当前位置:首页 期刊杂志

蕲艾内生细菌的分离鉴定及抑菌活性分析

时间:2024-05-23

徐碧林, 罗周瑜, 彭陈万里, 武 卉, 张子烨, 郑 玥, 郑永良

( 黄冈师范学院 生物与农业资源学院, 经济林种质资源改良与综合利用湖北省重点实验室 湖北省大别山特色资源开发协同创新中心, 湖北 黄冈 438000 )

植物内生菌是指生活史中某一阶段或整个阶段定殖在植物各组织器官或细胞间隙内的一类对植物自身不引起明显病害症状的微生物,包括内生细菌、内生真菌和内生放线菌等(Matsumoto et al., 2017; Uzma et al., 2018)。对内生菌与宿主植物的相互影响研究表明,它们对植物本身具有促进生长、增强抗逆性、生物防治和生物修复等有益的生物学功能(Giauque et al., 2019; De Lamo et al., 2020; El-Sayed et al., 2020; He et al., 2020)。不仅如此,药用植物内生菌还会获得与宿主相同的部分代谢途径,从而合成与宿主相同或相似的、具有潜在的抗菌、抗虫、抗癌、抗病毒、抗氧化、免疫制剂、降糖等生物活性的次生代谢产物(Gouda et al., 2016; 黄敬瑜等, 2017; Nongkhlaw et al., 2017)。因此,充分发掘药用植物内生菌具有广阔的应用前景。

艾草(Artemisiaargyi)隶属于菊科(Compositae)艾属(Artemisia),是一种功能性药用植物(Song et al., 2019)。蕲艾为湖北省蕲春县特产,中国国家地理标志产品,湖北省道地药材,具有护肝、抗肿瘤、抗菌、镇痛、抗炎等多种药理作用(洪宗国, 2015; Dong et al., 2018)。明代医圣李时珍在《本草纲目》中就有对蕲艾的推崇:“(艾叶)自成化以来,则以蕲州者为胜,用充方物,天下重之”,谓之“蕲艾”(Artemisiaargyivar.argyi‘Qiai’)。肖宇硕等(2018)对蕲艾及不同产地艾叶挥发油进行了一系列的比较研究,结果发现不同产地艾叶挥发性成分有一定差异,其中蕲艾品质最好。此外,Xiang等(2018)的研究还发现蕲艾挥发油具有较好的抑菌和杀菌活性。

近年来,关于蕲艾的种植、提取液、化学组分、药理作用及艾灸和艾贴等产品开发研究得较多,对蕲艾内生菌的研究报道较少。Shi等(2017)从蕲艾艾叶中分离得到内生真菌TrichodermakoningiopsisQA-3,并从其发酵液中成功分离鉴定出具有抗菌活性的5种新型真菌多酮类化合物和2种已知的酮类类似物。目前还尚未见对蕲艾内生细菌的相关报道。本研究分别从蕲艾的根、茎和叶中分离内生细菌,从微生物的分离、形态、生理生化特征、分子生物学鉴定和发酵液抑菌活性入手,探讨蕲艾内生细菌对常见的人类病原菌的抗菌作用及其产酶特性,旨为探寻有效拮抗微生物资源以及蕲艾的进一步开发利用提供理论依据,为充分利用内生菌资源生产工业用酶提供参考。

1 材料与方法

1.1 材料

供试样品蕲艾(Artemisiaargyivar.argyi‘Qiai’):采自湖北省黄冈市蕲春县赤东镇三渡村五组大田种植,样品采集后用自封袋密封后马上回实验室进行内生细菌的分离。

供试菌株:大肠杆菌(Escherichiacoli)、金黄色葡萄球菌(Staphylococcusaureus)、产气肠杆菌(Enterobacteraerogenes)、枯草芽孢杆菌(Bacillussubtilis)、变形杆菌(Proteusbacillusvulgaris) 和小肠结肠炎耶尔森氏菌(Yersiniaenterocolitica)均保存于黄冈师范学院经济林种质资源改良与综合利用湖北省重点实验室。

