时间:2024-05-24
郑 威,周 红,杨航波,黄 磊,2,陈玉成,2,彭 莉,杨志敏,2
海泡石添加对猪粪堆肥腐熟和水溶性有机质的影响
郑 威1,周 红1,杨航波1,黄 磊1,2,陈玉成1,2,彭 莉3,杨志敏1,2※
(1. 西南大学资源环境学院,重庆 400716;2. 农村清洁工程重庆市工程研究中心,重庆市生态环境农用地土壤污染风险管控重点实验室,重庆 400716;3. 重庆市市政环卫监测中心,重庆 401121)
为明确黏土矿物的投加对畜禽粪便堆肥腐熟和稳定化的影响,该研究以猪粪和杨木木屑为原料,探究添加海泡石对堆肥基本理化性质、不同成分有机质含量以及溶解性有机质(Dissolved Organic Matter,DOM)结构的影响。结果表明,添加海泡石后堆体最高温度比对照有所下降且电导率上升9.69%,而C/N则降低2.81%,同时种子发芽指数提高11.96%,显示腐熟状况更好;DOM含量降低7.84%而胡敏酸占比提高9.71%,使得堆体有机质更加稳定。荧光光谱分析表明,添加海泡石堆体DOM的荧光谱图中,长波长的峰强在较短时间内出现了明显增加;三维荧光光谱-平行因子分析显示,添加海泡石增加了堆体中高芳香性组分的占比。相关性分析结果表明,添加海泡石后,高芳香性组分与总有机碳之间相关性更为显著,说明海泡石在碳素分解的同时促进了其聚合,从而出现了胡敏酸与高芳香性荧光组分的增长。添加海泡石既能促进堆体腐熟,又可转化调控碳素进而提高堆体稳定性,有利于堆肥的后续农田施用。
堆肥;粪;海泡石;堆肥稳定性;DOM;三维荧光-平行因子分析
畜禽粪便治理与资源化是大多数畜禽养殖场健康养殖的瓶颈之一。鉴于畜禽粪便中含有大量的植物生长所需要的营养成分,通过堆肥利用植物养分成为目前畜禽粪便资源化的主流技术[1]。好氧堆肥以其占地面积小、过程可控制、易操作、降解快、资源化效果好而备受青睐。传统的好氧堆肥腐熟不稳定、氮素损失重,施入农田土壤容易造成作物根系局部缺氧并诱发氮素损失,甚至出现作物厌氧中毒[2],而添加剂的投加成为解决传统好氧堆肥问题的重要途径[3]。
常用的堆肥添加剂有:pH调节物(木灰、石灰、尿酸、木醋和竹醋等)[4-8]、化学试剂(镁盐和磷酸盐等)[9-10]、菌剂[11]、生物炭[12]以及天然矿物[13-16]等。其中许多黏土矿物以其比表面积大和高离子交换量等优良的性能,在堆肥体系中已经得到应用,如膨润土可以促进堆体腐熟和重金属钝化[13-14];坡缕石既能减少堆肥过程中温室气体排放,还具有明显的保氮作用[15];硅藻土可减少堆体植物毒性[16]。同时,黏土矿物还与有机物之间关系密切,其通过表面羟基和内部离子交换吸附有机质到矿物内外,此过程不仅能抑制微生物对有机质的分解,还可促进有机物之间的凝聚,从而有效改变有机质的成分结构[17-18]。但黏土矿物与有机质关系虽在土壤体系中研究广泛却在堆肥体系中关注较少,而其中作为一种具有更高比表面积且廉价易得的黏土矿物[19]——海泡石在堆肥体系中亦鲜有研究。
在堆肥进程中有机质转化更加活跃,水溶态作为微生物利用和转化固相有机质的重要反应界面[20],使得溶解性有机质(Dissolve Organic Matter,DOM)成为堆肥各成分有机质中多变的中间组分。DOM的结构特征变化反应了堆肥稳定化进程,同时DOM的含量成为判断堆肥腐熟的重要指标之一[21]。因此黏土矿物作为堆肥添加剂所引起的DOM变化值得进一步研究。
综上,本研究拟采用海泡石(Mg8Si12O30(OH)4(H2O)4·8H2O)作为添加剂,在观测海泡石改变堆体基本腐熟指标的基础上,研究海泡石对堆肥产品的影响;采用激发-发散荧光光谱(Excitation-Emission Matrix Fluorescence Spectra,EEM)探讨海泡石对堆体DOM结构的变化,从而明确海泡石添加对堆肥稳定化过程的影响机制。
