时间:2024-05-24
付兴涛,王奇花,王锦志
降雨条件下晋西黄绵土坡面室内外径流侵蚀试验差异分析
付兴涛1,王奇花1,王锦志2
(1. 太原理工大学水利科学与工程学院,太原 030024;2. 山西省水土保持科学研究所,太原 310045)
目前多利用室内模型试验所得土壤侵蚀模数乘以面积预测野外实地水土流失,为了探讨晋西黄绵土坡面室内外径流侵蚀差异,该研究采用室内模型模拟与野外原位模拟试验方法,分析了不同降雨与坡面面积条件下,室内与野外坡面径流模数、侵蚀模数、单宽输沙率及细沟发育差异性,结果显示:室内模型试验结果均大于野外原位模拟试验,当野外坡面面积为室内的4倍时,径流量与侵蚀产沙量不呈4倍关系,且面积越大野外与室内侵蚀量比值越小,说明简单地用室内试验结果乘以面积预测野外实地水土流失是不合理的,且雨强对径流侵蚀的影响较面积大;相同降雨条件下室内坡面较野外坡面更易产生细沟,且发育程度大,更倾向于沟底下切,增强了室内坡面径流侵蚀力;一定雨强、坡长条件下,野外单宽输沙率在10~14 min首次出现峰值,之后趋于稳定,而室内多在4 min即出现峰值,且峰值为野外的1.58~10.40倍,说明室内模型试验单宽输沙率及其波动性大于野外,且响应时间更短。
降雨;径流;侵蚀;晋西;黄绵土;室内外;差异分析
天然降雨下野外径流小区观测是土壤流失资料获取的主要途径,但由于天然降雨的有限性与偶发性,以及受人力、物力、财力等限制,导致野外观测难度较大。因此,将野外土壤侵蚀现象按一定比尺关系对应于室内径流槽模型模拟试验是当前土壤侵蚀机理研究中普遍采用的一种快捷且易操作的科学方法[1-5]。雷阿林等[6]基于物理学方法推导出一个土壤侵蚀试验中的降雨相似性法则,并指出土壤不宜做缩小比尺的模拟,模型土壤应保持与天然土壤最接近的容重、质地、结构等。事实上,室内模型试验用土很难做到与野外原状土完全一致,因此,即使在相似的降雨条件下,室内与野外侵蚀产沙试验结果仍不可避免地存在差异。高建恩等[7-8]在前人研究基础上,基于相似论的原理对黄土高原小流域水力侵蚀调控实体模拟试验的相似条件进行研究,并在据此所建造的康家屹崂小流域模型进行验证,指出几何比尺为100时,降雨、汇流、产沙及输沙均与实际基本相符;随后,李书钦等[9]在比尺为2.5时的试验结果显示,径流流态、阻力系数和床面变形也是基本相似的,但其原型与模型采用的是室内大型和小型土槽;而更多学者关注土壤侵蚀的空间尺度效应问题[10],如坡面尺度、流域尺度的土壤侵蚀问题。诸多研究均为模型向原型定量转换这个难点问题的解决奠定了一定的基础,但总体上依然未能很好解决模型相似准则问题[11],且研究结果具有一定的研究区局限性。
在目前水力侵蚀模型模拟与原型相似准则尚无实质性突破的情况下,鉴于侵蚀机理的复杂性,对于室内模型模拟与野外原状土试验的研究多基于几何相似,通过探讨径流与输沙的差异性,进而为室内模型模拟结论向原型的定量转换寻求突破点。由于模拟降雨试验会弱化降雨因子对土壤侵蚀的影响[12],且室内模型试验土壤条件很难与野外完全保持一致,使得室内模型与野外原状土模拟降雨试验结果存在明显差异。管新建等[13]利用模糊贴近度计算方法对邙山黄土的室内外侵蚀产沙过程进行分析研究,结果表明一定雨强下容重较大的土样与原状土贴近度更高。红壤坡面的试验结果表明,室内与野外侵蚀模数并不按面积比例呈倍数关系,室内模型试验结果反而远大于野外实地试验结果[14],这与Mamisao等[15]的研究结论相似,Schiettecatte等[16]在黄土坡耕地的试验结果也显示在模拟降雨条件下室内产沙量要高于野外。
综上所述,尽管学者们通过大量试验分析了室内模型与野外原型相似比尺关系,揭示出室内模型试验与野外实地水土流失确实存在差异,但由于研究条件与研究区域不同,研究结论难以推广应用,尤其针对晋西典型的离石黄土母质上发育的黄绵土,缺乏室内外侵蚀产沙差异的系统研究。鉴于此,本研究采用人工模拟试验方法,通过对比分析降雨条件下室内模型与野外实地土壤侵蚀结果,探索模拟降雨试验后室内外坡面地貌形态差异性以及单宽输沙率随产流历时的变化规律,试图揭示导致室内外土壤侵蚀差异性的原因,以期为晋西室内模型试验结果准确应用于野外实地水土流失预测提供科学依据。
试验区位于晋西吕梁市离石县王家沟流域,该流域为三川河中游左岸一条支沟,属黄土丘陵沟壑区第一副区,流域面积9.10 km2,地理坐标为东经111°11′,北纬37°31′。年平均气温8.90 ℃,多年平均降雨量490.30 mm,降雨多集中于7-9月,历时短,强度大,极易造成严重水土流失并加速侵蚀,实测多年平均输沙模数7 651 t/km2。研究区土壤母质为新生界第四系中更新统离石黄土或晚更新统马兰黄土与中更新统离石黄土的混合土,为典型的离石黄土母质上发育的黄绵土,颗粒细小,质地疏松,不具层理,具有直立性,并含有碳酸钙,遇水容易溶解、崩塌,地面坡度较大且坡面植被稀疏。表层土壤容重1.37 g/cm3(野外)、1.35 g/cm3(室内),有机质含量13.42 g/kg,pH值8.15,根据国际制粒级划分标准,土壤黏粒(<0.002 mm)、粉砂粒(0.002~<0.02 mm)、砂粒(0.02~<2 mm)质量分数分别为1.75%、14.20%和84.05%。研究区土壤、气候在晋西黄土高原地区有较好的典型性和代表性。