培养基:LB固体及液体培养基(1 L)(蛋白胨10 g,酵母提取物5 g,NaCl 10 g,pH 7.0,固体加琼脂粉18 g)用于蕲艾不同组织内生细菌的分离扩繁。淀粉培养基(1 L)(牛肉膏5 g,蛋白胨10 g,NaCl 5 g,可溶性淀粉2 g,pH 7.0~7.2,琼脂18 g)、牛奶培养基(LB固体培养基中加入11%灭菌的脱脂奶粉)、刚果红培养基(1 L)(羧甲基纤维素钠15 g,蛋白胨5 g,KH2PO42.0 g,MgSO40.2 g,NaCl 5 g,琼脂18 g,刚果红0.2 g,pH 7.0)和油脂培养基(LB固体培养基加入1%吐温80)分别用来筛选产淀粉酶、蛋白酶、纤维素酶和脂肪酶的内生细菌。蛋白胨水培养基(1 L)(蛋白胨10 g,NaCl 15 g,pH 7.3~7.5)、蔗糖/葡萄糖发酵培养液[蛋白胨水培养基1 L,1.6%溴甲酚紫乙醇溶液1.5 mL,20%蔗糖溶液(蔗糖发酵),20%葡萄糖溶液(葡萄糖发酵)]、葡萄糖蛋白胨水培养液(1 L) (葡萄糖5 g,蛋白胨5 g,K2HPO42 g,pH 7.2~7.4)、明胶液化培养基(1 L) (蛋白胨5 g,明胶100~150 g,pH 7.2~7.4)和柠檬酸盐培养基(1 L) [柠檬酸钠2 g,K2HPO41 g,NH4H2PO41 g,NaCl 5 g,MgSO40.2 g,琼脂18 g,1%溴麝香草酚蓝(酒精溶液)10 mL,pH 6.8]分别用来进行吲哚试验、蔗糖/葡萄糖发酵试验、乙酰甲基甲醇试验(VP试验)/甲基红试验(MR试验)、明胶水解试验和柠檬酸盐试验。

1.2 方法

1.2.1 内生菌的分离纯化 参照专利“一种艾草内生菌的分离方法”分离蕲艾根、茎和叶的内生细菌(徐碧林等, 2019)。取健康、无病害的艾叶、茎和根各约5 g,用自来水冲洗干净后,用滤纸吸干表面水分,剪成小片(叶片)/段(茎和根)放入灭菌平皿中,用无菌水洗涤3次并吸干。用75%乙醇浸泡叶片30 s,茎段和根60 s。无菌水浸泡冲洗5次并吸干,用2.5%次氯酸钠溶液浸泡叶片2 min,5%次氯酸钠溶液浸泡茎段和根3 min,无菌水浸泡2 min,循环3次,用无菌滤纸吸干残留的水分。吸取最后一次漂洗的无菌水200 μL涂布于LB培养基平板,验证消毒效果。

将消毒好的组织样品放入无菌研钵中,向其内加入9 mL无菌生理盐水和无菌石英砂,研磨至成匀浆状,100倍梯度稀释,取200 μL的适当梯度稀释液至LB固体培养平板上,均匀涂布,分别置于28 ℃和37 ℃培养。挑选菌落形态不同的单菌落纯化,并将形态大部分相似的菌落划归为同一类,保存菌株备用。

1.2.2 生理生化特征测定 参照《微生物学实验教程》(周德庆和徐德强, 2013),采用平板划线法分离得到内生细菌单菌落,记录菌落的颜色、形态、透明度等,并在显微镜下观察其形态特征及革兰氏染色反应。参考《常见细菌系统鉴定手册》(东秀珠和蔡妙英, 2001)测定筛选菌株的生理生化反应。此外,挑取活化后的内生细菌,分别在含淀粉培养基平板、牛奶培养基平板、刚果红培养基平板和油脂培养基平板上划线,37 ℃培养1~2 d后,在淀粉培养基平板上平铺一层卢戈氏碘液,其余平板不做处理,分别观察淀粉平板、牛奶平板和刚果红平板上菌落周围的透明水解圈,以及吐温80平板上的白色晕圈,测量并计算透明水解圈和白色晕圈与菌落直径的比值。

