时间:2024-05-24
梁 尧,蔡红光,杨 丽,程 松,张水梅,袁静超,刘剑钊,刘松涛,任 军
玉米秸秆覆盖与深翻两种还田方式对黑土有机碳固持的影响
梁 尧1,蔡红光1,杨 丽2,程 松1,张水梅1,袁静超1,刘剑钊1,刘松涛1,任 军1※
(1. 吉林省农业科学院农业资源与环境研究所,农业部东北植物营养与农业环境重点实验室,长春 130033; 2. 中国标准化研究院,北京 100091)
秸秆还田是实现东北黑土肥力提升与保障区域生态环境安全的有效措施。明确玉米秸秆覆盖与深翻还田下土壤有机碳(SOC, Soil Organic Carbon)的变化及其在团聚体中的固持特征,对于揭示秸秆还田后黑土有机碳的稳定机制与固碳潜力具有重要意义。该研究基于黑土区中部6 a定位试验,选择常规种植(CK)、秸秆覆盖还田(SM, Stovers Mulching)和秸秆深翻还田(SI, Stovers Incorporation)3个处理,对0~10、>10~20、>20~30及>30~40 cm土层SOC含量、容重、水稳性团聚体分布及团聚体中有机碳(OC, Organic Carbon)含量进行了分析与测定,并对各处理年均碳投入量、SOC储量与土壤固碳速率等进行了估算。与CK相比,SM处理显著增加了0~10 cm土层SOC含量,增幅为22.4%,但对10~40 cm土层SOC含量无显著影响;SI处理显著增加了0~40 cm土层SOC含量,增幅为18.1%~41.5%,以>20~30 cm的增幅最突出。与SM处理相比,SI处理0~10 cm土层SOC储量显著低于前者,而>20~30 cm土层SOC储量反之。6 a间,SM处理耕层(0~20 cm)与亚耕层(>20~40 cm)土壤固碳速率分别为1.34和0.77 Mg/(hm2·a),SI处理为0.85和1.74 Mg/(hm2·a)。秸秆不同还田方式显著改变了0~40 cm土层团聚体分布及其中OC含量。与CK相比,SM显著增加了耕层大团聚体(>0.25 mm)比例与平均质量直径(MWD, Mean Weight Diameter),SI显著提高了0~40 cm土层团聚体MWD,且对10~40 cm土层团聚结构的改善作用优于SM;SM处理显著增加了0~10 cm土层>2和<0.053 mm粒级团聚体OC含量,SI处理不仅增加了0~10 cm土层>2 mm粒级团聚体OC含量,也显著提高了10~40 cm土层各粒级团聚体OC含量。在黑土区,秸秆覆盖还田对SOC的提升主要集中于表层,秸秆深翻还田促进了0~40 cm 土层SOC积累与土壤团聚结构的改善。
有机碳;土壤;团聚体;秸秆还田;黑土;固碳速率
土壤有机碳(SOC, Soil Organic Carbon)是土壤肥力形成的基础,也是全球气候变化的主要影响因子。农田土壤SOC库受人为活动干预、并可在较短的时间尺度进行调控,因此,农田土壤固碳成为全球固碳减排的有效途径[1]。秸秆还田作为重要的农业管理措施,其通过增加有机物质的投入、影响土壤有机碳的矿化过程,使土壤碳库的源汇效应发生改变[2]。据估计,全球每年约有0.6~1.2 Pg碳能通过秸秆还田固定到土壤中[3]。基于176项研究结果的Meta分析指出[4],秸秆碳的输入可使SOC含量平均增加12.8%。在中国传统耕作与免耕条件下,秸秆还田土壤年均土壤固碳速率分别为0.22和0.52 g/kg[5]。秸秆还田对SOC储量和固碳速率的影响与气候条件、土壤类型、耕作方式和秸秆还田方式等密切相关[6-8]。
团聚体与SOC相互作用紧密,一方面SOC是团聚体形成过程的重要胶结物质,决定了团聚体的粒径分布与结构稳定[9],另一方面团聚体为SOC提供了物理保护,避免其受微生物和胞外酶的分解,同时通过改变气体环境和养分供应,使微生物的群落结构发生变化,进而间接影响SOC的分解与转化过程[10-11]。土壤团聚体对SOC的物理、化学和生物保护作用是决定SOC稳定性的重要机制。外源秸秆碳的投入将促进大团聚体形成,大团聚体内颗粒有机物的增加又推动微团聚体的形成,随着这些有机物质的分解,大团聚体破碎,微团聚体释放出来。当新鲜秸秆再次加入时,这些组分将粘结成大团聚体,参与到新一轮的大团聚体循环中[12-13]。探讨秸秆还田条件下团聚体分布和有机碳固持间的相互作用对于阐明土壤固碳潜力具有重要意义。