模拟降雨在太原理工大学实验室内与王家沟流域野外坡面径流小区分别进行,坡面土地利用方式为裸坡(图1)。山西省水保所径流测验资料(1955-1981年)指出,当地农田主要分布在山坡上部坡度20°左右,其中16°~20°耕地面积占比最大(25.60%),因此,试验设计坡度为20°。此外,山坡上果园种植行距一般为3和4 m[17],柠条种植间距为4 m[18],为了研究该坡长范围内土壤侵蚀规律,设计试验坡长为2、3、4、5 m,坡面宽度分别为0.50 m(室内)、2.00 m(野外),径流槽内土壤深度为0.50 m(室内)。根据山西省水文局降雨径流监测资料,该流域暴雨强度多集中于60~90 mm/h之间,汛期最大降雨强度达90.30 mm/h,因此,试验设计雨强 50、60、70、80、90、100、110、120 mm/h。降雨监测系统选择由中国科学院水利部水土保持研究所与西安清远测控技术有限公司共同研发的便携式全自动人工模拟降雨器。喷头高度离地面10 m左右,根据付兴涛[19]对降雨均匀性测定及雨强标定,得出本试验所用人工模拟降雨器的降雨均匀系数在85%以上,雨滴分布及终速等指标均符合试验要求,可以开展试验。
径流槽内土壤取自野外试验小区附近坡面上。将土壤按原状土顺序分层(10 cm一层,共5层)装袋并运回室内,风干后去除杂质备用。为尽量保证径流槽底部土壤透气透水性接近天然状态,先均匀撒5 cm厚细沙并铺上透水纱布,然后装填45 cm厚供试土壤。装土前采用烘干法测定土壤含水率,尽量保证土壤容重接近自然状态。9 cm为一层,共分5层均匀地将土壤装入径流槽。每填完并压实一层后用齿耙耙松土表,以保证上下2个土层接触面均匀一致。将土壤全部装入径流槽后,用平尺刮平土表,压实土壤与径流槽接触的边壁,以减小边壁边际效应对径流、产沙过程的影响。径流槽装填完毕后,至少静置1个月并定期洒水,环刀法测定沉实后槽内土壤容重,直到其接近野外天然状态时进行人工模拟降雨试验。
为保证室内外各自降雨试验土壤前期水分含量(绝对含水率)相对一致,每场降雨前在坡面不同部位取土样进行测定(室内试验均在13.99%左右,野外则在15%左右)。试验过程中用秒表记录产流开始时刻,之后每隔2 min用标有刻度的1 L塑料瓶采集一次径流泥沙样,同时量测水温(用于查询粘滞系数),产流开始后持续降雨30 min,场降雨共采集15组径流泥沙样。每场降雨试验后,将所有径流泥沙样静置24 h量测径流体积,然后倒去上清液,将泥沙烘干称质量(105 ℃的条件下烘12 h)得到每2 min流出小区出口的泥沙量。由于室内试验4个坡长的径流槽并排放置,所以每场模拟降雨4个坡长同时进行,每场降雨重复2次,共降雨16场。野外模拟试验小区分布比较散,所以每个小区分别进行试验,每场降雨重复2次,共降雨64场。
将场降雨流出径流小区的流量作为最终地表径流量,径流中所含泥沙作为最终土壤流失量,对室内与野外试验土壤侵蚀模数、径流模数进行描述性统计分析,并做侵蚀模数、径流模数与面积、雨强的Pearson相关分析;绘制细沟形态特征指标柱状图及不同雨强下室内外坡面单宽输沙率随产流历时变化曲线。
试验尽量控制室内与野外模拟降雨试验土壤、降雨特性、坡长、坡度最大程度保持相似,但室内与野外土壤侵蚀模数与径流模数随雨强的变化过程表明(图2、图3),室内模型试验结果均大于野外原位模拟试验结果。雨强由50 mm/h增大到120 mm/h时,室内土壤侵蚀模数与径流模数分别在0.297×10-2~0.110 kg/(m2·min)、0.017×10-2~0.241×10-2m3/(m2·min)之间变化,野外变化范围为0.260×10-3~0.039 kg/(m2·min)、0.100×10-3~0.116×10-2m3/(m2·min),野外侵蚀模数与径流模数最大、最小值分别仅为室内的8.70%~35.80%、48.10%~58.80%。当野外径流小区面积为室内径流槽面积的4倍时,其径流量与侵蚀产沙量并非呈4倍关系(表1),相同雨强下,径流小区面积越大,野外与室内侵蚀产沙量比值越小。
表1 野外与室内产沙量比和径流量比
导致室内与野外试验结果差异性的原因,可能主要在于土壤特性、入渗和风的影响。首先,次降雨过程中土壤侵蚀的发生是降雨与表层土壤之间的相互响应[20],降雨侵蚀力与土壤可蚀性相互依存,降雨侵蚀力的大小取决于降雨特性[21],如雨强、雨滴直径等,而土壤可蚀性则主要取决于土壤理化特性,如土壤颗粒组成、水稳性团粒结构、渗透性、有机质含量等,在降雨特性相似的情况下可蚀性低的土壤易遭侵蚀[22]。试验采用可控雨强的人工模拟降雨装置,所以室内与野外模拟降雨强度、雨量基本保持一致,但由于室内模型试验槽为人工装填,尽管按照野外原状土层次分层装填并层层压实,但与质地坚硬、具有较多结皮的野外原位自然坡面相比,室内模型坡面表层土壤疏松颗粒较多,易被雨滴溅蚀及径流携带[23],其可蚀性是野外原状土的4倍左右[24],试验测得野外原状土表层土壤容重为1.37 g/cm3,室内模型试验为1.35 g/cm3,略有偏差。其次,模型试验与原位模拟试验边界的差异。导致室内外模拟试验的降雨入渗有区别,相比至少垂直深50 cm边界限制的室内土槽,野外原位土壤可沿着垂向及侧向渗透,其渗透量较室内大。最后,野外试验虽然尽量选择在早上5:00-9:00风比较小时进行,但试验过程中观察到仍然会受到风的间断性影响,陈洪松等[25]在野外模拟试验中也指出这一点。