1.2.3 16S rDNA分子生物学鉴定 提取筛选菌株的染色体总DNA,以菌株的总DNA为模板,利用通用引物对27F:5′-AGAGTTTGATCCTGGCTCAG-3′和1492R:5′-TACCTTGTTACGACTT-3′扩增菌株16s rDNA基因。25 μL的反应体系:模板1 μL,上、下游引物各1 μL,ddH2O 9.5 μL,Taq DNA聚合酶Mix12.5 μL。PCR反应条件:94 ℃预变性3 min,94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸1 min,共30个循环,72 ℃延伸10 min。取PCR产物于1%的琼脂糖凝胶上电泳,根据试剂盒操作说明回收DNA片段,回收后的片段委托上海生工生物工程有限公司测序。根据测序结果,将序列在EzBioCloud(https://www.ezbiocloud.net/resources/16s_download)数据库中进行同源性比对(Yoon et al., 2017),采用MEGA 7.0中的 CLUSTAL_W模块将菌株的16s rDNA序列与其同源关系相近的序列比对分析后,把两头的序列剪切整齐,转换格式后,用MEGA 7.0中的Neighbor-Joining模块构建系统进化树,1 000次随机抽样,计算自引导值(Bootstrap)以评估系统进化树的置信度(Kumar et al., 2016)。

1.2.4 筛选菌株发酵液挥发物抑菌试验 初筛:将筛选菌株活化并进行平板划线,挑单菌落于37 ℃液体培养12 h,按1%的接种量接种至100 mLLB液体培养基中,37 ℃,180 r·min-1,发酵5 d。超声破细胞,按发酵液:乙酸乙酯1∶1(V/V)的比例沿着器皿内壁缓慢加入(防止乳化)乙酸乙酯,超声萃取3次,合并3次得到的萃取液,用旋转蒸发仪在35 ℃减压条件下浓缩乙酸乙酯相,定容至500 μL,4 ℃保存备用。活化靶标菌后,挑单菌落,在LB培养基平板上纵横交叉密集划线。在密集划线的平板上等距贴直径为6 mm的灭菌双层滤纸片,每一个滤纸片上滴加8 μL内生细菌挥发油,每一种内生细菌挥发油做3组平行试验,并以等体积0.3 mg·mL-1的卡那霉素作为阳性对照(+),等体积乙酸乙酯作为阴性对照(-)。将处理好的平板置于4 ℃扩散1 d,37 ℃培养1 d后,测量并计算平均抑菌圈直径Φ。

复筛:采用Silva描述的方法对筛选菌株发酵液挥发物的最低抑菌浓度(MICs)和最低杀菌浓度(MBCs)进行了测定(Silva et al., 2011)。用LB培养基对具有显著抑菌效果的菌株发酵液挥发物进行2倍梯度稀释(1.0、2.0、4.0、8.0、16.0、32.0、64.0、128.0、256.0、512.0 μg·mL-1),用于测定它们最低抑菌浓度。在稀释后的培养液中分别加入50 μL约107CFU·mL-1的对应菌液,将3组接种后的菌液置于37 ℃、180 r·min-1培养箱培养36 h。培养后完全抑制菌株生长的挥发物的最低浓度即为MICs。MICs实验结束后,从每一个浓度梯度的试管中取200 μL培养物分别涂在LB平板上,无微生物生长的平板上相应浓度被确定为MBCs。

2 结果与分析

2.1 蕲艾内生细菌的分离结果

最后一次清洗试验材料的无菌水涂布LB平板,置于37 ℃培养1周没有微生物生长,说明试验材料表面消毒彻底,分离到的细菌均为蕲艾内部所有,而非外界环境污染所致。本试验一共从蕲艾的根、茎和叶中分别分离到6、7、7株内生细菌。

2.2 筛选菌株总DNA的提取和16s rDNA扩增结果

筛选菌株基因组DNA提取结果见图1:A,基因组DNA在电泳图上的23 130 bp附近一条明显的条带,可以用于PCR 扩增。以基因组DNA为模板,以及通用引物对27F/1492R,扩增得到了特异性长度约为1 500 bp的目的条带(图1:B)。

A. 基因组DNA琼脂糖凝胶电泳; B. 16S rDNA扩增结果琼脂糖凝胶电泳图。A. Agarose gel electrophoresis of genomic DNA; B. Agarose gel electrophoresis of 16S rDNA amplification products.图 1 内生细菌基因组DNA和16S rDNA扩增结果琼脂糖凝胶电泳图Fig. 1 Agarose gel electrophoresis of endophytic bacterial genomic DNA and 16S rDNA amplification products