东北黑土以土质肥沃、有机碳含量高而闻名,在保障国家粮食安全、促进农业可持续发展与改善区域生态环境安全等方面发挥着重要作用。黑土区作为中国玉米主产区,玉米秸秆资源丰富,秸秆还田是实现黑土生产力提升与秸秆资源高效利用“双赢”的首选途径。免耕秸秆覆盖还田在增加东北黑土表层SOC储量方面具有较大优势[14],但连年秸秆覆盖还田不利于改变土壤犁底层结构,其对翌年地温回升与玉米播种的负面效应也备受争议[15-16]。近年来,秸秆深翻还田作为一种新型的耕种方式在东北地区展开应用,其通过机械翻耕将秸秆翻压于土壤深层,具有加厚耕层、优化亚耕层土壤结构与改善养分供应的特点[17-18]。然而,翻耕将加快SOC的矿化过程[19],秸秆还田又增加了深层土壤外源碳的输入,在高强度碳输出与碳输入的作用下,SOC储量与固持特征将如何变化仍缺乏深入研究。因此,本研究基于黑土区中部6 a玉米秸秆还田定位试验,探讨玉米秸秆覆盖还田与深翻还田对0~40 cm土层SOC储量与固碳速率的影响,明确SOC在团聚体中的固持特征,以期为揭示玉米秸秆还田后黑土有机碳的稳定机制与固碳潜力提供理论依据。
试验地位于吉林省公主岭市吉林省农业科学院试验田(43°29′55″N,124°48′43″E),该地区属于温带大陆性季风气候,冬季寒冷、夏季高温多雨,年均降水量450~650 mm,年均气温4~5 ℃,无霜期110~140 d,有效积温2 600~3 000 ℃。试验区土壤类型为中层黑土。试验起始于2011年秋季,试验前该区域土壤基本理化性质为0~20 cm土层:有机碳15.1 g/kg、全氮1.56 g/kg、全磷0.54 g/kg、全钾18.0 g/kg、pH值6.20、容重1.40 g/cm3,>20~40 cm土层:有机碳11.9 g/kg、全氮1.34 g/kg、全磷0.41 g/kg、全钾17.5 g/kg、pH值6.21,容重1.43 g/cm。
共选取3个处理,1)常规种植,无秸秆还田(CK):玉米收获后采用人工方式将秸秆割出,采用旋耕机灭茬整地,翌年春季免耕播种机平播;2)秸秆覆盖还田(SM, Stovers Mulching):采用玉米收获机收获的同时将秸秆粉碎、切断后均匀平铺于地表,翌年春季采用免耕播种机平播;3)秸秆深翻还田(SI, Stovers Incorporation):玉米机械收获的同时将秸秆粉碎、切断平铺于地表,采用液压翻转犁进行翻耕作业,翻耕深度≥30 cm,采用联合整地机耙压整地,翌年春季采用免耕播种机平播。每个处理3次重复,各小区面积为702 m2。各处理年均化肥施用量分别为N 200 kg/hm2、P2O590 kg/hm2、K2O 75 kg/hm2,磷、钾肥和40%氮肥以底肥施入,60%的氮肥在玉米拔节期追肥施入。作物种植方式为玉米连作,种植密度为6万/hm2。每年于4月下旬播种,10月上旬收获。其他环节同田间常规管理。
土壤样品于2017年秋玉米收获后采集,每个小区随机选取3点,采用原状土钻分别采集0~10、>10~20、>20~30和>30~40 cm 4个土层的土壤样品,将各土层3点土壤样品放入同一取样盒作为一个混合样品,在采集和运输过程中减少对土壤样品的扰动,尽量避免破坏土壤结构。土样带回实验室后,用手将大土块沿自然裂隙轻轻掰开,剔除土壤样品中的砾石、植物残体及粗有机体等杂质,过8 mm筛。待土样完全风干后,分成2部分,一部分进行水稳性团聚体的筛分,一部分过0.15 mm筛,用于测定SOC含量。在采集土样的同时,用容积为100 cm3的环刀分层取原状土土样,测定土壤容重。
水稳性团聚体筛分采用改进的湿筛法[20],于团聚体分析仪(TTF-100,浙江舜龙)上进行。具体操作如下,将土样于60°烘箱烘干24 h后,称取土样25 g放置于筛组(自上而下为2 mm、0.25 mm、0.053 mm)的最上层,浸润5 min后,筛分2 min(振幅3 cm,频率30次/min),到达设定时间后,用去离子水把各层筛子上的团聚体分别洗至烧杯(50 mL)中,置于60°C烘箱烘干至恒质量,依次获得>2、2~0.25、0.25~0.053和<0.053 mm各粒级团聚体。SOC和各粒级团聚体有机碳(OC)含量采用元素分析仪(Vario ELⅢ,德国Elementar)测定。