结果显示,室内外不同面积径流小区土壤侵蚀模数随雨强的增大均呈显著增大趋势(图2、图3),相比野外原位模拟试验相对缓慢的变化趋势,室内模型试验增幅更加显著,如雨强由50 mm/h增大到120 mm/h时,室内2.5 m2面积土壤侵蚀模数增幅为0.107 kg/(m2·min),野外10 m2面积增幅为0.039 kg/(m2·min),即野外径流小区侵蚀模数增幅仅为前者的37.00%。然而,侵蚀模数随面积的增大室内与野外均呈现波动变化趋势,径流模数表现出与侵蚀模数相似的变化过程,野外径流模数随面积、雨强的增大波动性更大。方差分析显示,雨强对土壤侵蚀模数有显著影响,室内外模拟试验统计量对应的值为0.000,均远小于0.05,而面积对土壤侵蚀模数影响并不显著。进一步相关分析表明(表2),侵蚀模数、径流模数在室内与野外模拟试验条件下与雨强在0.01水平上均呈极显著正相关,相关系数不小于0.838,而与面积的相关性较小。侵蚀模数与径流模数在0.01水平上呈极显著正相关,室内模型试验相关性较野外大,其相关系数分别为0.947、0.715,说明相比侵蚀面积,降雨与径流仍然是导致土壤流失的主要因素。然而,当雨强较小时,由于雨滴直径较小,在间断性风的影响下发生水平移动[26],甚至被吹到径流小区边界外面,使得降落到小区内的雨量减少,一方面影响径流量,另一方面影响降雨侵蚀力,从而导致野外试验结果小于室内。因此,本试验初步得出不能简单地用室内模型模拟试验结果与面积相乘预测野外实地土壤侵蚀量。
表2 侵蚀模数、径流模数与面积、雨强的相关性分析
注:**<0.01,*<0.05(32个实测值).
Note:**<0.01,*<0.05 (32 measured values).
细沟是在坡面径流差异性侵蚀(由于地面凹凸不平而产生的对径流的分配作用和地表土壤抗侵蚀力的空间差异,使径流在坡面上呈现不均匀分布)条件下,坡面上产生的一种小沟槽地形。土壤抗侵蚀力和降雨径流侵蚀力是影响细沟侵蚀的最直接因素,当降雨径流侵蚀力大于土壤抗侵蚀力时细沟形成并得以发展,坡面产流产沙过程也随之发生改变[27]。早在1984年,Foster等[28]根据田间实际形成的细沟,在室内制作细沟形态相同的模型(0.91 m×4.27 m),研究细沟流速与沟岸扩张沟道下切的影响。郑粉莉等[29]也依据野外调查,在5.0 m×1.5 m的径流小区进行试验,表明土壤、地形以及土地管理措施等都会影响细沟侵蚀量,且这些影响基本与野外调查结果相符。本研究对室内模型与野外原状坡面降雨试验后细沟形态特征对比发现,相同降雨条件下室内坡面较野外坡面更容易产生细沟(图4)。以90 mm/h降雨为例,试验过程中对坡面地貌形态观察发现,室内外坡面下部随降雨的进行均有不同程度的细沟出现,野外相较室内坡面细沟不太发育,故未对细沟的形态特征(长、宽、深等)进行测量,管新建等[24]在野外25°陡坡进行的雨强为0.51~2.32 mm/min,历时30 min的人工模拟降雨试验也得出这一结论。而室内试验在坡长为3 m降雨强度小于90 mm/h时,没有明显细沟出现,可能由于坡长较短导致坡面汇水面积小,坡面即使出现跌坎尚未贯通形成细沟[30]。然而,当雨强达到90 mm/h时,4和5 m长度坡面上细沟明显发育,且邻近的细沟合并,细沟平均长度分别达到120、169 cm,平均宽度3、4 cm,平均深度1.5、4 cm。5 m坡长在90 mm/h降雨条件下,测得最长的一条细沟甚至长240.8 cm。
为了进一步分析室内试验坡面细沟发育形态,本研究探讨了细沟割裂度(表征坡面破碎程度与细沟侵蚀强度)与细沟宽深比(表征细沟形状变化)随坡长、雨强的变化,结果显示,细沟割裂度整体随降雨强度和坡长的增大而增大,细沟宽深比则随二者的增大而减小,沈海鸥等[31-32]在室内人工模拟降雨试验中也得出相同的结论,说明降雨强度、坡长与细沟发育程度有着密切的关系,且沟底下切程度较沟岸扩展程度大。另外,在降雨强度、土壤前期含水率、土壤容重等相似的情况下,除野外试验中风对降雨侵蚀力及径流量的影响外,室内试验扰动后土壤的水稳性团粒结构、渗透性等[33-36]与野外自然坡面土壤有较大差异,导致坡面细沟发育程度在室内外对比试验中产生了较大差异。如目前常采用室内模拟降雨和放水冲刷试验研究坡面细沟侵蚀的水动力学条件和特征[37-40],但大多数模拟试验中供试土壤是经过风干、过筛的,试验坡面也都经平整处理,与自然条件下细沟侵蚀发生的地表条件相差甚远,蔡强国[41]在对细沟发生临界条件的研究中也指出室内与野外实际情况有一定差异。细沟形态的差异性导致室内试验产流量与产沙量均较野外试验大。
降雨条件下坡面径流侵蚀是一个复杂的过程,产沙量预报的困难在于对从侵蚀到沉积或产沙过程的整体了解。选取60、90、120 mm/h 3个典型雨强,对比分析不同降雨强度条件下,室内与野外坡面单宽输沙率随产流历时变化过程(图5)。结果显示,野外与室内单宽输沙率总体随产流历时先增大后趋于稳定并表现出“多峰多谷”这一相似的变化趋势。但一定降雨强度和坡长条件下,室内模型单宽输沙率及其波动性总是大于野外,且响应很快。同时,室内模拟试验单宽输沙率在产流4 min时已达到相应条件下峰值的52.50%以上(雨强为60 mm/h,坡长为5 m时除外),且多集中在80.00%附近。而野外试验中其值在产流初期呈线性增长,至第10~14 min才首次出现峰值,且在首次达到峰值时,室内试验值是野外的1.58~10.40倍。