2.3 筛选菌株系统进化分析结果

对20株内生细菌的16S rDNA序列进行比对发现,来源于叶和茎的内生细菌的16S rDNA序列同源性为100%,表明它们共有相同的内生细菌。将来源于茎和根的13株内生细菌的基因序列提交到EzBioCloud数据库(https://www.ezbiocloud.net/resources/16s_download)中进行同源性比对,查找与其同源性大于99%的菌株,最终确定蕲艾不同组织中的内生细菌归属。如表1和图2所示,来源于蕲艾茎和叶中共有内生细菌含有6属7种,分别为芽孢杆菌属(Bacillus)2株、不动杆菌属(Acinetobacter)1株、假单胞菌属(Pseudomonas)1株、短小杆菌属(Curtobacterium)1株、黄体杆菌属(Luteibacter)1株和类节杆菌属(Paenarthrobacter)1株;来源于蕲艾根的内生细菌含有3属6种,分别为芽孢杆菌属(Bacillus)4株、肠杆菌属(Enterobacter)1株和干燥杆菌属(Siccibacter)1株。蕲艾的内生细菌在茎和叶中的组成几乎相同,叶和茎与根中的内生细菌种类只共有1个属,其余都不共有。

表 1 蕲艾不同组织内生细菌比较Table 1 Comparison of endophytic bacteria in different tissues of Artemisia argyi

分支点上的数值为1 000 次自展值分析所得值,标尺0.020为进化距离。Numbers at the nodes indicate the level of bootstrap values based on 1 000 replications, bar is 20 nt substitutions per 1 000 nt.图 2 基于16S rDNA序列的蕲艾内生细菌系统发育分析Fig. 2 Phylogenetic analysis of endophytic bacteria from Artemisia argyi based on 16S rDNA sequences

2.4 筛选菌株的生理生化特征

对分离获得的13株内生细菌进行了葡萄糖发酵、蔗糖发酵、VP试验和产酶等生理生化特征检测(表2),部分菌株产酶结果见图3,从图3:A-C中可以看出,lzy-17、lzy-20和lzy-21均能在刚果红培养基平板上产生不同大小的水解圈,表明它们均能分泌纤维素酶,其中lzy-21产纤维素酶能力最强,水解圈与菌落直径比约为6.0;从图3:D-G中可以看出,lzy-1、lzy-9、lzy-12和lzy-20均能在牛奶平板上产生不同大小的透明水解圈,表明它们均能分泌蛋白酶,其中lzy-1和lzy-20产蛋白酶能力最强,水解圈与菌落直径比约为4.0;从图3:H中可以看出,lzy-1能在含吐温80平板上产生与菌落直径比约为3.5的白色晕圈, 表明其能分泌脂肪酶。从图3:I中可以看出,lzy-12能在含淀粉平板上产生与菌落直径比约为2.5的透明水解圈,表明其能分泌淀粉酶。

A-C. lzy-17、lzy-20和lzy-21在纤维素刚果红培养基平板上产生透明水解圈情况; D-G. lzy-1、lzy-9、lzy-12和lzy-20在牛奶平板上产生透明水解圈情况; H. lzy-1在含1%吐温80的平板上产生白色晕圈情况; I. lzy-12在淀粉培养基上产生透明水解圈情况。A-C. Hydrolytic circles produced on the cellulose Congo red medium plate by lzy-17, lzy-20 and lzy-21; D-G. Hydrolytic circles produced on the milk plate by lzy-1, lzy-9, lzy-12 and lzy-20; H. White halocircles produced on the plate containing 1% Tween 80 by lzy-1; I. Hydrolytic circles produced on the starch medium plate by lzy-12.图 3 内生细菌产酶情况检测Fig. 3 Hydrolysis of different substrates by endophytic bacteria

2.5 筛选菌株发酵液挥发物的抑菌效果

以常见的6种病原菌作为靶标菌,采用滤纸片扩散法对筛选菌株发酵液挥发物抑菌活性进行初筛,结果见表3,除了lzy-9,其余12株细菌挥发物具有不同程度的抑菌活性,占分离菌株的92.3%。对大肠杆菌、金黄色葡萄球菌、产气肠杆菌、枯草芽孢杆菌、变形杆菌、小肠结肠炎耶尔森氏菌具有抑菌作用的菌株分别有8、5、8、7、5、3株,其中,lzy-20对大肠杆菌、产气肠杆菌和枯草芽孢杆菌都具有相对较好的抑菌活性,wnn4-3对大肠杆菌、枯草芽孢杆菌和变形杆菌均具有相对较好抑菌活性,lzy-12对金黄色葡萄球菌和小肠结肠炎耶尔森氏菌均具有较好的抑菌活性,lzy-17和lzy-21都对小肠结肠炎耶尔森氏菌均具有较好的抑菌活性。