2011-2016年间,在玉米成熟期进行玉米籽粒产量与地上生物量的测定,每小区选取5点,每点按13 m2测定籽粒产量(以烘干质量计算),同时各点收集5株地上植株,去除果穗后的秸秆生物量以烘干质量计算。
1.4.1 外源碳投入量
土壤外源植物碳的来源主要包括秸秆、根茬与根际沉积3部分。根茬生物量按秸秆生物量(烘干质量)的23%计算[21],秸秆与根茬中的碳质量分数以40%计算[22],根际沉积碳总量等于成熟期根茬碳量[23]。
1.4.2 土壤有机碳储量
土壤有机碳储量、固碳量及固碳速率的计算方法[24]如下:
式中SOCstock为某土壤深度的SOC储量,Mg/hm2;SOC为第层SOC含量,g/kg;BD为第层土壤容重,g/cm3;H为第层土壤厚度,cm;10为转化系数;为土层数;ΔSOCstock、SOCstock-treatment和SOCstock-initial分别为固碳量、处理后SOC储量、初始时SOC储量;SOCSR为土壤固碳速率,Mg/(hm2·a);yr为处理年限,a。
1.4.3 土壤团聚体稳定性及团聚体碳贡献率
团聚体稳定性以平均质量直径(MWD, Mean Weight Diameter)表示[9],计算方法如下
式中W为各粒级团聚体的质量百分数,%;X为各粒级的平均直径,mm。
各粒级团聚体碳对SOC的贡献率(SOC)计算如下,
SOC=SOCai·W/SOC(5)
式中SOCai为第级团聚体的有机碳含量,g/kg;SOC为土壤有机碳含量,g/kg。
采用SPSS19.0进行单因素方差分析与多重比较(Duncan法),及相关指标之间的线性回归分析。图形绘制采用Origin 2019进行。
2011年至2016年间,各处理年均碳投入量如表1所示。各处理年均玉米籽粒产量与秸秆生物量均表现为SI>CK>SM,SM和SI处理年均碳投入总量分别是CK的1.9倍和2.5倍。
表1 秸秆不同还田方式下年均碳的投入量
注:表中数据为平均值±标准差。
Note: Values represent the mean±standard deviation.
秸秆不同还田方式强烈地影响着0~40 cm土层SOC含量(表2)。与CK相比,SM处理显著增加了0~10 cm土层SOC含量,增幅为22.4%,对10~40 cm各土层SOC含量的影响不显著;SI处理显著增加了0~40 cm各土层SOC质量分数,增幅为18.1%~41.5%,以>20~30 cm土层SOC含量的增幅最突出。2种秸秆还田方式相比,SI处理>20~30 cm土层SOC含量显著高于SM处理,二者其他土层SOC含量间无显著差异。从SOC含量在0~40 cm土层的空间分布来看,随着土层的加深,CK和SM处理SOC含量呈现逐渐降低的趋势,而SI处理0~10、>10~20和>20~30 cm土层SOC含量间无显著差异,但显著高于>30~40 cm土层。
表2 秸秆不同还田方式下土壤有机碳含量、储量及固碳速率
注:表中数据为平均值±标准差,同行数值后不同小写字母表示同一土层不同处理间差异显著(<0.05),同列数值后不同大写字母表示同一处理不同土层间差异显著(<0.05),下同。
Note: Values represent the mean±standard deviation, values followed by different small letters in one row indicate significant difference among treatments in the same soil depth of aggregate at 0.05 level, values followed by different capital letters in one column indicate significant difference among soil depths of aggregate and the same treatment at 0.05 level, the same as below.