新鲜猪粪取于重庆合川区某养猪场,杨木木屑购于江苏连云港尚兮木质品商行公司,海泡石购于石家庄雨馨建筑材料有限公司(SiO2∶65%,MgO∶24%,Al2O3∶<5%,Fe2O3<0.15%,粒径0.075 mm),堆肥原料的具体性质见表1。小白菜(L.)种子购于渝澳农业开发有限公司。
堆肥装置有效体积为90 L,装置外包裹橡塑海绵进行保温,在反应器底部铺设曝气管,空气从底部泵入(图1),经布气板平均气流,曝气设置为曝气5 min,间隔55 min,其平均流量为1 L/min,堆肥整体周期为45 d。堆体以猪粪和木屑作为主要基质,猪粪与木屑按照质量比5∶3(w/w)的比例均匀混合,并用纯水调节含水率至60%、每个堆体总质量26 kg。
试验设2个处理,其中一个均匀添加9%(以干质量计)海泡石(记为T),另一个不添加作为对照(记为CK),重复2次。每周人工翻堆1次,每天9:00、15:00、21:00记录堆体平均温度。分别在第0、3、7、14、21、30、45 天采集堆体样品,并分为两部分:一部分作为鲜样,存放在4 ℃中;另一部分作为风干样,自然风干后粉碎,过0.15 mm筛。
1.3.1 堆肥理化性质测定
电导率(Electrical Conductivity,EC):用去离子水1∶10(w/v)浸提鲜样后,用梅特勒-托利多的FE38电导率仪测定。
种子发芽指数(Seed Germination Index,GI):用去离子水1∶10(w/v)浸提鲜样后,将8 mL浸提液加入到无菌培养皿(9 cm)的两层滤纸上,并选取小白菜种子20粒均匀铺在培养皿中,于恒温培养箱中培养(温度25 ℃,湿度80%,避光)96 h后测量发芽数和根长,按公式(1)计算GI[22]:
总有机碳(Total Organic Carbon,TOC)、总凯氏氮(Total Kjeldahl Nitrogen,TKN)、腐殖质(Humic Substance,HS)、胡敏酸(Humic Acid,HA)等使用风干样测定,其中TOC用高温外热重铬酸钾氧化法,TKN用凯氏定氮法[23](C/N=TOC/TKN),HS、HA提取和测定采用焦磷酸钠/氢氧化钠浸提-TOC仪测定方法[22],胡敏酸百分比(Percentage of Humic Acid,PHA)(PHA=HA/HS)。
1.3.2 DOM测定与表征
按1∶10(w/v)浸提堆肥鲜样,25℃下200 r/min震荡24 h,上清液过0.45m滤膜,滤液中有机物即为DOM[24]。DOM采用GE InnovOx® Laboratory TOC分析仪测定(以有机碳计,mg/L)。
用0.1 mol/L的HCl或NaOH调节滤液pH值到7.0±0.2,为减少内滤效应,将DOM浓度稀释到3 mg/L,使用Horiba 公司Aqualog®荧光光谱仪进行EEM荧光表征,其条件为:激发波长Ex范围为230~450 nm,扫描间隔5 nm,发射波长Em范围为230~550 nm,激发光源为 150 W 无臭氧氙弧灯,扫描信号积分时间为3 s,以超纯水(18.2 MΩ·cm)作为空白,样品分析中Aqualog系统自动扣除瑞利和拉曼散射[25]。
数据通过Origin 9.1作图;采用MATLAB 2020a软件对荧光数据矩阵进行平行因子分析;并由SPSS 22进行数据分析,对象之间相互关系采用相关性分析,并经Pearson检验,而对象之间的差异性分析采用One-way ANOVA(<0.05或<0.01)。
