上夜班,董松江查到反应坝前。突然,他发现仪表指针急剧摆动,压力上升到1560公斤!他当机立断,采取了紧急停车措施,从而避免了放炮。
[10] Rerie W G, Feldmann K A, Marks M D. Thegene encodes a homeo domain protein required for normal trichome development in., 1994, 8(12): 1388-1399.
[11] Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (L.)., 1999, 261(4/5): 660-671.
[12] Li C H, Zhu Y Q, Meng Y L, Wang J W, Xu K X, Zhang T Z, Chen X Y. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR., 2002, 163(6): 1113-1120.
[13] Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification ofencoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (L.)., 2003, 1630(1): 25-34.
[14] Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factoris required for cotton fiber development., 2008, 180(2): 811-820.
[15] Li X B, Cai L, Cheng N H, Liu J W. Molecular characterization of the cottongene that is preferentially expressed in fiber., 2002, 130(2): 666-674.
[16] Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cottongene is functionally expressed in fibers and participates in fiber elongation., 2005, 17(3): 859-875.
[17] Machado A, Wu Y R, Yang Y M, Llewellyn D J, Dennis E S. The MYB transcription factorregulates early fibre and trichome development., 2009, 59(1): 52-62.
[18] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development., 2011, 65(5): 785-797.
[19] WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts ofregulate cotton fiber development., 2016, 210(4): 1298-1310.
[20] Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene, 2005, 168(1): 167-181.
[21] Hsu C Y, An C, Saha S, Ma D P, Jenkins J N, Scheffler B, Stelly D M. Molecular and SNP characterization of two genome specific transcription factor genesand, 2008, 159(1/2): 259-273.
[22] Zhao M Z, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci., 2008, 135(11): 1991-1999.
[23] Zhang F, Zuo K J, Zhang J Q, Liu X A, Zhang L D, Sun X F, Tang K X. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development., 2010, 61(13): 3599-3613.
[24] Walford S A, Wu Y R, Llewellyn D J, Dennis E S. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene,., 2012, 71(3): 464-478.
[25] Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor., 2014, 5: 5519.
[26] Guan X Y, Li Q J, Shan C M, Wang S, Mao Y B, Wang L J, Chen X Y. The HD-Zip IV genefrom cotton is a functional homologue of the., 2008, 134(1): 174-182.
[27] Xu B, Gou J Y, Li F G, Shangguan X X, Zhao B, Yang C Q, Wang L J, Yuan S, Liu C J, Chen X Y. A cotton BURP domain protein interacts with-expansin and their co-expression promotes plant growth and fruit production., 2013, 6(3): 945-958.
[28] Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto K T, Takahashi T. Characterization of the class IV homeodomain-leucine zipper gene family in., 2006, 141(4): 1363-1375.
[29] Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in(upland cotton)., 2002, 268(1): 1-9.
[30] de Lucas M, Daviere J M, Rodriguez Falcon M, Pontin M, Iglesias Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation., 2008, 451(7177): 480-484.
[31] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants., 2005, 347(2): 183-198.
[32] 郑尚永, 郭余龙, 肖月华, 罗明, 侯磊, 罗小英, 裴炎. 棉花MADS框蛋白基因(GhMADS1)的克隆. 遗传学报, 2004, 31(10): 1136-1141.
Zheng S Y, Guo Y L, Xiao Y H, Luo M, Hou L, Luo X Y, Pei Y. Cloning of a MADS box protein gene () from cotton (L.)., 2004, 31(10): 1136-1141. (in Chinese)
[33] Lightfoot D, Malone K, Timmis J, Orford S. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells., 2008, 279(1): 75-85.
[34] Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling., 2010, 37(12): 805-816.
[35] Li Y, Ning H, Zhang Z T, Wu Y, Jiang J, Su S Y, Tian F Y, Li X B. A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation., 2011, 43(8): 607-617.
[36] Zhou Y, Li B Y, Li M, Li X J, Zhang Z T, Li Y, Li X B. A MADS-box gene is specifically expressed in fibers of cotton () and influences plant growth of transgenicin a GA-dependent manner., 2014, 75: 70-79.
[37] Gong S Y, Huang G Q, Sun X, Qin L X, Li Y, Zhou L, Li X B. Cotton, encoding a class II KNOX transcription factor, is involved in regulation of fibre development., 2014, 65(15): 4133-4147.
[38] Li E, Wang S, Liu Y, Chen J G, Douglas C J. OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in., 2011, 67(2): 328-341.