秸秆不同还田方式对SOC储量、土壤固碳数量与速率的影响如表2所示。与CK相比,SM处理显著增加了0~10 cm土层SOC储量,增幅为31.0%,但对其他土层SOC储量影响不显著;SI处理显著增加了0~10、>20~30和>30~40 cm各土层SOC储量,增幅为15.0%~34.9%,由于SI处理>10~20 cm土层土壤容重较低,因此其对该土层SOC储量无显著影响。与SM处理相比,SI处理0~10 cm土层SOC储量显著低于前者,而>10~40 cm各土层SOC储量高于前者,特别是>20~30 cm土层SOC储量的增量最显著。与试验初期(2011年)相比,0~20 cm土层土壤固碳量与固碳速率均表现为SM>SI>CK,>20~40 cm土层固碳量与固碳速率表现为SI>SM>CK。
秸秆不同还田方式下水稳性团聚体分布及其稳定性的变化如表3。2~0.25与0.25~0.053 mm 粒级是团聚体的主体,分别占46.0%~52.6%和21.7%~33.7%。与CK相比,SM与SI处理对0~10 cm和>10~20 cm土层各粒级团聚体分布的影响一致,即显著增加了>2 mm和2~0.25 mm粒级比例,降低了0.25~0.053和<0.053 mm粒级比例,进而使大团聚体(>0.25 mm)比例和MWD得以显著提高;SM处理对>20~30和>30~40 cm土层各粒级团聚体比例及MWD的影响不显著,而SI处理显著增加了>20~30 cm土层>2 mm粒级比例及>30~40 cm土层2~0.25 mm粒级比例,使得这2个土层大团聚体和MWD均得以显著增加,且显著高于SM处理。
秸秆不同还田方式改变了各粒级团聚体在0~40 cm土层的空间分布特征(表3)。CK处理>20~30 cm土层大团聚体比例显著低于其他土层,SM处理0~20 cm土层大团聚体比例均显著高于>20~40 cm土层,SI处理0~40 cm 各土层大团聚体比例间差异不显著。从MWD的空间变化来看,CK处理0~40 cm各土层MWD间差异不显著,SM处理MWD值随着土层的加深逐渐降低,SI处理0~10、>10~20、>20~30 cm土层MWD间差异不显著,但均显著高于>30~40 cm土层。
表3 秸秆不同还田方式下土壤水稳性团聚体分布及其稳定性
注:表中数据为平均值±标准差,同列数值后不同小写字母表示同一土层同一粒级不同处理间差异显著(<0.05),同列数值后不同大写字母表示同一粒级同一处理不同土层间差异显著(<0.05)。
Note: Values represent the mean±standard deviation, values followed by different small letters in one column indicate significant difference among treatments in the same soil depth and the same size of aggregate at 0.05 level, values followed by different capital letters in one column indicate significant difference among soil depths in the same size of aggregate and the same treatment at 0.05 level.
秸秆不同还田方式对土壤各粒级团聚体OC含量及其贡献率的影响如表4所示。与CK相比,SM处理显著增加了0~10和>20~30 cm土层中>2和<0.053 mm两粒级团聚体OC的含量,但对其他土层各粒级团聚体OC含量的影响不显著;SI处理不仅显著增加了0~10 cm土层>2 mm粒级OC含量,同时显著提高了>10~20、>20~30、>30~40 cm土层各粒级团聚体OC含量。在0~10和>10~20 cm土层,SM和SI处理各粒级团聚体OC含量间差异不显著,但在>20~30和>30~40cm土层,SI处理大团聚体OC含量显著高于SM处理。从不同处理对各粒级团聚体OC的贡献率来看,2~0.25 mm粒级是SOC固持的主体,其对SOC的贡献率占47.3%~55.0%,其次为0.25~0.053 mm粒级团聚体,占19.9%~31.3%,>2和<0.053 mm粒级团聚体对SOC贡献率相对较低。与CK相比,SM和SI处理增加了0~40 cm土层>2 mm粒级对SOC的贡献率,降低了各土层0.25~0.053 mm粒级OC的贡献率及0~10、>10~20和>20~30 cm土层<0.053mm粒级团聚体OC的贡献率;秸秆还田处理显著增加了0~10 cm土层2~0.25 mm粒级团聚体OC的贡献率,但对10~20、>20~30和>30~40 cm土层该粒级团聚体OC贡献率无显著影响。在0~10 cm土层,SI处理>2 mm粒级团聚体OC的贡献率低于SM,而>10~20、>20~30和>30~40 cm土层该粒级团聚体OC贡献率的变化与之相反。此外,在>10~20和20~30 cm土层,SI处理<0.053 mm粒级OC的贡献率明显低于SM处理。
从各粒级团聚体OC含量在0~40 cm土层的空间变化(表4)来看,CK和SM处理各粒级团聚体OC含量均随着土层深度的增加逐渐降低,而SI处理0~10、>10-20和>20-30 cm土层各粒级团聚体OC含量间差异不显著,但均高于>30~40 cm土层相应粒级团聚体的OC含量。各处理各粒级团聚体OC的贡献率随着土层深度的增加呈现波动变化。
表4 玉米秸秆不同还田方式下各粒级团聚体有机碳含量及其贡献率
对SOC含量与团聚体MWD及各粒级团聚体OC含量进行回归分析可知(图1和图2),SOC含量与MWD、>2和2~0.25 mm粒级团聚体OC含量间均呈现出极显著的正相关关系(<0.01),与0.25~0.053和<0.053 mm粒级团聚体OC含量间未表现出显著的相关性(>0.05)。