不同处理的堆体变化如图2a所示,各个处理堆体温度变化曲线都呈现出典型的3个时期:升温期、高温期和降温期。因堆体基质中微生物活性和易分解有机物含量较高,使得在堆肥开始1~2 d内,T处理和CK堆体都分别达到最高温62.7、67.5 ℃;随着堆肥的继续进行,易分解有机质消耗殆尽,微生物活性下降[26],在堆肥第14天左右堆肥进入降温期(<50 ℃);为了减少病原菌,满足有机肥卫生需要,一般要求堆体在55 ℃以上保持3 d[27],各处理达到了6~7 d,满足卫生要求。虽然处理与对照的高温期时长均为13 d,但处理高温期温度低于对照,可能是海泡石对碳素转化的影响所致,这与Wang等[28]研究膨润土对堆肥的影响结果相似。
由图2b可见,T处理和CK的EC值整体呈现先降再升过程,而T处理的初始EC值并没有因海泡石加入而出现明显差异(T处理的EC值为3.68 mS/cm、CK为3.59 mS/cm);堆肥第3天,氨氮挥发和活性有机质降解导致各处理EC值明显下降[29],而T处理EC值显著高于CK(<0.05),其EC值下降较缓(T处理为3.36 mS/cm,CK为2.50 mS/cm),可能是海泡石的吸附作用缓解活性有机质分解所致;堆肥后期,有机物的矿化使得可溶性盐浓缩,从而导致各处理的EC值上升[29]。堆肥结束后,T处理EC值(4.53 mS/cm)要显著高于CK值(4.13 mS/cm)(<0.05),电导率上升9.69%,证明矿物的添加会增加堆体的EC值,Pan等[15]研究硅藻土对堆肥的影响中,也发现矿物的加入会提高堆体的EC值。
C/N综合反应了碳素和氮素在堆肥过程中的变化,常用于判断堆肥的稳定和腐熟[29]。海泡石稀释作用虽使得海泡石处理的初始C、N含量有所下降(CK的C、N质量分数分别为45.49%和2.36%,而T处理的C、N质量分数分别为43.28%和2.26%),但各处理C/N并无明显区别(>0.05);从整体来看,堆体C/N呈现先上升后下降的变化(图2c);堆肥第3天,由于堆肥高温期氮素损失大于碳素分解,使得C/N上升,而T处理的C/N为22.91,但与CK的23.22无显著性差异(>0.05);随着堆肥时间的延长,氮素上升且趋于稳定而碳素进一步分解,从而导致C/N下降;堆肥结束后,CK的TOC和TKN质量分数分别为42.05%和2.38%,T处理的TOC和TKN质量分数分别为35.76%和2.11%,CK的C、N含量皆显著高于处理(<0.05),而其C/N(16.96)亦低于CK(17.45),降低2.81%,因此海泡石的加入对堆体的稳定有促进作用。
GI值可作为综合评价堆体腐熟和毒性最直观的指标[27]。图2d可见,堆肥前期,各处理GI值均较低,且堆肥第3天出现小幅下降(T处理为24.5%,CK为12.8%),原因在于堆肥初期堆体中堆肥有机质不稳定,对种子发芽影响较大[15];而随着堆肥的继续进行,堆体有机物进一步的稳定,使得GI值稳定上升;堆肥结束后,T处理和CK的GI值分别为0.87和0.76,都达到了堆肥腐熟以及作物可接受程度(GI>0.5)[30],而对比CK,T处理的GI值上升11.96%,显著提高了堆体的GI值(<0.05)。整体来说,海泡石的投加虽然增加了EC值,但也促进堆体有机质的稳定,并在一定程度上稀释了堆体毒性,因此通过GI值可见,海泡石加入有利于减少堆肥最终产物的生物毒性。
DOM含量的变化和堆体的稳定性以及生物毒性有密切联系[19]。从图3a可见,T处理和CK的DOM含量(以碳计)在高温期出现了短暂的上升,这是由于前期微生物活性强,易分解且不溶水的有机物降解所致;而高温期后,易被微生物利用的碳源不足,从而DOM含量逐渐下降[31]。与CK相比,T处理的DOM含量变化要更平缓,虽然两者DOM值都在第3 天分别达到最高值(T处理为11.36 g/kg,CK为13.78 g/kg),但T处理的DOM值要更低,且下降趋势更加缓慢。有机质的极性官能团可以先通过配体交换和黏土矿物表面羟基进行简单结合,并在矿物表面形成较为稳定的内层络合物,从而保护有机质不被分解[32]。海泡石的加入可能通过其吸附作用保护了DOM不被分解,使得DOM的分解更加缓慢,而也可能是海泡石处理的温度略低的原因(图2a)。堆肥结束后,T处理和CK的DOM值分别为6.00、6.51 g/kg,海泡石加入显著降低DOM含量(<0.05),相比CK下降了7.84%,增强了堆体的稳定性,这与Wang等[28]研究膨润土对堆肥的影响结果相似。