分析产生上述结果的原因,首先是室内外土壤抗蚀性差异。产流初期雨滴动能直接作用于土表,土粒被分散、溅起,在坡面上被搬运、沉积甚至随径流流出出口断面,在此过程中,野外坡面坚实的土层和土表较多的结皮会增强表土抗蚀性,而室内试验由于是扰动土壤,表层疏松颗粒较多,因此,在产流初期室内单宽输沙率较野外试验大且在短时间内达到峰值;第二是降雨条件下室内外坡面细沟形成差异,坡面径流深随降雨的进行逐渐增大,雨滴对土表的溅蚀减小至可忽略,产流量和径流挟沙能力也逐渐达到稳定,然而,细沟的形成使得坡面水流汇集于细沟内部,流速有较大增加,流速作为细沟流侵蚀力的重要指标,对坡面剥蚀几率有很大影响[42]。坡面微地貌、降雨强度、土壤理化性质等都能影响细沟的演变和发展,致使坡面单宽输沙率的变化过程存在较大的波动性,王志伟等[43]在沂蒙山区典型土壤坡面也得出这一结论。由2.2可知,室内模型试验坡面细沟发育状况较野外原位试验存在较大差异,故一定雨强、坡长条件下室内单宽输沙率及其波动性总是大于野外。而室内试验单宽输沙率在坡长大于2 m时明显增大,其原因是在试验条件下坡长大于2 m时发生了细沟侵蚀(图4),进一步显示出细沟侵蚀的重要作用。第三,室内试验单宽输沙率增大较野外试验响应快,可能由于野外试验受风的影响。试验过程中观察到,当降雨强度一定时,野外试验由于受风的影响落到小区内的雨量减少,坡面产流量相应减少,产流时刻也相对室内滞后,而研究显示坡面径流单宽输沙率随着产流量的增加而增加[44];另外,雨滴直径随雨强的增大而增大,因此,雨强越大雨滴受风的影响相对减小,降落到试验小区的雨量更接近实际,但图5显示,室内外单宽输沙率总体随坡长的延长而增大。对于室内模拟试验,60 mm/h雨强条件下坡长为5 m时单宽输沙率整体间于3~4 m坡长之间,而野外原位模拟试验,雨强60、90 mm/h条件下,5 m坡长单宽输沙率较其他坡长小,除了因为室内外试验环境不同外,可能还与径流剥蚀和搬运土粒所需能量有关[45]。但随着降雨强度的增大,雨滴对表土颗粒的溅蚀作用增大,为坡面侵蚀产沙提供了更多的物质来源,同时径流量增大,径流紊动性也得到加强[46],侵蚀能力和挟沙能力相应增大,所以室内试验当雨强大于60 mm/h、野外试验雨强大于90 mm/h时,5 m坡长坡面单宽输沙率大于4 m坡长。
在室内模型模拟与野外原位模拟试验基础上,本文对比了降雨条件下室内与野外坡面土壤侵蚀模数与径流模数随试验坡面面积、雨强的变化,并通过坡面侵蚀细沟与单宽输沙率进一步分析导致其差异性的原因,初步得出不能简单地用室内试验结果乘以面积预测野外实地水土流失量的结论,主要结论如下:
1)室内模型试验土壤侵蚀模数与径流模数均大于野外原位模拟试验结果,当野外径流小区面积为室内径流槽面积的4倍时,径流量与侵蚀产沙量不呈4倍关系,面积越大,野外与室内结果比值越小,因此,建议将室内试验结果通过合理的转换后预测野外实际水土流失将更加客观。
2)雨强对室内外侵蚀模数、径流模数有显著影响,均呈极显著正相关(相关系数不小于0.838),而与面积的相关性较小;侵蚀模数与径流模数相关性达0.947(室内)、0.715(野外),说明相比侵蚀面积,降雨以及产生的径流仍然是导致土壤侵蚀的主要因素。
3)相同降雨条件下室内坡面较野外坡面更容易产生细沟,雨强大于90 mm/h、坡长大于3 m时,室内外坡面下部均产生不同发育程度的细沟,但相较野外坡面,室内坡面细沟发育程度大,且更趋向于沟底下切,说明细沟发育与雨强、坡长有关,且沟底下切程度较沟岸扩展程度大,导致室内试验径流量与产沙量较野外试验大。
4)一定雨强和坡长条件下,室内外单宽输沙率均随产流历时先增大后趋于稳定,但室内模型试验单宽输沙率及其波动性大于野外,且响应时间更短,产流4 min时单宽输沙率已达到相应条件下峰值的52.50%以上,而野外试验至第10~14 min才首次出现峰值,且室内试验峰值是野外的1.58~10.40倍;室内外单宽输沙率总体随坡长的延长而增大,但坡长为5 m时,室内雨强大于60 mm/h,野外雨强大于90 mm/h时坡面单宽输沙率才大于4 m坡长。
本研究虽然就晋西黄绵土坡面室内模型与野外原位条件下径流侵蚀产沙进行了模拟,得出其差异性,并分析了导致差异性产生的原因,但相较于天然降雨,野外人工模拟降雨仍然不能完全反映天然降雨的全部性质,一方面在后续的研究中期望通过长序列天然降雨径流水文监测数据的分析,进一步验证野外试验的可靠性。更重要的是期望开展模型向原型转换方面的研究,切实解决基于室内试验结果合理预测野外实地水土流失问题。
[1] 徐向舟,张红武,张羽,等. 坡面水土流失比尺模型相似性的试验研究[J]. 水土保持学报,2005,19(1):25-27.
Xu Xiangzhou, Zhang Hongwu, Zhang Yu, et al. Laboratory rainfall simulations for similarity criterion of scale model on interrill erosion[J]. Journal of Soil and Water Conservation, 2005, 19(1): 25-27. (in Chinese with English abstract)
[2] 管新建,李占斌,王民,等. 坡面径流水蚀动力参数室内试验及模糊贴近度分析[J]. 农业工程学报,2007,23(6):1-6.