免耕秸秆覆盖还田通过减少土壤扰动、增加外源碳的投入,从而促进了SOC的积累[14,25],本研究由于地处东北寒区,覆盖于地表的玉米秸秆腐解相对较慢,其对SOC的补给主要集中于0~10 cm的表层,虽然部分溶解性有机质将随着土壤水分向下运移[26],但短期内其未引起10~30 cm土层SOC含量的显著变化。以往研究多表明,深翻耕作将加快SOC的矿化分解,造成SOC的亏缺[27],然而,本研究中将深翻与秸秆还田相结合,0~40 cm土层SOC的含量得以明显提升。深翻后大部分秸秆分布于25 cm土层,秸秆与土壤充分接触加速了秸秆的腐解与腐殖化过程[8,28],极大地促进了SOC的积累。此外,连年翻耕促使0~30 cm土层土壤趋于均质化,SOC含量未出现明显的分层现象,且>20~40 cm土层SOC含量也显著高于CK与秸秆覆盖处理,由此说明,秸秆覆盖还田有助于0~10 cm表层SOC的积累,而秸秆深翻还田可显著提升0~40 cm土层SOC的固持能力。
碳的收支情况决定了土壤有机碳库的源汇效应。6 a间单施化肥处理通过根茬、根际沉积等形式外源碳的输入使得耕层(0~20 cm)SOC库略有盈余。据估算,中国单施化肥耕层平均土壤固碳速率可达0.38 Mg/(hm2·a)[29],本研究中单施化肥耕层(0~20 cm)土壤固碳速率为0.08 Mg/(hm2·a),低于全国平均值,主要是气候、土壤类型与种植制度等因素的差异造成的[30]。研究表明,秸秆免耕覆盖还田12 a黑土耕层SOC库的年均增速为0.80 Mg/(hm2·a)[27],秸秆旋耕还田5 a间白浆土(Alfisol)耕层土壤固碳速率可达1.03 Mg/(hm2·a)[31]。本研究中,秸秆覆盖还田耕层与亚耕层(>20~40 cm)土壤固碳速率分别为1.34和0.77 Mg/(hm2·a),秸秆深翻还田的固碳速率分别为0.85和1.74 Mg/(hm2·a)。需要注意的是,短期(<11 a)试验结果可能会高估处理的固碳速率[5],因此,仍需更长时间尺度的观测来探究黑土固碳速率的变化。一些研究表明,外源碳投入量与土壤固碳速率呈显著的正相关关系[31-32],也有基于长期定位试验的研究指出随着外源碳投入量的增加,土壤有机碳库出现饱和现象,土壤固碳速率趋于平缓[33]。本研究中,外源碳投入量与土壤固碳速率呈现增加趋势,表明本试验土壤仍有着较大的固碳潜力。
秸秆不同还田方式对土壤团聚体分布及其稳定性有着强烈的影响[34]。本研究中,秸秆覆盖还田比CK显著增加了耕层大团聚体的比例与团聚体稳定性,但对亚耕层土壤团聚体稳定性的影响并不显著,表明秸秆覆盖还田积极改善了耕层土壤结构,这与前人研究结果相一致[24,35]。与CK相比,秸秆深翻还田显著增加了0~40 cm土层大团聚体的比例,团聚体稳定性也随之增加。虽然翻耕对土壤团聚体结构产生较大扰动,但秸秆输入对SOC的提升作用为土壤颗粒的团聚提供了良好的胶结物质,这种胶结效应有效抵消了翻耕对团聚体的分散作用,有效促进了大团聚体的形成,为SOC提供更好的保护。这与秸秆深翻还田对沙壤土团聚体稳定性的研究结果不一致[18],其原因在于土壤质地与深翻机械操作存在较大差异。SOC含量与团聚体MWD间极显著的正相关关系(<0.01)验证了SOC对于提高团聚体稳定性的重要作用。与覆盖还田相比,秸秆深翻还田处理显著增加了20~40 cm土层大团聚体比例和MWD,说明秸秆深翻还田增加了耕层厚度,具有更好的亚耕层土壤结构。
秸秆不同还田方式对0~40土层各粒级团聚体OC含量的影响各异,秸秆覆盖还田对团聚体OC含量的影响主要表现为其增加了0~10 cm土层>2和<0.053 mm两粒级团聚体OC的含量,相比之下,秸秆深翻还田不仅增加了0~10 cm土层>2 mm团聚体OC的含量,同时显著提高了10~40 cm土层各粒级团聚体OC的含量,说明秸秆覆盖还田对表层SOC含量的增加主要通过促进>2和<0.053 mm粒级团聚体对OC的固持来实现,而秸秆深翻还田对深层SOC水平的大幅度提升则体现在其对各粒级团聚体OC的累积作用。从各粒级团聚体对SOC的贡献率来看,秸秆还田显著增加了SOC在大团聚体中的固持比例,特别是在>2 mm粒级团聚体,此外,SOC含量与>2和2~0.25 mm粒级团聚体OC含量间呈现极显著的正相关关系(<0.01,图2),可见,无论覆盖还是深翻还田,外源秸秆新碳进入土壤后更多地固持于大团聚体中。尽管大团聚体周转速率较快,不能为OC提供长期的保护,但其包裹了更多OC,并将促进微团聚体的形成,这些闭蓄在大团聚体中的微团聚体碳对于SOC的长期固持具有重要意义[36-37]。37 a长期定位试验表明,有机培肥显著增加了黑土微团聚体对SOC的贡献率,而大团聚体的贡献率则反之[38]。本研究中秸秆还田显著降低了微团聚体对SOC的贡献率,但<0.053 mm团聚体中较高的OC含量从某种程度验证了SOC在各粒级团聚体中的转化过程。
与常规种植相比,玉米秸秆还田改变了0~40 cm土层SOC的含量、储量及其固持特征。覆盖还田显著增加了表层(0~10 cm)SOC的含量与储量,深翻还田大幅提高了0~40 cm土层SOC含量与储量,特别对>20~30 cm土层SOC的积累作用更为突出,使0~30 cm土层SOC含量无明显分层现象;覆盖还田显著增加了耕层(0~20 cm)大团聚体比例及团聚体稳定性,深翻还田对团聚体稳定性的积极作用不仅局限于耕层,更重要的是提高了亚耕层(20~40 cm)大团聚体比例与团聚体稳定性。覆盖还田对表层SOC的积累主要通过提高>2和<0.053 mm粒级团聚体对OC的固持来实现,深翻还田促进了表层>2 mm粒级团聚体中OC的积累,对10~40 cm 土层SOC含量的提升体现在其增加了各粒级团聚体OC含量。在黑土区,秸秆覆盖还田对SOC的提升主要集中于表层,秸秆深翻还田大幅提高了0~40 cm土层SOC的固持能力,并使土壤深层结构得以显著改善。
[1]Tao F, Palosuo T, Valkama E, et al. Cropland soils in China have a large potential for carbon sequestration based on literature survey[J]. Soil and Tillage Research, 2019, 186: 70-78.