[39] Bhargava A, Ahad A, Wang S, Mansfield S, Haughn G, Douglas C, Ellis B. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in., 2013, 237(5): 1199-1211.
[40] Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system., 2012, 63(17): 6267-6281.
[41] Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation., 2013, 162(3): 1669-1680.
[42] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling., 2009, 459(7250): 1071-1078.
[43] Wang H, Mei W Q, Qin Y M, Zhu Y X. 1-Aminocyclopropane- 1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation., 2011, 43(8): 654-661.
[44] Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules., 2005, 46(8): 1384-1391.
[45] Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation., 2007, 51(3): 419-430.
[46] Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the brassinosteroid insensitive 1 genes of cotton., 2004, 54(2): 221-232.
[47] Sun Y, Veerabomma S, Fokar M, Abidi N, Hequet E, Payton P, Allen R D. Brassinosteroid signaling affects secondary cell wall deposition in cotton fibers., 2015, 65: 334-342.
[48] Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li F G., a cotton brassinosteroid catabolism gene, modulates fiber elongation., 2014, 203(2): 437-448.
[49] Beasley C A, Ting I P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules., 1974, 61(2): 188-194.
[50] Yu X L, Cui B M, Ruan M B, Wen W, Wang S C, Di R, Peng M. Cloning and characterization of, a DELLA-like gene from cotton ()., 2015, 75(1): 235-244.
[51] Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis., 2010, 167(10): 829-837.
[52] Richards D E, King K E, Ait-ali T, Harberd N P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling., 2001, 52(1): 67-88.
[53] Wen W, Cui B M, Yu X L, Chen Q, Zheng Y Y, Xia Y J, Peng M. Functional analysis of cotton DELLA-Like genes that are differentially regulated during fiber development., 2012, 30(4): 1014-1024.
[54] Liao W B, Ruan M B, Cui B M, Xu N F, Lu J J, Peng M. Isolation and characterization of a GAI/RGA-like gene from., 2009, 58(1): 35-45.
[55] Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen R. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1., 2008, 68(1/2): 1-16.
[56] Chen J G, Du X M, Zhou X, Zhao H Y. Levels of cytokinins in the ovules of cotton mutants with altered fiber development., 1997, 16(3): 181-185.
[57] Zeng Q W, Qin S, Song S Q, Zhang M, Xiao Y H, Luo M, Hou L, Pei Y. Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (L.)., 2012, 30(1): 1-9.
[58] Zhao J, Bai W Q, Zeng Q W, Song S Q, Zhang M, Li X B, Hou L, Xiao Y H, Luo M, Li D M, Luo X Y, Pei Y. Moderately enhancing cytokinin level by down-regulation ofexpression in cotton concurrently increases fiber and seed yield., 2015, 35: 60.
[59] Gialvalis S, Seagull R W. Plant hormones alter fiber initiation in unfertilized, cultured ovules of., 2001(5): 252-258.
[60] Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality., 2011, 29(5): 453-458.
[61] Samuel Yang S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton., 2006, 47(5): 761-775.
[62] Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit., 1972, 49(4): 644-648.
[63] Gokani S J, Kumar R, Thaker V S. Potential role of abscisic acid in cotton fiber and ovule development., 1998, 17(1): 1-5.
[64] Jamet E, Canut H, Boudart G, Pont-Lezica R F. Cell wall proteins: a new insight through proteomics., 2006, 11(1): 33-39.
[65] Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber., 2004, 36(1): 51-56.
[66] 许文亮, 黄耿青, 王秀兰, 汪虹, 李学宝. 一类新的编码PRPs基因的分离及其在棉花纤维等组织细胞中的表达. 生物化学与生物物理进展, 2007, 34(5): 509-517.
Xu W L, Huang G Q, Wang X L, Wang H, Li X B. Molecular characterization and expression analysis offive novel genes encoding proline-rich proteinsin cotton ()., 2007, 34(5): 509-517. (in Chinese)
[67] Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cottongene encoding a proline-rich protein is involved in fiber development., 2013, 82(4/5): 353-365.
[68] Huang G Q, Xu W L, Gong S Y, Li B, Wang X L, Xu D, Li X B. Characterization of 19 novel cottongenes and their expression profiling in fiber development and in response to phytohormones and salt stress., 2008, 134(2): 348-359.
[69] Liu H W, Shi R F, Wang X F, Pan Y X, Li Z K, Yang X L, Zhang G Y, Ma Z Y. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in sea island cotton fibers., 2013, 8(7): e70185.
[70] Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton., 2013, 161(3): 1278-1290.
