时间:2024-05-24
巩有奎,王一冰,孙洪伟
生物反应器电子受体反硝化聚磷PAOs-GAOs竞争及N2O释放特性
巩有奎1,王一冰1,孙洪伟2
(1. 烟台职业学院建筑工程系,烟台 264670; 2. 烟台大学环境与材料工程学院,烟台 264005)
利用厌氧-缺氧-好氧序批式生物反应器(Anaerobic/Anoxic/Oxic-Sequencing Batch Reactor, An/A/O-SBR),以乙酸钠为电子供体,NO3-/NO2-为电子受体,控制反硝化电子受体电子需求为90 mmol/L,经长时间驯化,考察了不同电子受体驯化SBR反硝化除磷及N2O释放特性,并利用化学计量法确定了聚磷菌(Phosphorus Accumulating Organisms, PAOs)和聚糖菌(Glycogen Accumulating Organisms, GAOs)间竞争关系。结果表明,NO3-还原过程中,SBR系统总氮(Total Nitrogen, TN)和总磷(Total Phosphorus, TP)去除率均达95%以上,平均N2O产率为2.4%,PAOs转化碳源(CODin)和反硝化脱氮比例分别为62.0%和76.2%。NO2-增加,厌氧段糖原(Gly)酵解性能增强,Gly消耗与碳源转化比例(ΔGly/CODin)由0.67增至0.80,PAOs活性受抑制,聚磷(Poly-P)合成减少,GAOs竞争优势增强。NO2--N为30 mg/L,SBR内TP去除率降至50.5%,PAOs转化碳源和脱氮比例分别降至36%和50.6%。PAOs-GAOs共生体系内,GAOs反硝化脱氮过程,削弱了高NO2-对PAOs反硝化除磷的抑制,缺氧阶段NO2-/HNO2积累耦合GAOs反硝化脱氮比例增加,导致高NO2-下TP去除率下降和N2O产率增加。
电子迁移;氮氧化物;污水;反硝化聚磷菌;聚糖菌;电子受体;氧化亚氮
随着乡镇经济发展和农村居民生活条件不断改善,其产生的生活污水也日益增多。10 a前,农村地区水污染物总量已达全国排放总量的50%,其总氮(Total Nitrogen,TN)、总磷(Total Phosphorus, TP)排放约占全国总排放量的57%和67%[1]。近几年,中国推进“美丽乡村”建设,农村污水处理设施建设得以快速提升[2-3]。然而,传统生物脱氮除磷工艺处理生活污水过程中,存在脱氮与除磷2个过程在碳源、溶解氧及污泥龄等方面矛盾,难以保证氮、磷同时达标。
反硝化除磷(Denitrifying Phosphorus Removal,DPR)工艺可实现同步反硝化脱氮和缺氧吸磷,具有流程简单、节省外加碳源等诸多优点[4]。该过程厌氧阶段,聚磷菌(Phosphorus Accumulating Organisms, PAOs)吸收外碳源合成体内聚羟基烷酸脂(Polyhydroxyalkanoates, PHA)并释磷;缺氧阶段,PAOs以NOx-为电子受体,以PHA为电子供体,完成反硝化脱氮并过量吸磷[5-6]。在厌氧-缺氧-好氧(Anaerobic/Anoxic/Oxic, An/A/O)交替运行序批式反应器(Sequencing Batch Reactor, SBR)内,常存在与PAOs竞争碳源的聚糖菌(Glycogen Accumulating Organisms, GAOs),其反硝化过程不能实现磷去除,传统研究认为GAOs过多会导致除磷性能降低。然而,研究表明[7-9],在PAOs-GAOs共存系统内,菌群的多样性可促进同步反硝化除磷系统高效运行。GAOs厌氧阶段储存PHA,可耦合PAOs实现高效脱氮除磷。Rubio-Rincón等[7]发现,在PAOs- GAOs混合系统中,GAOs将NO3-还原至NO2-,PAOs利用NO2-完成缺氧吸磷,表现出更高的缺氧磷吸收活性。Wang等[8]研究也发现,GAOs反硝化过程将NO3-还原至NO2-,亚硝酸盐转化率可达53%~67%,GAOs短程内源反硝化与PAOs反硝化除磷协同,可充分利用微生物内碳源,解决了城市污水脱氮过程中碳源不足的问题[9]。GAOs利用NO2-能力大于PAOs,混合体系内存在GAOs,可削弱NO2-对PAOs反硝化吸磷过程的抑制,促进磷吸收[10]。