胡敏酸作为腐殖质的组成成分之一,由于具有更大的分子量和芳香性结构,使得胡敏酸与腐殖质的比例(PHA)的改变不仅代表腐殖质组成的变化,也反应了堆体的腐熟情况[33]。PHA总体呈现逐渐上升的趋势(图3b),碱提取腐殖质中胡敏酸占比逐步提升,证明了堆体有机质腐殖化程度的增强,而堆体有机质的稳定性也随之提高。堆肥结束后,相比CK,T处理的PHA值(60%)要高于CK(55%)(<0.05),增长9.71%,具有高分子量的胡敏酸占比的提高说明了海泡石处理中有机质稳定性的提升。同样,Ren等[16]发现不同比例硅藻土加入堆体,可改善堆体结构,增加微生物活性,从而出现胡敏酸含量提高22.87%情况。
2.3.1 堆肥过程中的荧光峰变化
从图4堆肥过程的三维荧光光谱可以看出,海泡石处理和CK均存在4个荧光峰,其激发波长(Ex)/发射波长(Em)分别为:275 nm/335 nm(峰A,与微生物有关的蛋白类物质)、285 nm/420 nm(峰B,类腐殖酸物质)、335 nm/420 nm(峰C,类腐殖酸物质)以及230 nm/400~450 nm(峰D,类富里酸物质)[34-36]。
堆肥开始,CK和T处理荧光图中,均只存在明显的峰A,其余峰并不明显;在堆肥第7天,T处理荧光图中峰B、峰C和峰D均出现并具有较高的荧光峰强,而CK仅峰D较为明显;随着堆肥继续进行,各处理的峰A的荧光强度逐渐下降,更长波长峰B、峰C和峰D更加明显;研究表明,由于更长波长的荧光峰与结构聚合度更高的有机质密切相关,由此峰A下降而其他峰的上升,荧光图的变化说明堆肥过程中DOM的组成成分从易降解、低芳香性结构向着难降解、高芳香性的结构转化[37],而此过程和堆体腐熟过程和腐殖化过程一致。另外,海泡石的加入对第7天的DOM的荧光峰影响显著的原因可能在于其对小分子有机质的凝聚作用,使得水溶性的易降解的有机物在堆肥初期能快速的向难生物降解的物质转化[38]。而还需指出的是,由于单纯的荧光谱图不能反应DOM中所有成分,对比图4d可见,在同等尺度以及相同荧光峰的情况下,总的荧光强度有所差异,还需对DOM的荧光基团的具体情况进行更深入分析。
2.3.2 堆肥过程中3D-EEM的平行因子分析
根据平行因子分析将DOM分成3个组分(图5):组分1(component 1,C1)Ex/Em为240(325) nm/410~425 nm,与富里酸物质类似[39];组分2(component 2,C2)Ex/Em为<230(275) nm/330 nm,与蛋白质物质类似[40];组分3(component 3,C3)Ex/Em为260(350) nm/460~475 nm,与腐殖酸物质类似[41]。同时,根据组分荧光峰的位置可知,DOM中各个组分的腐殖化程度顺序为[42]:C3>C1>C2。
DOM样品EEM的每个组分的最大荧光强度(maximum fluorescence intensity,max)值作为荧光组分的信号强度的得分值,其值反应堆肥不同阶段样品中组分的相对浓度。从图6可知,3个组分总的max值大小存在差异,对比第21天的处理与CK,发现T处理的总max值(9 220)要远低于CK(15 099),从而导致图4d在同尺度下存在差异。因此,在固定了DOM浓度为3 mg/L后,对比各组分max值的占比情况,更能反映DOM腐殖化程度。堆肥第0天,T处理和CK主要以C2为主,C3和C1占比较低,与图4a的出峰情况一致;随着堆肥过程进行,C2的max值以及占比下降明显,同时伴随着C1和C3的上升,证明了在堆肥腐熟化进程中易降解有机物在被分解利用的同时,也存在着向难分解有机物转化的过程;堆肥第7天,T处理的C2占比(33.18%)要明显低于CK(39.05%),而处理的C3占比相应的提升,与图4b的荧光强度变化相符;总体上,DOM的成分变化和堆体的稳定性相关,而海泡石的加入对DOM作用不仅在于促进了不稳定的C2含量的快速下降,同时也加速更稳定的C3含量增加,从而加速了堆体解毒,而上文中反应堆体植物毒性的GI值(图2d)也进一步验证了此过程。