[2]Li S, Li Y, Li X, et al. Effect of stovers management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong plain[J]. Soil and Tillage Research, 2016, 157: 43-51.
[3]Lal R. Soil quality impacts of residue removal for bioethanol production[J]. Soil and Tillage Research, 2009, 102: 233-241.
[4]Liu C, Lu M, Cui J, et al. Effects of stovers carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20: 1366-1381.
[5]Tian K, Zhao Y, Xu X, et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2015, 204: 40-50.
[6]Zhao X, Zhang R, Xue J F, et al. Management-induced changes to soil organic carbon in China: A meta-analysis[J]. Advances in Agronomy, 2015, 134: 1-50.
[7]孟庆英,邹洪涛,韩艳玉,等. 秸秆还田量对土壤团聚体有机碳和玉米产量的影响[J]. 农业工程学报,2019,35(23):119-125.
Meng Qingying, Zou Hongtao, Han Yanyu, et al. Effects of stovers application rates on soil aggregates, soil organic carbon content and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 119-125. (in Chinese with English abstract)
[8]Han Y S, Yao H, Jiang H X, et al. Effects of mixing maize stovers with soil and placement depths on decomposition rates and products at two cold sites in the Mollisol region of China[J]. Soil and Tillage Research, 2020, 197: 104519.
[9]Six J, Paustian K, Elliott E T, et al. Soil structure and soil organic matter: distribution of aggregate-size classes and aggregate associated carbon[J]. Soil Science Society of American Journal, 2000, 64: 681-689.
[10]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79: 7-31
[11]徐嘉晖,孙颖,高雷,等. 土壤有机碳稳定性影响因素的研究进展[J]. 中国生态农业学报,2018,26(2):222-230.
Xu Jiahui, Sun Ying, Gao Lei, et al. A review of the factors influencing soil organic carbon stability[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 222-230. (in Chinese with English abstract)
[12]Xu X G, Schaeffer S, Sun Z H, et al. Carbon stabilization in aggregate fractions responds to stovers input levels under varied soil fertility levels[J]. Soil and Tillage Research, 2020, 199: 10459
[13]田慎重,王瑜,李娜,等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报,2013,33(22):7116-7124.
Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and stovers systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)
[14]Liang A Z, Yang X M, Zhang X P, et al. Short-term impacts of no tillage on aggregate-associated C in black soil of northeast China[J]. Agricultural Sciences in China, 2010, 9(1): 93-100.
[15]陈军锋,郑秀清,秦作栋,等. 冻融期秸秆覆盖量对土壤剖面水热时空变化的影响[J]. 农业工程学报,2013,29(20):102-110.
Chen Junfeng, Zheng Xiuqing, Qin Zuodong, et al. Effects of maize stovers mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 102-110. (in Chinese with English abstract)
[16]蔡红光,梁尧,闫孝贡,等. 东北黑土区秸秆不同还田方式下玉米产量及养分累积特征[J]. 玉米科学,2016,24(5):68-74.