目前反硝化除磷过程研究多以NO3-为电子受体,通过全程内源反硝化过程实现。尽管DPR系统内同时存在PAOs和GAOs,但是,不同电子受体还原过程中,PAOs-GAOs之间碳源竞争关系及两者对反硝化过程的贡献尚不明确[11-13]。部分研究指出,PAOs-GAOs内源反硝化过程的终产物是N2O而非N2,导致反硝化除磷过程N2O大量释放[14-16]。N2O是导致臭氧层破坏最严重的因素之一,其温室效应是CO2的300倍,这势必会削弱反硝化除磷技术作为新型污水处理过程的应用优势[16]。本文采用An/A/O-SBR系统,控制反硝化电子需求总量为90 mmol//L,通过改变NO3-与NO2-间比例,分别实现NO3-和NO2-反硝化过程,并基于DPR内功能菌群(PAOs、GAOs)的代谢模型及计量学分析,考察了PAOs-GAOs耦合作用下SBR内碳源转化及同步脱氮除磷特性,确定了两者碳源竞争关系及系统N2O释放特性,为提升农村生活污水处理效率及减少温室气体排放提供理论支撑。
试验用序批式生物反应器(Sequencing Batch Reactor,SBR)有效容积为12 L,充水比为0.75。SBR设有搅拌装置,内置pH值和溶解氧(Dissolved Oxygen,DO)传感器,以实现在线监测和实时调控(图1)。试验期间,SBR的固体停留时间(SRT)控制为20 d,悬浮固体浓度(Mixed Liquor Suspended Solid, MLSS)为2 800 mg/L左右,挥发性悬浮固体(Mixed Liquid Volatile Suspended Solids,VSS)与MLSS质量浓度比约为0.75,试验温度=(20±1) ℃。缺氧和好氧反应阶段分别以高纯氮气和空气进行曝气,DO=(1.5±0.5) mg/L。曝气量为30 L/h,每30 min更换一次采样袋。
图1 SBR试验装置及运行方式
试验接种污泥取自实验室内具有良好脱氮除磷性能A2/O反应器二沉池。试验开始前,A2/O反应器已连续运行100 d以上,脱氮及除磷效率分别稳定在80%和95%以上,经FISH测定,反硝化聚磷菌(Denitrifying Phosphorus Accumulating Organisms, DPAOs)与PAOs比值(DPAOs/PAOs)约为0.7。试验过程中,以厌氧(90 min)-缺氧(180 min)-好氧(60 min)-沉淀排水(30 min)-闲置(120 min)方式运行SBR,每天运行3个周期,以PLC控制SBR运行过程。试验采用模拟废水,厌氧阶段废水进入SBR混合后,化学需氧量(Chemical Oxygen Demand,COD,乙酸钠)为(120±20)mg/L,PO43--P(K2HPO4)为(6.0±1.0)mg/L,NH4+-N(NH4Cl)为(5.0±1.0)mg/L,并含有0.5 mL/L微量元素营养液[17]。缺氧初始,脉冲投加NaNO3/NaNO2提供电子受体,控制NOx-全部还原所需电子为90 mmol/L,并采用调整NO3/NO2-比例,即逐级增加NO2-、减小NO3-方式,将电子受体由 NO3-逐渐转变为NO2-,整个试验过程共分为4个阶段(表1)。
表1 厌氧/缺氧/好氧运行序批式反应器试验过程
分别取第30、60、90和135 d厌氧反应结束后污泥进行批次试验,确定污泥反硝化吸磷特性。试验采用有效容积为0.75 L锥形瓶。试验开始前,利用蒸馏水将污泥清洗3次,去除污泥表现残留有机物。各批次试验初始,加入18.0 mg/L的NO3--N或30 mg/L的NO2--N,测定不同电子受体反硝化过程NO2--N和NO3-还原速率(NiRR,NaRR),并确定对应的吸磷速率(PURi,PURa)。
1)水质测定方法:以便携式 DO 和 pH 值测定仪(WTW,Multi340i 型)测定反应器中 DO、pH值,COD、NO3-、NO2-、MLSS和MLVSS均采用标准方法分析[17]。
2)N2O测定方法[18]:试验过程中,以湿式流量计确定采样袋内收集气体体积,以气相色谱仪(Agilent公司6890N型)测定气相N2O浓度。色谱测定条件:炉温180 ℃,进样口温度110 ℃,ECD检测器300 ℃。
3)内源物测定方法:聚--羟基丁酸(Poly-- Hydroxybutyrate,PHB)、聚--羟基戊酸(Poly-- Hydro- xyvalerate,PHV)采用内标法以气相色谱分析[19],两者之和为PHA;Gly采用蒽酮法测定[20]。