Guan Xinjian, Li Zhanbin, Wang Min, et al. Laboratory experiment and fuzzy nearness degree analysis of runoff hydrodynamic erosion factors on slope land surface[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 1-6. (in Chinese with English abstract)
[3] 王瑄,李占斌,尚佰晓,等. 坡面土壤剥蚀率与水蚀因子关系室内模拟试验[J]. 农业工程学报,2008,24(9):22-26.
Wang Xuan, Li Zhanbin, Shang Baixiao, et al. Indoor simulation experiment of the relationship between soil detachment rate and water erosion factor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(9): 22-26. (in Chinese with English abstract)
[4] 和继军,吕烨,宫辉力,等. 细沟侵蚀特征及其产流产沙过程试验研究[J]. 水利学报,2013,44(4):398-405.
He Jijun, Lv Ye, Gong Huili, et al. Experimental study on rill erosion characteristics and its runoff and sediment yield process[J]. Journal of Hydraulic Engineering, 2013, 44(4): 398-405. (in Chinese with English abstract)
[5] 张攀,姚文艺,唐洪武,等. 模拟降雨条件下坡面细沟形态演变与量化方法[J]. 水科学进展,2015,26(1):51-58.
Zhang Pan, Yao Wenyi, Tang Hongwu, et al. Evolution and quantization methods of rill morphology on the slope under rainfall simulation[J]. Advances in Water Science, 2015, 26(1): 51-58. (in Chinese with English abstract)
[6] 雷阿林,史衍玺. 土壤侵蚀模型实验中的土壤相似性问题[J]. 科学通报,1996,41(19):1801-1804.
Lei Alin, Shi Yanxi. Soil similarity in soil erosion model experiment[J]. Chinese Science Bulletin, 1996, 41(19): 1801-1804. (in Chinese with English abstract)
[7] 高建恩,杨世伟,吴普特,等. 水力侵蚀调控物理模拟试验相似律的初步确定[J]. 农业工程学报,2006,22(1):27-31.
Gao Jian’en, Yang Shiwei, Wu Pute, et al. Preliminary study on similitude law in simulative experiment for controlling hydraulic erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 27-31. (in Chinese with English abstract)
[8] 高建恩,吴普特,牛文全,等. 黄土高原小流域水力侵蚀模拟试验设计与验证[J]. 农业工程学报,2005,21(10):41-45.
Gao Jian’en, Wu Pute, Niu Wenquan, et al. Simulation experiment design and verification of controlling water erosion on small watershed of loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 41-45. (in Chinese with English abstract)
[9] 李书钦,高建恩,赵春红,等. 坡面水力侵蚀比尺模拟试验设计与验证[J]. 中国水土保持科学,2010,8(1):6-12.
Li Shuqin, Gao Jian’en, Zhao Chunhong, et al. Design and verification of water erosion scale simulation experiment on slope[J]. Science of Soil and Water Conservation, 2010, 8(1): 6-12. (in Chinese with English abstract)
[10] 符素华,椹卓岚,张志兰,等. 水土流失综合治理优先小流域识别的空间尺度效应[J]. 水土保持通报,2020,40(2):148-153.