Cai Hongguang, Liang Yao, Yan Xiaogong, et al. The grain yield and characteristic of nutrient accumulation for maize under different stovers return modes in black soil region of northeast[J]. Journal of Maize Sciences. 2016, 24(5): 68-74. (in Chinese with English abstract)
[17]梁尧,蔡红光,闫孝贡,等. 玉米秸秆不同还田方式对黑土肥力特征的影响[J]. 玉米科学,2016,24(6):68-74.
Liang Yao, Cai Hongguang, Yan Xiaogong, et al. The Grain yield and characteristic of nutrient accumulation for maize under different stovers return modes in black soil region of Northeast[J]. Journal of Maize Sciences. 2016, 24(5): 68-74. (in Chinese with English abstract)
[18]于博,高聚林,胡树平,等. 玉米秸秆全量深翻还田对高产田土壤结构的影响[J]. 中国生态农业学报,2018,26(4):584-592.
Yu Bo, Gao Julin, Hu Shuping, et al. Effects of deep tillage and stovers returning on spring maize field of soil structure [J]. Chinese Journal of Eco-Agriculture, 2018, 26(4): 584-592. (in Chinese with English abstract)
[19]Cuzman J, Al-kaisi M, Parkin T. Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system[J]. Soil Science Society of American Journal, 2015, 79: 612-625.
[20]Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of American Journal, 1986, 50: 627-633.
[21]Kong A Y Y, Six J, Bryant D C, et al. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems[J]. Soil Science Society of American Journal, 2005, 69: 1078-1085.
[22]Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database[J]. Agronomy Journal, 2006, 98: 622-636.
[23]Bolinder M A, Angers D A, Giroux M, et al. Estimating C inputs retained as soil organic matter from corn (L.)[J]. Plant Soil, 1999, 215: 85-91.
[24]Kan Z R, Ma S T, Liu Q Y, et al. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain[J]. Catena, 2020, 188: 104428
[25]Lu X, Liao Y. Effect of tillage practices on net carbon flux and economic parameters from farmland on the loess plateau in China[J]. Journal of Cleaner Production, 2017, 162: 1617-1624.
[26]Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under stovers mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297.
[27]Zhang Y, Li X, Gregorich E G, et al. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China[J]. Geoderma, 2018, 330: 204-211.
[28]高燕,张延,郭亚飞,等. 不同秸秆还田模式对土壤有机碳周转的影响[J]. 土壤与作物,2019,8(1):93-101.
Gao Yan, Zhang Yan, Guo Yafei, et al. Effect of residue return patterns on soil organic carbon turnover- A review[J]. Soil and Crop, 2019, 8(1): 93-101. (in Chinese with English abstract)
[29]韩冰,王效科,逯非,等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报,2008,28(2):612-619.
Han Bing, Wang Xiaoke, Lu Fei, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 612-619. (in Chinese with English abstract)
[30]田康,赵永存,徐向华,等. 不同施肥下中国旱地土壤有机碳变化特征-基于定位试验数据的Meta分析[J]. 生态学报,2014,34(13):3735-3743.
Tian Kang, Zhao Yongcun, Xu Xianghua, et al. Meta-analysis of field experiment data for characterizing the topsoil organic carbon changes under different fertilization treatments in uplands of China[J]. Acta Ecologica Sinica, 2014, 34(13): 3735-3743. (in Chinese with English abstract)
[31]Jiang C M, Yu W T, Ma Q, et al. Alleviating global warming potential by soil carbon sequestration: A multi-level stovers incorporation experiment from a maize cropping system in northeast China[J]. Soil and Tillage Research, 2017, 170: 77-84.
[32]Hua K, Wang D, Guo X, et al. Carbon sequestration efficiency of organic amendments in a long-term experiment on a Vertisol in Huang-Huai-Hai plain, China[J]. PLoS One, 2014, 29(9): e108594.
[33]Yan X, Zhou H, Zhu Q H, et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China[J]. Soil and Tillage Research, 2013, 130: 42-51.
[34]田慎重,王瑜,张玉凤,等. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库[J]. 农业工程学报,2017,33(24):133-140.
Tian Shenzhong, Wang Yu, Zhang Yufeng, et al. Residue returning with subsoiling replacing rotary tillage improving aggregate nd associated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 32(24): 133-140. (in Chinese with English abstract)
[35]Modak K, Biswas D R, Ghosh A, et al. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical india[J]. Soil and Tillage Research, 2020, 202: 104649.
[36]Zhao H L, Ning P, Chen Y L, et al. Effect of stovers amendment modes on soil organic carbon, nitrogen sequestration, and crop yield on the north-central plain of China[J]. Soil Use Manage, 2019, 35(3): 511-525.
[37]Pang D, Chen J, Jin M, et al. Changes in soil micro- and macro-aggregate associated carbon storage following stovers incorporation[J]. Catena, 2020, 190: 104555.