An/A/O-SBR内厌氧阶段碳源消耗量(CODcon)主要包括异养反硝化菌(OHO)COD耗量(CODdn)[21]、PAOs、DAOs内碳源储存COD量(CODin)[22]。其中,CODin和CODdn计算分别见式(1)~式(2),PAOs和GAOs储存内碳源消耗的COD比例以PAO, An和GAO, An计,计算方法如式(3)和式(4)所示[23]。
CODin=CODcon-CODdn(1)
CODdn=2.86ΔNO3--N +1.71ΔNO2--N(2)
0.5PAO,An=PRA/CODin(3)
1.12GAO,An=∆GlyAn/CODin-0.5PAO,An(4)
式中ΔNO3--N和ΔNO2--N分别为厌氧段NO3--N和NO2--N变化量,mg/L;2.86和1.71分别为单位质量浓度NO3--N和NO2--N异养反硝化过程所消耗COD,mg/mg;PRA为厌氧阶段释磷量,mmol/L;∆GlyAn为厌氧阶段Gly消耗量,mmol/L;0.5和1.12分别为PAOs和GAOs消耗外碳源转化为内碳源时,单位有机物释磷和Gly消耗量[23]。
缺氧阶段,无外加碳源,NOx--N通过DPAOs和GAOs内源反硝化去除,以PDPAOs,A和PGAOs,A表示DPAOs和GAOs在缺氧脱氮过程中的贡献比例。计算如式(5)~式(7)所示:[14]
式中NRADPAOs和NRAGAOs分别为DPAOs和GAOs的NOx--N去除量,mg/L;NaRA为缺氧阶段NO3-去除量,mg/L;NiRA为缺氧阶段NO2-去除量,mg/L;PUA为缺氧阶段吸磷量,mg/L。
图2所示为An/A/O-SBR长期运行特性。驯化初期,SBR缺氧末存在部分NO2-积累,NOx-去除率(NOx-去除/进水NOx-,%)为58.5%。NO3-加入促进了以NO3-为电子受体的DPAOs富集,经30 d驯化,NO3-去除量(NaRA)达16.5 mg/L,N2O产率(N2O释放量/NOx-去除量)由驯化初始的3.23%降至2.4%。NOx-去除率增加是在进水COD/N恒定条件下实现的,得益于系统内以NO3-为电子受体的DPAOs富集和GAOs减少。DPAOs反硝化吸磷过程以体内PHA为碳源,被降解更为彻底,GAOs反硝化过程中,降解的部分PHA用于再生Gly,降低了PHA利用效率。II阶段,NO2-加入导致NOx-去除率迅速降至70.0%。I阶段NO2-积累较低,未驯化出可大量利用NO2-的DPAOs,脉冲加入的NO2-抑制DPAOs活性,NOx-去除率迅速降低,经驯化,NOx-去除率达80.8%,电子耗量为71.2 mmol/L,比阶段I降低20.9%。Meinhold等[24]指出,NO2-加入会导致反硝化活性降低。阶段IV,仅投加NO2-,NO2-去除量(NiRA)为18.7 mg/L,NOx-去除率降至69.9%,电子耗量降至56.1 mmol/L。
阶段I,厌氧末PO4-由17.6增至29.5 mg/L并趋于稳定,缺氧末PO43-由3.43 降至0.65 mg/L,NO3-投加促进了DPAOs富集,微生物吸收等量碳源时的聚磷(Poly-P)水解数量增加,平均厌氧释磷量(PRA)和单位污泥释磷量分别达26.0 mg/L和10.1 mg/g。缺氧阶段,DPAOs氧化PHA获得能量,过量摄取PO43-并以Poly-P形式储存于细胞内,平均PUA为28.9 mg/L,TP去除率(进水总磷/缺氧末总磷,%)达95%以上;阶段II,NO2-抑制释磷和吸磷,单位污泥释磷量降至8.91 mg/g,TP去除率降至74.7%;IV阶段,PRA和PUA分别降至12.9和15.7 mg/L,TP去除率仅为50.5%。缺氧Poly-P合成通过ATP/ADP来反映。以NO2-为电子受体,其生成的游离亚硝酸(FNA)能穿过细胞膜,降低胞内pH值并影响ATP合成,导致ATP/ADP合成低下,进而降低Poly-P合成,宏观上则表现为微生物吸磷活性受到抑制[25-26];另一方面,FNA进入细胞,通过破坏多聚磷酸盐激酶(PPK)来抑制Poly-P合成,影响吸磷[27]。此外,缺氧反硝化活性受到FNA抑制,产生的能量减少,为维持胞内能量平衡,发生部分Poly-P水解,磷吸收能量受限,也导致缺氧吸磷速率降低[28]。