Fu Suhua, Shen Zhuolan, Zhang Zhilan, et a1. Scale effect on identifying priority watershed for comprehensive control of soil and water loss[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 148-153. (in Chinese with English abstract)
[11] 孙三祥,张云霞. 降雨及坡面径流模拟试验相似准则[J].农业工程学报,2012,28(11):93-98.
Sun Sanxiang, Zhang Yunxia. Similarity criterion in physical simulation of rainfall and sheet flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 93-98. (in Chinese with English abstract)
[12] 柯奇画,张科利. 人工降雨模拟试验的相似性和应用性探究[J]. 水土保持学报,2018,32(3):16-20.
Ke Qihua, Zhang Keli. An exploration on the similarity and applicability of simulated rainfall experiments[J]. Journal of Soil and Water Conservation, 2018, 32(3): 16-20. (in Chinese with English abstract)
[13] 管新建,李勉,胡彩虹,等. 室内外陡坡降雨侵蚀产沙过程相似性模拟分析[J]. 水土保持通报,2011,31(5):191-195.
Guan Xinjian, Li Mian, Hu Caihong, et al. Similarity between erosion and sediment yield processes on steep slopes with simulated rainfalls under indoor and outdoor conditions[J]. Bulletin of Soil and Water Conservation, 2011, 31(5): 191-195. (in Chinese with English abstract)
[14] Fu X T, Zhang L P, Wang Y. Effect of slope length and rainfall intensity on runoff and erosion conversion from laboratory to field[J]. Water Resources, 2019, 46(4): 530-541.
[15] Mamisao J P. Development of Agricultural Watershed by Similitude[D]. Iowa State: Iowa State College, 1952.
[16] Schiettecatte W, Verbist K, Hartmann R, et al. Sediment Load in runoff under laboratory and field simulated eainfall[J]. Agricultural Sciences in China, 2004, 3(1): 31-36.
[17] 杨才敏. 晋西黄土丘陵沟壑区水土流失综合治理开发研究[M]. 北京:中国科学技术出版社,1995.
[18] 霍贵中. 柠条在黄土丘陵沟壑区生态建设中的示范研究[J]. 山西水土保持科技,2014(3):36-37.
Huo Guizhong. Demonstration study on caragana korshinskii kom in ecological construction in loess hilly and gully region[J]. Soil and Water Conservation Science and Technology in Shanxi, 2014(3): 36-37. (in Chinese with English abstract)
[19] 付兴涛. 晋西黄绵土坡面径流流态与输沙特征试验研究[J]. 水利学报,2017,48(6):738-747.
Fu Xingtao. Characteristics of flow pattern and sediment transport processes on loessal slope in western Shanxi Province[J]. Journal of Hydraulic Engineering, 2017, 48(6): 738-747. (in Chinese with English abstract)
[20] 闫峰陵,李朝霞,史志华,等. 红壤团聚体特征与坡面侵蚀定量关系[J]. 农业工程学报,2009,25(3):37-41.
Yan Fengling, Li Zhaoxia, Shi Zhihua, et al. Quantitative relationship between aggregate characteristics of red soil and slope erosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 37-41. (in Chinese with English abstract)
[21] 殷水清,薛筱婵,岳天宇,等. 中国降雨新势力的时空分布及重现期研究[J]. 农业工程学报,2019,35(9):105-113.
Yin Shuiqing, Xue Xiaochan, Yue Tianyu, et al. Spatiotemporal distribution and return period of rainfall erosivity in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 105-113. (in Chinese with English abstract)
[22] 成玉婷,李鹏,徐国策,等. 冻融条件下土壤可蚀性可对坡面氮磷流失的影响[J]. 农业工程学报,2017,33(24):141-149.
Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract)
[23] 吴淑芳,刘勃洋,雷琪,等. 基于三维重建技术的坡面细沟侵蚀演变过程研究[J]. 农业工程学报,2019,35(9):114-120.
Wu Shufang, Liu Boyang, Lei Qi, et al. Evolution process of slope rill erosion based on 3D photo reconstruction technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 114-120. (in Chinese with English abstract)
[24] 管新建,姚文艺,李勉,等. 坡面水蚀比尺模型室内外相似性试验研究[J]. 水土保持学报,2007,21(6):43-46.
Guan Xinjian, Yao Wenyi, Li Mian, et al. Study on similarity to laboratory and field experiment of scale model on inerrill erosion[J]. Journal of Soil and Water Conservation, 2007, 21(6): 43-46. (in Chinese with English abstract)
[25] 陈洪松,邵明安,张兴昌,等. 野外模拟降雨条件下坡面降雨入渗、产流试验研究[J]. 水土保持学报,2005,19(2):5-8.
Chen Hongsong, Shao Ming'an, Zhang Xingchang, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(2): 5-8. (in Chinese with English abstract)
[26] 苏小勇,高太长,刘西川,等. 水平风作用下雨滴水平速度的数值仿真[J]. 气象科学,2013,33(3):282-288.
Su Xiaoyong, Gao Taichang, Liu Xichuan, et al. Numerical simulation of the raindrop horizontal velocity affected by the wind[J]. Journal of the Meteorological Sciences, 2013, 33(3): 282-288. (in Chinese with English abstract)
[27] 张攀,唐洪武,姚文艺,等. 细沟形态演变对坡面水沙过程的影响[J]. 水科学进展,2016,27(4):535-541.