堆肥过程中的基本参数的相关性的正负关系较为固定,海泡石的加入对堆肥的相关性影响主要在其值大小的变化。如表2表3所示,从GI来看,CK中GI值与DOM(=−0.890,<0.01)和TOC(=−0.961,<0.01)均呈极显著负相关;而与HA(=0.859,<0.05)和荧光组分C1(=0.784,<0.05)均呈显著正相关,这再一次证明了易降解有机质的分解和稳定有机质的生成是堆肥解毒的重要因素。同时,DOM中荧光C3组分作为芳香性更高的成分与堆肥理化指标中的HA以及TOC具有较强相关性。海泡石处理中HA与C3呈显著正相关(=0.836,<0.05),与TOC则呈显著负相关(=−0.963,<0.01),而CK的TOC与C3之间相关性并没有达到显著(−0.653,>0.05)。从而说明海泡石加入使得TOC分解与HA产生具有更强的关联性。
注:*,**分别表示相关性系数的显著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels
表3 T处理荧光组分和堆肥理化指标之间的相关性分析
注:*,**分别表示相关性系数的显著性,<0.05,<0.01
Note: * and ** represent significant correlation coefficients at<0.05,<0.01 levels
结合DOM含量、荧光成分以及相关性变化可知,海泡石的加入改变了碳素转化过程,其变化与微生物对有机质的降解以及易降解有机物的聚合密不可分。海泡石加入在一定程度上抵御了微生物对小分子有机物的分解,从而出现DOM含量下降变缓(图3a),同时由于高比表面的海泡石对有机质的吸附以及凝聚作用使得DOM中复杂结构的荧光组分含量得以提高(图6)。海泡石在堆肥过程对易降解有机物的综合作用,减少了堆体的生物毒性,提高堆体作为有机肥的利用价值。
1)海泡石添加的堆体出现了电导率提高和温度降低的情况,但同时却使得C/N降低2.81%,种子发芽指数上升11.96%,增加了堆体的腐熟。
2)海泡石加入堆肥降低了7.84%的溶解性有机质含量且高芳香性组分增加明显,同时提高了9.71%的胡敏酸比例,堆体稳定性增强。
3)海泡石添加的堆体中胡敏酸与高芳香性组分呈更显著正相关(=0.836,<0.05),且与总有机碳呈更显著负相关(=−0.929,<0.01),从而判断海泡石添加对堆肥碳素转化途径的影响在于,有机质分解同时促进了稳定性更高的有机物产生。
[1] 郭冬生,彭小兰,龚群辉,等. 畜禽粪便污染与治理利用方法研究进展[J]. 浙江农业学报,2012,24(6):1164-1170.
Guo Dongsheng, Peng Xiaolan, Gong Qunhui, et al. Pollution of livestock and poultry feces and countermeasures[J]. Journal of Zhejiang Agriculture, 2012, 24(6): 1164-1170. (in Chinese with English abstract)
[2] 李旭,路明艺,师晓爽,等. 多孔填充剂促进牛粪秸秆高温恒温堆肥有机质降解减少氮损失[J]. 农业工程学报,2018,34(增刊1):132-137.