图3所示分别为I(a、b)和IV阶段(c、d)典型周期内COD、N、P、PHA和Gly变化特性。以NO3-作为电子受体(阶段I),经18 mg/L NO3--N驯化,PRA达0.85 mmol/L,PRA与厌氧阶段PHA合成(ΔPHA)之比(PRA/ΔPHA)为0.29 mmol/mmol,低于典型PAOs厌氧代谢模型值(0.625 mmol/mmol[14]),接近DPAOs代谢模型值(0.24 mmol/mmol[29]),NO3-加入促进SBR内DPAOs增殖,释磷主要由DPAOs完成。Gly酵解(ΔGly)与PHA合成之比(ΔGly/ΔPHA)为0.63 mmol/mmol,大于典型PAOs和DPAOs厌氧ΔGly/ΔPHA(0.385[29]和0.43[30]mmol/mmol),SBR内存在GAOs以降解Gly方式获得能量,将有机物合成体内PHA。阶段IV厌氧过程,PRA至0.42 mmol/L,PHA合成为2.44 mmol/L,PRA/ΔPHA降至0.17 mmol/mmol,ΔGly/ΔPHA则增至0.817 mmol/mmol。NO2-加入抑制缺氧Poly-P合成,导致下一周期厌氧段Poly-P分解提供能量降低,微生物通过增加Gly酵解的方式获得能量,导致了SBR内GAOs增殖,部分PAOs被淘洗出系统。也有研究表明,高浓度NO2-(20~30 mg/L)能够抑制DPAOs活性,而几乎不影响GAOs反硝化过程[10]。以NO2-作为电子受体,GAOs较DPAOs具优势。
以NO3-作为电子受体,90~210 min内完成NO3-还原,反硝化过程出现了NO2-积累。PHA降解速率是可溶性外碳源的1/20~1/6[31],提供电子速率较低。与硝态氮还原酶(Nar)相比,亚硝态氮还原酶(Nir)竞争电子能力较弱,导致NO2-积累。反硝化PUA为29.5 mg/L,PUA/NaRA=1.78,略低于典型DPAOs缺氧吸磷理论值(2.10 mg/mg[23]),主要通过DPAOs反硝化过程去除NO3-,部分NO3-利用GAOs去除;阶段IV,PUA降至15.7 mg/L,PUA/NiRA=0.83,远低于典型DPAOs利用NO2-反硝化吸磷理论值(1.71 mg/mg),该阶段GAOs大量增殖促进了其对NO2-的利用,此过程无磷吸收,导致PUA/NiRA下降。缺氧末,IV阶段仍残留部分NO2-,此部分NO2-在后续好氧阶段被氧化至NO3-,并在后一反应周期的厌氧段消耗外碳源,减少厌氧段PHA积累并进一步削弱SBR脱氮性能。
图3 不同电子受体典型周期内COD、氮和磷及内碳源变化情况
批次试验过程不同电子受体还原速率(NiRR、NaRR)及相应吸磷速率(PURi、PURa)如图4所示。I阶段污泥,NaRR和PURa分别为0.78 和0.67 mg/(g·h),NaRR/PURa为1.16 mg/mg,Jiang等[32]和Wang等[33]对DPAOs反硝化过程研究指出,NaRR/PURa分别为0.89和1.31 mg/mg,与本研究大致相当;I阶段污泥NiRR和PURi分别为0.34 和0.14 mg/(g·h)。I阶段,SBR内除存在部分同时以NO3-和NO2-为电子受体的反硝化聚磷菌进行NO2-反硝化吸磷外,GAOs也可利用NO2-完成内源反硝化过程,而此过程不过量吸磷,NiRR/PURi=2.43 mg/mg,远大于典型短程NO2-反硝化除磷过程计量值(1.00[32]和0.94[34])。高NO2-对反硝化吸磷活性产生抑制,但对GAOs反硝化过程影响较小,NiRR/PURi增加。阶段IV污泥,经高浓度NO2-驯化,SBR内以NO2-为电子受体DPAOs增殖,淘洗出部分仅能利用NO3-的DPAOs,NaRR降至0.37 mg/g·h,PURa降至0.41 mg/(g·h),NiRR和PURi则分别增至0.82和0.78 mg/(g·h),NiRR/PURi也由2.43降至1.05 mg/mg,与报导NiRR/PURi相当[35]。经NO2-驯化,SBR内微生物利用NO2-反硝化吸磷能力增强,PURi迅速增加。Yuan等[35]指出,经长时间厌氧-微氧驯化,SBR内可驯化出以NO2-为电子受体的反硝化聚磷菌,其脱氮和吸磷速率均大于全程反硝化吸磷过程。