[71] Kost B, Chua N H. The plant cytoskeleton: vacuoles and cell walls make the difference., 2002, 108(1): 9-12.
[72] SEAGULL R W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during incotton fiber development., 1992, 101(3): 561-577.
[73] Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers., 1990, 159(1): 44-59.
[74] Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of- and-tubulin isotypes during cotton fiber development., 1994, 105(4): 1347-1353.
[75] Whittaker D J, Triplett B A. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers., 1999, 121(1): 181-188.
[76] He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules., 2008, 59(10): 2687-2695.
[77] Li L, Li Y, Wang N N, Li Y, Lu R, Li X B. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin., 2015, 17(2): 528-534.
[78] Li Y, Jiang J, Li L, Wang X L, Wang N N, Li D D, Li X B. A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments., 2013, 66(0): 34-40.
[79] Lü F, Wang H H, Wang X Y, Han L B, Ma Y P, Wang S, Feng Z D, Niu X W, Cai C P, Kong Z S, Zhang T Z, Guo W Z. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation., 2015, 66(7): 1877-1889.
[80] Wang J, Wang H Y, Zhao P M, Han L B, Jiao G L, Zheng Y Y, Huang S J, Xia G X. Overexpression of a profilin () promotes the progression of developmental phases in cotton fibers., 2010, 51(8): 1276-1290.
[81] Wang H Y, Wang J, Gao P, Jiao G L, Zhao P M, Li Y, Wang G L, Xia G X. Down-regulation ofgene expression affects cotton fibre properties., 2009, 7(1): 13-23.
[82] Chi J N, Han Y C, Wang X F, Wu L Z, Zhang G Y, Ma Z Y. Overexpression of theactin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco., 2013, 31(4): 833-839.
[83] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions ofin cell elongation and secondary wall formation in developing cotton fibers., 2013, 25(11): 4421-4438.
[84] Li L, Huang J F, Qin L X, Huang Y Y, Zeng W, Rao Y, Li J, Li X B, Xu W L. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development., 2014, 152(2): 367-379.
[85] Pan Y X, Wang X F, Liu H W, Zhang G Y, Ma Z Y. Molecular cloning of three UDP-glucuronate decarboxylase genes that are preferentially expressed infibers from elongation to secondary cell wall synthesis., 2010, 53(5): 367-373.
[86] Pan Y X, Ma J, Zhang G Y, Han G Y, Wang X F, Ma Z Y. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton., 2007, 52(17): 2358-2364.
[87] Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid () cotton and its diploid progenitors expressed during fiber elongation., 2009, 166(4): 403-416.
[88] Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation., 2010, 232(5): 1191-1205.
[89] Shao M Y, Wang X D, Ni M, Bibi N, Yuan S N, Malik W, Zhang H P, Liu Y X, Hua S J. Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes., 2011, 10(4): 3771-3782.
[90] Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development., 2003, 15(4): 952-964.
[91] Jiang Y J, Guo W Z, Zhu H Y, Ruan Y L, Zhang T Z. Overexpression ofincreases plant biomass and improves cotton fiber yield and quality., 2011, 10(3): 301-312.
[92] Chi J N, Han G Y, Wang F X, Zhang G Y, XiangSun Y, Ma Z Y. Isolation and molecular characterization of a novel homogalacturonan galacturonosyl- transferase gene () from., 2009, 8(19): 4755-4764.
[93] Wang H H, Guo Y, Lv F, Zhu H Y, Wu S J, Jiang Y J, Li F F, Zhou B L, Guo W Z, Zhang T Z. The essential role ofgene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton., 2010, 72(4/5): 397-406.
[94] Liu H W, Shi R F, Wang X F, Pan Y X, Zang G Y, Ma Z Y. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species., 2012, 11(3): 3367-3378.
[95] Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber andcell elongation by activating ethylene biosynthesis., 2007, 19(11): 3692-3704.
[96] Wang X C, Li Q, Jin X, Xiao G H, Liu G J, Liu N J, Qin Y M. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation., 2015, 114: 16-27.
[97] Song W Q, Qin Y M, Saito M, Shirai T, Pujol F M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif., 2009, 60(6): 1839-1848.
[98] Ji S J, Lu Y C, Feng J X, Wei G, Li J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array., 2003, 31(10): 2534-2543.
[99] Qin Y M, Pujol F M, Hu C Y, Feng J X, Kastaniotis A J, Hiltunen J K, Zhu Y X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specificgene functions in fatty acid elongation., 2007, 58(3): 473-481.