Zhang Pan, Tang Hongwu, Yao Wenyi, et al. Rill morphology evolution and runoff and sediment yielding processes[J]. Advances in Water Science, 2016, 27(4): 535-541. (in Chinese with English abstract)
[28] Foster G R, Huggins L F, Meyer L D. A Laboratory study of rill hydraulics. I. velocity relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-804.
[29] 郑粉莉,唐克丽,周佩华. 坡耕地细沟侵蚀影响因素的研究[J]. 土壤学报,1989,26(2):109-116.
Zheng Fenli, Tang Keli, Zhou Peihua. Study on factors affecting rill erosion on cultivated slope land[J]. Acta Pedologica Sinica, 1989, 26(2): 109-116. (in Chinese with English abstract)
[30] 裴冠博,龚冬琴,付兴涛. 晋西黄绵土坡面细沟形态及其对产流产沙的影响[J]. 水土保持学报,2017,31(6):79-84.
Pei Guanbo, Gong Dongqin, Fu Xingtao. Rill morphology and its effect on runoff and sediment yield on loessal soil slope in western Shanxi Province[J]. Journal of Soil and Water Conservation, 2017, 31(6): 79-84. (in Chinese with English abstract)
[31] 沈海鸥,郑粉莉,温磊磊,等. 降雨强度和坡度对细沟形态特征的综合影响[J]. 农业机械学报,2015,46(7):162-170.
Shen Haiou, Zheng Fenli, Wen Leilei, et al. Effects of rainfall intensity and slope gradient on rill morphological characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 162-170. (in Chinese with English abstract)
[32] 孔亚平,张科利. 黄土坡面侵蚀产沙沿程变化的模拟试验研究[J]. 泥沙研究,2003(1):33-38.
Kong Yaping, Zhang Keli. The distribution of soil loss on the surface of loess slope[J]. Journal of Sediment Research, 2003(1): 33-38. (in Chinese with English abstract)
[33] 宋景全. 扰动与未扰动试验区土壤理化特性分析[J]. 中国水土保持,1988(12):44-47,66.
Song Jingquan. Analysis of soil physical and chemical properties in disturbed and undisturbed test areas[J]. Soil and Water Conservation in China, 1988(12): 44-47, 66. (in Chinese with English abstract)
[34] Tuli A, Hopmans J W, Rolston D E, et al. Comparison of air and water permeability between disturbed and undisturbed Soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
[35] 贺小容,何丙辉,秦伟,等. 不同坡长条件下扰动地表对土壤养分的影响[J]. 水土保持学报,2013,27(5):154-158.
He Xiaorong, He Binghui, Qin Wei, et al. Effect of disturbance surface on soil nutrient under different slope length[J]. Journal of Soil and Water Conservation, 2013, 27(5): 154-158. (in Chinese with English abstract)
[36] 郭晓朦,何丙辉,姚云,等. 扰动地表下不同坡面土壤物理性质及水分入渗特征[J]. 西北农林科技大学学报:自然科学版,2017,45(7):57-65.
Guo Xiaomeng, He Binhui, Yao Yun, et al. Soil physical properties and infiltration characteristics of different slope length under disturbed surface[J]. Journal of Northwest A & F University: Natural Science Edition, 2017, 45(7):57-65. (in Chinese with English abstract)
[37] 王志强,杨萌,张岩,等. 暴雨条件下黄土高原长陡坡耕地细沟侵蚀特征[J]. 农业工程学报,2020,36(12):129-135.
Wang Zhiqiang, Yang Meng, Zhang Yan, et al. Rill erosion of long and steep cropland on the Loess Plateau under heavy rainstorm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 129-135. (in Chinese with English abstract)
[38] 陈超,雷廷武,班云云,等. 东北黑土坡耕地不同水力条件下坡长对土壤细沟侵蚀的影响[J]. 农业工程学报,2019,35(5):163-170.
Chen Chao, Lei Tingwu, Ban Yunyun, et al. Effects of slope lengths on rill erosion under different hydrodynamic conditions in black soil sloping farmland of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 155-162. (in Chinese with English abstract)
[39] 张科利,唐克丽. 黄土坡面细沟侵蚀能力的水动力学试验研究[J]. 土壤学报,2000,37(1):9-15.
Zhang Keli, Tang Keli. A study on hydraulic characteristics of flow for prediction of rill detachment capacity on loess slope[J]. Acta Pedologica Sinica, 2000, 37(1): 9-15. (in Chinese with English abstract)
[40] 李占斌,秦百顺,亢伟,等. 陡坡面发育的细沟水动力学特性室内试验研究[J]. 农业工程学报,2008,24(6):64-68.
Li Zhanbin, Qin Baishun, Kang Wei, et al. Indoor experimental studies on hydrodynamic characteristics of runoff in rill erosion procession steep slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 64-68. (in Chinese with English abstract)
[41] 蔡强国. 坡面细沟发生临界条件研究[J]. 泥沙研究,1998(1):52-59.
Cai Qiangguo. Research of rill initiation condition on loess hillslopes[J]. Journal of Sediment Research, 1998(1): 52-59. (in Chinese with English abstract)
[42] 王龙生,蔡强国,蔡崇法,等. 黄土坡面细沟与细沟间水流水动力学特性研究[J]. 泥沙研究,2013(6):45-52.