[38]张秀芝,李强,高洪军,等. 长期施肥对黑土水稳性团聚体稳定性及有机碳分布的影响[J]. 中国农业科学,2020,53(6):1214-1223.
Zhang Xiuzhi, Li Qiang, Gao Hongjun, et al. Effects of long-term fertilization on the stability of black soil water stable aggregates and the distribution of organic carbon[J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223. (in Chinese with English abstract)
Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol
Liang Yao1, Cai Hongguang1, Yang Li2, Cheng Song1, Zhang Shuimei1, Yuan Jingchao1, Liu Jianzhao1, Liu Songtao1, Ren Jun1※
(1.,,130033; 2.100091,)
Maize stovers returning is an effective approach to improve soil fertility of Mollisol, thereby to maintain safety of regional environment. However, the understanding of maize stovers returning with no tillage or deep tillage is still limited on Soil Organic Carbon (SOC) sequestration and distribution of aggregates associated Organic Carbon (OC). In this study, a six-year field experiment was carried out, which located in the middle of Mollisol region in northeast China. Three treatments were selected as follow: conventional tillage (CK), stovers mulching with no tillage (SM), and stovers incorporation with deep tillage (SI). Soil samples were collected from 0-10, >10-20, >20-30, and >30-40 cm depth. In addition, the specific parameters were estimated, including the SOC content, bulk density, aggregate size distribution and aggregate associated OC content, annual carbon input, SOC stock, and soil carbon sequestration rate. Compared with CK, SMR significantly increased by 22.4% SOC content at 0-10 cm soil depth, but no notable change in the SOC content at 10-40 cm soil depth. SI significantly increased by 18.1%-41.5% SOC content at 0-40 cm soil depth, with the greatest increasement at >20-30 cm soil depth. The SOC content in CK and SMR treatment was in a decreasing trend as soil depth increased, but no significant change was found in the SOC content among 0-10, >10-20 and >20-30 cm soil depths in SIR. The SOC stock changed in the same way as its content. The SMR had a high SOC stock at 0-10 cm soil depth than SIR, however, greater SOC stock at >20-30 cm soil depth was found in SIR than that in SMR. In the initial condition, the amount of carbon sequestration decreased as follow: SM>SI>CK at topsoil (0-20 cm), and SI>SM>CK at subsoil (>20-40 cm). The soil carbon sequestration rate at topsoil and subsoil were 1.34 and 0.77 Mg/(hm2·a) in SM treatment, and 0.85 and 1.74 Mg/(hm2·a) in SI treatment, respectively. Aggregate distribution and aggregate associated OC content were strongly affected by different stovers returning treatments. The SM significantly increased the proportion of macroaggregate and Mean Weight Diameter (MWD) at topsoil, and the SI significantly increased the aggregate stability at 0-40 cm soil layer, compared with CK. The SIR treatment had higher MWD at 10-40 cm soil layer than the SM. The 2-0.25 mm aggregate accounted for 48.3%-55.0% of the SOC, indicating the crucial role of macroaggregate in SOC sequestration in the Mollisol. Compared with CK, higher OC contents of >2 and <0.053 mm aggregated at 0-10 cm layer were observed in SM, where the SI resulted in greater OC content of >2 mm at 0-10 cm layer, as well as OC contents in each size of aggregate at 10-40 cm soil depth. The SOC content was significant positive correlations with MWD, OC contents of >2 mm and 2-0.25 mm aggregate, respectively, indicating that more exogenous organic carbon has been preserved in macroaggregates. In the Mollisol region, maize stovers returning can be used to improve the SOC sequestration and aggregate stability, where the positive effect of maize stovers mulching on SOC retention mainly focused on 0-10 cm soil depth. Furthermore, the maize stovers incorporation with deep tillage can contribute to great SOC sequestration and physical structure at 0-40 cm soil depth.
organic carbon; soils; aggregate; maize stovers returning; Mollisol; carbon sequestration rate
梁尧,蔡红光,杨丽,等. 玉米秸秆覆盖与深翻两种还田方式对黑土有机碳固持的影响[J]. 农业工程学报,2021,37(1):133-140.doi:10.11975/j.issn.1002-6819.2021.01.017 http://www.tcsae.org
Liang Yao, Cai Hongguang, Yang Li, et al. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 133-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.017 http://www.tcsae.org
2020-07-16
2020-12-07
国家重点研发计划(2018YFF0213501-1);吉林省农业科技创新工程人才基金(C8223001201);国家现代农业产业技术体系(CARS-07-G-6);吉林省科技发展计划项目(20200403167SF,20200702008NC)资助
梁尧,博士,研究方向为土壤有机培肥。Email:liangyaosmart@163.com
任军,博士,研究员,研究方向为土壤改良。Email:renjun557@163.com
10.11975/j.issn.1002-6819.2021.01.017
S343.1
A
1002-6819(2021)-01-0133-08
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!