注:NiRR:亚硝态氮还原速率,(mg·g-1·h-1);NaRR:硝态氮还原速率,(mg·g-1·h-1);PURi:亚硝态氮为电子受体缺氧吸磷速率,(mg·g-1·h-1);PURa:硝态氮为电子受体缺氧吸磷速率,(mg·g-1·h-1)。
PAOs和GAOs共存,厌氧阶段同时利用外碳源进行PHA储存,缺氧段,反硝化聚磷菌利用NOx-完成脱氮吸磷,GAOs利用储存PHA,进行内源反硝化脱氮。运行条件及底物浓度变化,均会导致系统内功能菌群活性变化,影响其脱氮除磷性能。
2.3.1 厌氧过程内碳源储存特性
图5所示分别为I~IV阶段厌氧过程内碳源及COD转化特性。阶段I和II,厌氧段微生物体内储存足量内碳源,且反硝化聚磷菌具有较强活性,NOx-去除率>95%,无NOx-残留,下一周期CODdn为0;阶段III、IV,NOx-去除率下降,残留NO3-消耗下一阶段外源COD,CODin分别降为2.56和2.50 mmol/L。Gly酵解是GAOs合成PHA过程中还原力和能量的唯一来源,Gly/CODin由0.67增至0.80,表明GAOs活性增强。I~IV阶段,PAOs,An由62.0%降至36.0%,GAOs,An由32.2%增至55.7%,GAOs碳源竞争能力随NO2-浓度增加而增强。根据反硝化聚磷菌代谢关系式
式中PAO为厌氧阶段PAOs运输乙酸进入细胞膜内所需能量,kJ。典型反硝化聚磷菌厌氧代谢过程,ΔPO43--P/CODin和ΔGly/CODin分别为0.31和0.45 mmol/mmol。本研究中,I~IV阶段厌氧过程,单位内碳源转化释磷量(厌氧释磷量与内碳源转化之比ΔPO43--P/CODin)由0.31降至0.18 mmol/mmol,糖原酵解与内碳源转化之比(ΔGly/CODin)由0.67增至0.80。Welles等[36]指出,除磷系统内,ΔPO43--P/CODin在0.01~0.93 mmol/mmol之间。I~IV阶段,ΔPO43--P/CODin变化特性表明系统具有PAOs和GAOs共存特征,且电子受体由NO3-调整为NO2-,SBR内微生物降解特性更偏离于高富集PAOs。即:NO2-投加抑制了PAOs活性而促进了系统内GAOs的竞争能力。本研究I~IV阶段厌氧反应过程合成PHAs内,PHV增量逐渐由0.30 增至0.56 mmol/L,相应PHB/PHV由2.66降至1.90,也表明随电子受体由NO3-调整为NO2-,系统内GAOs活性逐渐增强,且GAOs吸收的部分VFAs用于合成体内PHV[37]。
注:CODde:反硝化COD,(mmol·L-1);CODin:转化为内碳源有机物,(mmol·L-1);CODPAOs:PAOs转化COD比例,%;CODGAOs:PAOs转化COD比例,%;P/C:单位有机物释磷量,(mmol·g-1);PHV:聚--羟基戊酸,(mmol·L-1);PHB:聚--羟基丁酸酯,(mmol·L-1);PHA:聚-β-羟基烷酸;Gly:糖原,(mmol·L-1)。Gly/CODin:转化单位有机物所需糖原,(mmol·mmol-1);PHA/CODin:转化单位有机物合成PHA,(mmol·mmol-1);PHB/PHA:合成PHA中PHB比例,%。
Note: CODde: denitrification COD consumption, (mmol·L-1); CODin: COD removal as intracellular carbon sources, (mmol·L-1); CODPAOs: COD absorption by PAOs, %; CODGAOs: COD absorption by GAOs,%; P/C: PO43-release per VSS, (mmol·g-1); PHV: Polyhydroxypentanoic, (mmol·L-1); PHB: poly-- hydroxybutyrate, (mmol·L-1); PHA: Polyhydro- xyalkanoates, (mmol·L-1); Gly: Glycogen, (mmol·L-1); Gly/CODin: Glycogen demand per CODin, mmol·mmol-1; PHA/CODin: PHA Synthesis per CODin, (mmol·mmol-1); PHB/PHA: PHB ratio in PHA, %.