Li Xu, Lu Mingyi, Shi Xiaoshuang, et al. Accelerating organic matter degradation and reducing NH3emission during constant high temperature composting of cattle manure and corn straw with addition of porous [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 132-137. (in Chinese with English abstract)
[3] Pagans Estela, Barrena Raquel, Font Xavier, et al. Ammonia emissions from the composting of different organic wastes, dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534-1542.
[4] Jonathan W-C Wong, Shun On Fung, Ammaiyappan Selvam. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting[J]. Bioresource Technology, 2009, 100(13): 3324-3331.
[5] Bougnom B P, Mair J, Etoa F X, et al. Composts with wood ash addition: A risk or a chance for ameliorating acid tropical soils?[J]. Geoderma, 2009, 153(3): 402-407.
[6] Jukka M Kurola, Mona Arnold, Merja H Kontro, et al. Wood ash for application in municipal biowaste composting[J]. Bioresource Technology, 2011, 102(8): 5214-5220.
[7] Chen Yingxu, Huang Xiangdong, Han Zhiying, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2009, 78(9): 1177-1181.
[8] Liu Ling, Guo Xiaoping, Wang Shuqi, et al. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts[J]. Ecotoxicology and Environmental Safety, 2018, 150: 270-279.
[9] Jiang Tao, Ma Xuguang, Yang Juan, et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology, 2016, 217: 219-226.
[10] Jiang Jishao, Huang Yimei, Liu Xueling, et al. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management, 2014, 34(9): 1595-1602.
[11] Zhao Yi, Zhao Yue, Zhang Zhechao, et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64-73.
[12] Liu Wei, Huo Rong, Xu Junxiang, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49.
[13] 任秀娜,王权,赵军超,等. 添加钙基膨润土对猪粪堆肥中水溶性有机物光谱特征的影响[J]. 光谱学与光谱分析,2018,38(6):1856-1862.
Ren Xiuna, Wang Quan, Zhao Junchao, et al. The effect of Ca-bentonite on spectra of dissolved organic matter during pig manure composting[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862. (in Chinese with English abstract)
[14] 赵军超,王权,任秀娜,等. 钙基膨润土辅助对堆肥及土壤Cu、Zn形态转化和白菜吸收的影响[J]. 环境科学,2018,39(4):1926-1933.
Zhao Junchao, Wang Quan, Ren Xiuna, et al. Effect of Ca-bentonite on Cu and Zn forms in compost and soil, and their absorption by Chinese cabbage[J]. Environmental Science, 2018, 39(4): 1926-1933. (in Chinese with English abstract)
[15] Pan Junting, Li Ronghua, Zhai Limei, et al. Influence of palygorskite addition on biosolids composting process enhancement[J]. Journal of Cleaner Production, 2019, 217: 371-379.
[16] Ren Xiuna, Wang Quan, Awasthi Mukesh Kumar, et al. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission[J]. Bioresource Technology, 2019, 286: 121377.
[17] Hsieh Yuch Ping. Soil organic carbon pools of two tropical soils inferred by carbon signatures[J]. Soil Science Society of America Journal, 1996, 60(4): 1117.
[18] Johnston Cliff T, Premachandra Gnanasiri S, Szabo Tamas, et al. Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite[J]. Langmuir, 2012, 28(1): 611-619.
[19] Bashir Saqid, Ali Umeed, Shaaban Muhammad, et al. Role of sepiolite for cadmium (Cd) polluted soil restoration and spinach growth in wastewater irrigated agricultural soil[J]. Journal of Environmental Management, 2020, 258: 110020.
[20] Said-Pullicino D, Gigliotti G. Oxidative biodegradation of dissolved organic matter during composting[J]. Chemosphere, 2017, 68(6): 1030-1040.
[21] Zhao Xinyu, He Xiaosong, Xi Beidou, et al. The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting[J]. Waste Management, 2016, 56: 79-87.
[22] 曹云,黄红英,吴华山,等. 畜禽粪便超高温堆肥产物理化性质及其对小白菜生长的影响[J]. 农业工程学报,2018,34(12):251-257.