对具有抑菌效果的菌株发酵液挥发物的最低抑菌浓度和最低杀菌浓度进行测定,结果如表4所示,其中lzy-20对大肠杆菌、产气肠杆菌和枯草芽孢杆菌的MICs均为16 μg·mL-1,对三者的MBCs依次为32、32 μg·mL-1和16 μg·mL-1。wnn4-3对大肠杆菌、枯草芽孢杆菌和变形杆菌均的MICs均为16 μg·mL-1,对三者的MBCs依次为16、32 μg·mL-1和32 μg·mL-1。lzy-12对金黄色葡萄球菌和小肠结肠炎耶尔森氏菌的MICs均为16 μg·mL-1,对二者的MBCs分别为32 μg·mL-1和16 μg·mL-1。lzy-17和lzy-21都对小肠结肠炎耶尔森氏菌的MICs均为16 μg·mL-1,二者对其MBCs分别为16 μg·mL-1和32 μg·mL-1。

表 3 内生细菌发酵液挥发物抑菌效果Table 3 Bacteriostatic effect of endogenous bacterial volatile oil

3 讨论与结论

本试验从蕲艾茎、叶和根中分别分离得到7、7株和6株内生细菌,16S rDNA全序列的系统发育分析及生理生化试验结果显示,来源于蕲艾茎和叶中的共有内生细菌含有6属7种,来源于蕲艾根的内生细菌与来源于茎和叶的内生细菌共有1个属。上述结果表明,蕲艾内生细菌在地上和地下组织中的组成不同,不同的内生细菌对蕲艾的组织具有差异性和专一性。

我们分离得到的13种内生细菌中,皮提不动杆菌和与其亲缘关系较近的鲍氏不动杆菌(Acinetobacterbaumannii)、诊所不动杆菌(A.nosocomialis)组成的Acb复合体是重要的院内感染病原体,随着抗生素的广泛应用,越来越多的皮提不动杆菌被鉴定为多重耐药菌株(Wang et al., 2020)。根据巴斯德研究所MLST数据库的最新数据,皮提不动杆菌的来源有人类、兔子、白鹳、火鸡和鱼类,其中人类是皮提不动杆菌及其许多变种的主要宿主,鱼类可能是其新兴宿主(Li et al., 2017; Wang et al., 2020), 目前还未见植物源的皮提不动杆菌报道,本研究分离得到皮提不动杆菌lzy-1系首次从植物中分离到皮提不动杆菌。耐冷假单胞菌(Pseudomonaspsychrotolerans)的部分菌株在一定条件下可以促进植物生长(Liu et al., 2017; Kang et al., 2020)。藤黄短小杆菌(Curtobacteriumluteum)的菌株具有抗病原菌的作用(Suhandono et al. 2016),且与甲霜灵同时处理黑胡椒能大幅减少线虫感染,还能促进黑胡椒的生长并提高其产量(Bhai et al., 2017)。该结果表明,本研究分离得到的耐冷假单胞菌lzy-2和藤黄短小杆菌lzy-9可能具有潜在的促生和生防价值。自2010年以来, 对松尼索利黄体杆菌属的报道较少, Akter和Hou(2018)从红松根际土壤分离到一株能降解酪蛋白的松尼索利黄体杆菌MAH-14,Baltrus等(2019)对该菌进行了全基因组测序。本研究分离得到的松尼索利黄体杆菌lzy-12也具有较强的产蛋白酶能力,该类菌株可能参与宿主的代谢活动。截至目前,对噬尼古丁类节杆菌的报道也比较少,Maeng等(2018)首次从韩国土壤中分离到耐辐射的噬尼古丁类节杆菌,其可能能提高作物对辐射的耐受性。据此,我们推测来源于蕲艾的内生细菌噬尼古丁类节杆菌lzy-17也能提高其宿主的耐辐射能力。

表 4 内生细菌发酵液挥发物MICs和MBCsTable 4 MICs and MBCs of endophytic bacteria fermentation broth volatiles