[100] Qin Y M, Pujol F M A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH- dependent 3-ketoacyl-CoA reductased from developing cotton fibers., 2005, 15(6): 465-473.
[101] Shapiguzov A, Vainonen J P, Wrzaczek M, Kangasjarvi J. ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through., 2012, 3: 292.
[102] Potikha T, Johnson D, Delmer D A, Collins C. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers., 1999, 119(3): 849-858.
[103] Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cottonencoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation., 2009, 36(3): 141-150.
[104] Li H B, Qin Y M, Pang Y, Song W Q, Mei W Q, Zhu Y X. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development., 2007, 175(3): 462-471.
[105] Guo K, Du X Q, Tu L L, Tang W X, Wang P C, Wang M J, Liu Z, Zhang X L. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton ()., 2016, 67(11): 3289-3301.
[106] Zhang F, Jin X X, Wang L K, Li S F, Wu S, Cheng C Z, Zhang T Z, Guo W Z. A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+influx, ROS homeostasis, and actin filament reorganization., 2016, 171(3): 1750-1770.
[107] Naoumkina M, Thyssen G N, Fang D D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 () and-2 () revealed important role of aquaporins in cotton (L.) fiber elongation., 2015, 15: 14.
[108] Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (L.)., 2010, 10: 142.
[109] Liu D Q, Tu L L, Wang L, Li Y J, Zhu L F, Zhang X L. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers., 2008, 27(8): 1385-1394.
[110] Li D D, Ruan X M, Zhang J, Wu Y J, Wang X L, Li X B. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development., 2013, 199(3): 695-707.
[111] Shi H, Wang X, Li D, Tang W, Wang H, Xu W, Li X. Molecular characterization of cottongene preferentially expressed during fiber elongation., 2007, 34(2): 151-159.
[112] Zhang Z T, Zhou Y, Li Y, Shao S Q, Li B Y, Shi H Y, Li X B. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation., 2010, 61(12): 3331-3344.
[113] Zhou Y, Zhang Z T, Li M, Wei X Z, Li X J, Li B Y, Li X B. Cotton () 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling., 2015, 13(2): 269-280.
[114] Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton., 2012, 44(10): 1098-1103.
[115] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton., 2014, 46: 567-572.
[116] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (TM-1) provides insights into genome evolution., 2015, 33(5): 524-530.
[117] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement., 2015, 33(5): 531-537.
[118] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L.genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites., 2015, 5: 14139.
[119] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Xin J, Chen L L, He Y H, Lin Z, Zhu L F. The genome sequence of Sea-Island cotton () provides insights into the allopolyploidization and development of superior spinnable fibres., 2015, 5: 17662.
[120] Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing., 2012, 160(2): 738-748.
(责任编辑 李莉)
附表1 棉花纤维品质改良相关基因
Table 1 Major genes related to fiber quality improvement of cotton
Progress in Studies on Genes Related to Fiber Quality Improvement of Cotton
YANG Jun, MA Zhi-ying, WANG Xing-fen
(College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei, Baoding 071001, Hebei)
Cotton is an excellent and the most widely used natural fiber. With the improvement of living standards of people, the demand for more and better natural cotton fabrics is increasing continuously. Therefore, improving fiber yield and quality has become an important objective of cotton genetic breeding. To achieve this goal, cloning and functionally identifying cotton fiber development-related genes is the main foundation. Cotton fiber development consists of four distinct but overlapping stages, including fiber initiation, elongation (primary cell wall synthesis), secondary cell wall biosynthesis, and drying and maturation. The number of fibre cells per ovule is established at the initiation stage, and the length and strength of fibres are determined mainly at the stages of elongation and secondary cell wall synthesis. Cotton fiber development is a complicated and ordered process regulated by a large number of genes. To date, it has been reported that some genes play important roles in cotton fibre development, including various transcription factors, genes controlling the metabolism of plant hormones, cell wall and cytoskeleton-associated proteins, gene involving in the release or consumption of ROS, and lipid- and sugar- metabolism genes, etc. In order to provide reference for the future study of cotton fiber development and quality improvement, advances in the cloning and functional analysis of genes related to cotton fiber development were systematically summarized in this paper.
cotton; fiber; gene; quality improvement
2016-08-12;接受日期:2016-10-08
国家转基因生物新品种培育科技重大专项(2014ZX08009-003)、国家“863”计划(2013AA102601)
杨君,E-mail:yang22181@163.com。通信作者王省芬,E-mail:cotton@hebau.edu.cn
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!