Cao Yun, Huang Hongying, Wu Huashan, et al. Physico- chemical properties of hyperthermophilic composting from livestock manures and its effects on growth of Chinese cabbage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 251-257. (in Chinese with English abstract)
[23] 蔡函臻,宁西翠,王权,等. 碱性固体对污泥的调质堆肥影响及产品对土壤的改良潜力[J]. 环境科学,2016,37(12):4848-4856.
Cai Hanzhen, Ning Xicui, Wang Quan, et al. Effect of alkali solids amendment on sewage sludge aerobic composting and the potential of related products on infertile soil amelioration[J]. Environmental Science, 2016, 37(12): 4848-4856. (in Chinese with English abstract)
[24] 李丹,何小松,席北斗,等. 堆肥过程水溶性有机物组成和结构演化研究[J]. 环境科学,2016,37(9):3660-3669.
Li Dan, He Xiaosong, Xi Beidou, et al. Composition and evolution characteristics of dissolved organic matter during composting process[J]. Environmental Science, 2016, 37(9): 3660-3669. (in Chinese with English abstract)
[25] 陈雪霜,江韬,卢松,等. 典型水库型湖泊中CDOM吸收及荧光光谱变化特征:基于沿岸生态系统分析[J]. 环境科学,2016,37(11):4168-4178.
Chen Xueshuang, Jiang Tao, Lu Song, et al. Spectral characteristics of chromophoric dissolved organic matter (CDOM) from a typical reservoir lake from inland of three gorges reservoir areas: In the view of riparian ecosystem analysis[J]. Environmental Science, 2016, 37(11): 4168-4178. (in Chinese with English abstract)
[26] 李季,彭生平. 堆肥工程实用手册[M]. 北京,化学工业出版社,2011.
[27] 吴传栋. 基于碳源调控的污泥堆肥氮素转化及氨同化作用机制研究[D]. 哈尔滨,哈尔滨工业大学,2018.
Wu Chuandong. Study On Nitrogen Transformation and Ammonia Assimilation during Sewage Sludge Composting Based on Carbon Source Control[D]. Harbin, Harbin Institute of Technology, 2018. (in Chinese with English abstract)
[28] Wang Quan, Li Ronghua, Cai Hanzhan, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161.
[29] Li Ronghua, Wang Jim J, Zhang Zengqiang, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368.
[30] Paredes C, Cegarra J, Bernal M P, et al. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties[J]. Environment International, 2005, 31(2): 305-312.
[31] Yang Yajun, Du Wei, Ren Xiuna, et al. Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting[J]. The Science of the Total Environment, 2020, 708(15): 134623
[32] Kleber M, Sollins P, Sutton R. A conceptual model of organo- mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9-24.
[33] Jouraiphy Abdelmajid, Amir Soumia, Gharous Mohamed El, et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56(2): 101-108.
[34] Chen Wen, Westerhoff Paul, Leenheer Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2005, 37(24): 5701-5710.
[35] 曾凤,霍守亮,席北斗,等. 猪场废水厌氧消化液后处理过程中DOM变化特征[J]. 环境科学,2011,32(6):1687-1695.
Zeng Feng, Huo Shouliang, Xi Beidou, et al. Characteristics variations of dissolved organic matter from digested piggery wastewater treatment process[J]. Environmental Science, 2011, 32(6): 1687-1695. (in Chinese with English abstract)
[36] 刘晓明,余震,周普雄,等. 污泥超高温堆肥过程中DOM结构的光谱分析[J]. 环境科学,2018,39(8):3807-3815.
Liu Xiaoming, Yu Zhen, Zhou Puxiong, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge[J]. Environmental Science, 2018, 39(8): 3807-3815. (in Chinese with English abstract)
[37] He Xiaosong, Xi Beidou, Wei Ziming, et al. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste[J]. Chemosphere, 2011, 82(4): 541-548.
[38] He Xiaosong, Xi Beidou, Li Xiang, et al. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification[J]. Chemosphere, 2013, 93(9): 2208-2215.
[39] Yu Guanghui, Luo Yihong, Wu Minjie, et al. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity[J]. Bioresource Technology, 2010, 101(21): 8244-8251.