Wang Longsheng, Cai Qiangguo, Cai Chongfa, et al. Study of hydrodynamic characteristics of rill and inter-rill flows on loess slopes[J]. Journal of Sediment Research, 2013(6): 45-52. (in Chinese with English abstract)
[43] 王志伟,陈志成,艾钊,等. 不同雨强与坡度对沂蒙山区典型土壤坡面侵蚀产沙的影响[J]. 水土保持学报,2012,26(6):17-20.
Wang Zhiwei, Chen Zhicheng, Ai Zhao, et al. Erosion and desertification with Mountain Yimeng typical surface soil caused by differernt rainfall intensity and slope[J]. Journal of Soil and Water Conservation, 2012, 26(6): 17-20. (in Chinese with English abstract)
[44] 李鹏,李占斌,郑良勇. 黄土坡面径流侵蚀产沙动力过程模拟与研究[J]. 水科学进展,2006,17(4):444-449.
Li Peng, Li Zhanbin, Zheng Liangyong. Hydrodynamics process of soil erosion and sediment yield by runoff on loess slope[J]. Advances in Water Science, 2006, 17(4): 444-449. (in Chinese with English abstract)
[45] 李君兰,蔡强国,孙莉英,等. 坡面水流速度与坡面含砂量的关系[J]. 农业工程学报,2011,27(3):73-78.
Li Junlan, Cai Qiangguo, Sun Liying, et al. Relationship between the spatial distribution of flow velocity and sediment concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 73-78. (in Chinese with English abstract)
[46] 吴淑芳,吴普特,原立峰. 坡面径流调控薄层水流水力学特性试验[J]. 农业工程学报,2010,26(3):14-19.
Wu Shufang, Wu Pute, Yuan Lifeng. Hydraulic characteristics of sheet flow with slope runoff regulation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 14-19. (in Chinese with English abstract)
Laboratory and field erosion differences under rainfall on Loessal slope in Western Shanxi, China
Fu Xingtao1, Wang Qihua1, Wang Jinzhi2
(1.,,030024,;2.,310045,)
Soil erosion modulus from laboratory modeling is often used to predict soil and water loss for a specific area in the field. Therefore, this study aims to investigate the erosion difference between laboratory and field simulation under various intensities of rainfall and areas on a loessal slope in western Shanxi, China. An emphasis was placed on the laboratory modeling and in-situ simulated rainfall events in the field. A systematic analysis was made on runoff modulus, erosion modulus, sediment discharge of unit width and rill development between laboratory and field. The intensities of simulated rainfall were set as 50, 60, 70, 80, 90, 100, 110, 120 mm/h, combined with natural rainfall events in the study region. A coefficient of uniformity above 85% was, considered in the simulated rainfall, similar to the raindrop distribution and size in the natural rainfall. Calibration of rainfall intensities was conducted at the beginning of each experiment. In the field, the runoff/erosion catchment plots were established in the size of 2, 3, 4, 5 m (length) and 2 m (width) in Wangjiagou small watershed in western Shanxi, while in the laboratory, that in the size of 2, 3, 4, 5 m (length) and 0.5 m (width) in the Taiyuan University of Technology. The soil surface was bare, where the soil type was loessal, and the slope gradient was 20°. Initial water content of soil was determined all the same in simulated experiments. Each rainfall event was repeated two times. The period from the rainfall beginning to runoff occurrence was recorded as “runoff occurrence time” during each rainfall event, where the duration of each rainfall simulation was 30 min from the appearance of runoff. All samples of runoff and sediment were collected in the polyethylene bottles with the volume of 1 L at the bottom end of the plot at 2 min intervals, as the final runoff volume and sediment yield. The erosion modulus and runoff modulus were analyzed with the rainfall intensity and area, in the field and laboratory, indicating significant correlation between rainfall intensity (slope length) and sediment yield. Rill morphology and sediment discharge of unit width were further measured to explore difference between field and laboratory. The results showed that laboratory measurements were greater than those of field in-situ simulation. When the slope area of field was 4 times that of the laboratory, the runoff and sediment yield were not 4 times, where the larger the area was, the smaller the ratio of erosion was, indicating that the amount of soil erosion in the field cannot be predicted simply by the laboratory measurements. The rainfall intensity had also greater impact on the runoff erosion than the area. Under the same rainfall condition, the rill was more likely to occur on the laboratory slope surface, and more developed than on the field, which was more inclined to cut rill deep to enhance the runoff erosion force of laboratory slope. Under certain rainfall intensity and slope length conditions, the mass flux tended to be stable after the first peak at the 10-14 min in the field, while the peak appeared at 4 min in the laboratory, where the value was 1.58-10.40 times of that in the field.It showed that the sediment discharge of unit width and its fluctuation in laboratory were higher than that in the field, and the response time was shorter.
rainfall; runoff; erosion; western Shanxi; Loessal; laboratory and field; differences analysis
付兴涛,王奇花,王锦志. 降雨条件下晋西黄绵土坡面室内外径流侵蚀试验差异分析[J]. 农业工程学报,2021,37(1):116-124.doi:10.11975/j.issn.1002-6819.2021.01.015 http://www.tcsae.org
Fu Xingtao, Wang Qihua, Wang Jinzhi. Laboratory and field erosion differences under rainfall on Loessal slope in Western Shanxi, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 116-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.015 http://www.tcsae.org
2020-09-09
2020-11-21
国家自然科学基金(51309173);山西省水利科学技术研究与推广项目(201820)
付兴涛,博士,副教授,主要从事土壤侵蚀与水土保持、河流生态水文研究。Email:fuxingtao@tyut.edu.cn
10.11975/j.issn.1002-6819.2021.01.015
S157.1
A
1002-6819(2021)-01-0116-09
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!