芽孢杆菌属是内生细菌的优势菌群之一,高地芽孢杆菌的菌株是新型马铃薯赤霉病的潜在生物防治剂(Li et al., 2019),可以减轻低磷和高盐胁迫对小麦的损伤(Yue et al., 2019),此外,它们不仅能促进水稻生长,还能提高抗旱能力(Kumaravel et al., 2018)。从狐尾藻中分离得到耐受高浓度锰离子的蜡样芽胞杆菌(B.cereus)WSE01不仅能促进狐尾藻的生长,还能增强其对锰离子的耐受性(Tang et al., 2020)。特基拉芽孢杆菌(B.tequilensis)的菌株不仅是防治番茄枯萎病最有效且环保的化学杀菌剂替代品,还能抑制稻瘟病菌及促进大白菜幼苗的生长(Li et al., 2018; Bhattacharya et al., 2019; Kang et al., 2019)。阿氏芽孢杆菌(B.aryabhattai)的菌株可以提高番茄对盐的耐受性、提高海蓬子属多枝柽柳种子的萌发率、促进植物生长并降解人工污染土壤中的磷胺(Figueira et al., 2019; Yoo et al., 2019; Dash et al., 2020)。除了单独发挥作用,阿氏芽孢杆菌H26-2 和暹罗芽孢杆菌H30-3同时接种不仅可以促进大白菜生长,还能缓解高温和干旱胁迫(Jeong et al., 2019)。来源于暹罗芽孢杆菌的菌株产生的挥发物可以在不需要生长素或乙烯/茉莉酸的情况下促进根的发育,从紫锥肉苁蓉根中分离的暹罗芽孢杆菌CV5分泌的可辐射诱导的具有辐射防护作用的胞外多糖CV5,可以减少电离辐射产生的自由基损伤(Sihem et al., 2019)。Zhou等(2021)的研究表明,韩国芽孢杆菌181-22能促进水稻生长,缓解镉胁迫。上述结果表明,本研究分离得到的高地芽孢杆菌lzy-4、蜡样芽胞杆菌wnn1-2、特基拉芽孢杆菌wnn2-15、阿氏芽孢杆菌wnn2-22、暹罗芽孢杆菌wnn4-3和韩国芽孢杆菌lzy-21可能是潜在的生防或促生菌。

在水果粉、配方奶粉、香料和草药中可检测到苏黎世干燥杆菌(Siccibacterturicensis),它们和与食物相关的致病菌克洛诺斯杆菌属(Cronobacter)成员有较近的亲缘关系,2018年Lepuschitz等首次从奥地利口角炎患者的唇角分离到苏黎世干燥杆菌,表明其具有致病性(Sarah et al., 2018)。本研究分离得到的苏黎世干燥杆菌wnn1-3的生理功能还有待进一步研究。Sutton等(2018)利用计算机对已经测序的肠杆菌序列进行分析发现,罗根坎普氏肠杆菌(Enterobacterroggenkampii)是阿斯氏肠杆菌(E.asburiae)的同义词,阿斯氏肠杆菌的菌株可以通过抑制铁的吸收来降低玉米植株中镉的毒性、具有杀线虫和促进植物生长的活性,阿斯氏肠杆菌Vt-7挥发物对花生贮藏过程中产生的黄曲霉和黄曲霉毒素具有抗性(Mira et al., 2018; Sutton et al., 2018; Gong et al., 2019; Zhou et al., 2019)。该结果表明,本研究分离得到的罗根坎普氏肠杆菌wnn1-1可能具有生物防治功能。

本研究分离的菌株中,皮提不动杆菌lzy-1系首次从植物中分离到皮提不动杆菌,松尼索利黄体杆菌报道较少,已报道的与我们分离得到的其余11种内生菌同属的菌株分别拥有各自有益的生物学功能,体现在促进生长、增强抗逆性、生物防治、生物修复和具有良好的抗菌效果等方面。因此,我们猜测,从蕲艾中分离得到的这些内生细菌,与蕲艾本身易于种植、植株高大、全草入药及其良好抑菌效果之间有一定的关联,可能是在长期进化中,内生菌菌株促进蕲艾生长,增强其对环境的耐受性;同时,它们也获得了蕲艾本身的部分特性,从而实现与宿主植物共同进化。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!