[40] Lu Fan, Chang Cheng-Hsuan, Lee Duujong , et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575-582.
[41] Baghoth S A, Sharma S K, Amy G I. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809.
[42] Zhao Yue, Wei Yuquan, Zhang Yun, et al. Roles of composts in soil based on the assessment of humification degree of fulvic acids[J]. Ecological Indicators, 2017, 72:473-480.
Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter
Zheng Wei1, Zhou Hong1, Yang Hangbo1, Huang Lei1,2, Chen Yucheng1,2, Peng Li3, Yang Zhimin1,2※
(1.,400716,;2.,,400716,;3.,401121,)
Pig manure has caused the most serious environmental pollution among various animal manure, where estimated approximately 776 million tons in each year in China. Aerobic composting can be expected as an effective technique to treat the solid organic wastes, thereby to decompose inconstant and hazardous organic matter, and futher to quickly reduce the total amount and inactivate biotoxicity of wastes. Previous reports indicated that clay minerals have observably influence on the decomposition of Organic Matter (OM) in soil system. However, the research is still lacking on the intermolecular interactions between clay minerals and OM in the composting, even though the OM was more simple and active. Taking the pig manure and poplar sawdust as raw materials, and sepiolite as a conditioner, this study aims to explore the influence of sepiolite on the stability of aerobic composting. An investigation was made on the variation in the maturity index of compost, organic matter in the different components of compost, and structure of Dissolved Organic Matter (DOM). The results showed that after sepiolite added, the maximum temperature of compost decreased obviously, and the electrical conductivity value increased by 9.69%, compared to control. However, the lower C/N (decreased by 2.81%) and higher seed germination index (increased by 11.96%) were observed with the addition of sepiolite without the negative impact of finial production, while showing better maturity. These indicators suggested that the organic fertilizers with the sepiolite addition were beneficial to the application for the farmland. Most previous studies focused on the content of DOM and humic acid, representing the stable and unstable components of OM in the compost production. Compared with the control, DOM content of compost with the addition of sepiolite was reduced by 7.84%, while the percentage of humic acid increased by 9.71%, indicating that the sepiolite can influence on the content of different components of OM, and thereby make the compost more stable. In this study, fluorescence spectra were used to represent the fluorescence characteristics of DOM, further to clarify the interactions between clay minerals and OM. An Excitation-Emission Matrices-Parallel Factor Analysis (EEM-PAFARAC) was used to quantify the proportion of DOM components. The results demonstrated that the sepiolite significantly increased the fluorescence intensity of long-wavelength peak in the fluorescence spectrum in a relatively short period, meaning that the more stable OM was produced more quickly. After the DOM components were distinguished by EEM-PAFARAC, the proportion of highly aromatic components increased significantly in the begining phase of compost with the addition of sepiolite, indicating more higher proportion in the final production. In order to explore the causes of OM transformation in composting, the correlation analysis showed that there was a more significant negative relationship between the highly aromatic component of DOM and total organic matter, compared with the control, indicating that the OM cannot decomposed, but converted into more stable OM in the sepiolite treatment. Therefore, the sepiolite as an additive can be used to reduce the biotoxicity of composting products, while to increase the degree of maturity, and the stability of compost via impacting on the structure of organic matter.
compost; manure; sepiolite; compost stability; DOM; EEM-PAFARAC
郑威,周红,杨航波,等. 海泡石添加对猪粪堆肥腐熟和水溶性有机质的影响[J]. 农业工程学报,2021,37(1):259-266.doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
Zheng Wei, Zhou Hong, Yang Hangbo, et al. Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 259-266. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.031 http://www.tcsae.org
2020-10-26
2020-12-15
重庆市社会事业与民生保障科技创新专项重点研发项目(CSTC2017SHMS-ZDYFX0030);重庆市城市管理局项目(城管科字2018第05号);西南山地生态循环农业国家级培育基地项目(5330200076)
郑威,研究方向为固体废物处理与土壤修复。Email:471587596@qq.com.
杨志敏,副教授,主要研究方向为环境污染修复与管理。Email:bear@swu.edu.cn
10.11975/j.issn.1002-6819.2021.01.031
S141.4
A
1002-6819(2021)-01-0259-08
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!