图5 An/A/O-SBR厌氧阶段COD消耗及内碳源转化
Fig.5 COD consumption and internal polymers variation during anaerobic stages in An/A/O-SBRs
2.3.2 缺氧阶段内碳源消耗及转化特性
缺氧阶段,反硝化聚磷菌利用体内PHA完成反硝化吸磷,不同阶段缺氧反应过程微生物内源物变化及反硝化特性如图6。NO2-增加,反硝化吸磷过程糖原储存与PHA消耗之比(Glystor/PHAcon)由0.61 mmol/mmol增至0.81 mmol/mmol,介于反硝化聚磷菌吸磷过程模型值(0.45 mmol/mmol)与GAOs反硝化模型值(0.95 mmol/mmol)之间,这与厌氧过程COD转化过程相对应,即:电子受体由NO3-转化之NO2-,更多COD由GAOs吸收并转化为体内PHA。GAOs消耗等量PHA合成Gly增加。与之对应,阶段I~IV,PUA由0.92降至0.52 mmol/L,吸磷量与糖原储存量之比(PUA/Glystor)由0.53降至0.26 mmol/mmol,与PHA消耗量之比(PUA/PHAcon)则由0.32 降至0.21 mmol/mmol,均小于且逐渐偏离反硝化聚磷菌缺氧吸磷模型值(0.53 mmol/mmol。其主要原因是:除DPAOs外,缺氧阶段存在部分GAOs参与PHA消耗与Gly合成过程。GAOs消耗体内PHA更多用于Gly再生,系统糖代谢能力增强,PUA/Glystor和PUA/PHAcon降低,DPAOs反硝化吸磷过程对脱氮过程贡献逐渐降低,PDPAOs,A由76.2%降至50.6%(图6)。微生物进行内源反硝化过程中,分解利用的PHA以PHB为主。在DPAOs缺氧吸磷过程中,所消耗的内碳源几乎全部为PHB,而PHV无变化[37];仅在PHA合成减少的反硝化后期,GAOs消耗部分Gly为反硝化过程提供电子。缺氧结束,阶段I~IV,SBR内Gly增量分别占PHA消耗量的61.2%、72.6%、73.8%和81.1%,表明Gly代谢能力随系统内NO2-增加不断加强,Poly-P合成不断减弱。
注:PHAcon:聚-β-羟基烷酸消耗量,(mmol·L-1);PHBcon:聚-β-羟基丁酸消耗量,(mmol·L-1);Glystor:糖原储存量,(mmol·L-1)。
电子受体改变引起PAOs-GAOs间比例变化,导致系统反硝化吸磷过程N2O释放改变。图7所示为不同阶段典型周期缺氧阶段N2O产生特性。阶段I,反硝化初始系统内无NO2-,溶解态N2O接近0。反硝化进行,SBR内出现NO2-积累,溶解态N2O(N2Od)与NO2-积累存在正相关。阶段II~IV,NO2-加入即导致SBR内N2Od迅速增加。反硝化聚磷菌吸收有机物转化为体内PHA过程中,积累了大量还原态电子,投加的NO2-与厌氧阶段积累的电子快速反应,N2Od迅速增加;此外,反硝化过程各还原酶反应活性需由底物激发,其中,氧化亚氮还原酶(Nos)合成速率小于Nir和Nar,这也是II~IV阶段缺氧初出现大量溶解态N2O的原因。
图7 An/A/O-SBR内缺氧阶段NO2-与溶解态N2O和N2O释放量与释放速率
Wei等[38]指出,内源反硝化过程中,N2Od常与NO2-在同一时间达最大值,当NO2-降至0时,溶解态N2O也降至0 mg/L。Zhou等[25]则认为,FNA对Nos的抑制作用则是导致N2O释放的主要原因。FNA达0.5×10-4mg/L,其对反硝化聚磷菌缺氧吸磷活性抑制即可达50%。阶段III、IV内,初始FNA分别达1.5×10-3和2.3×10-3mg/L,对Nos活性产生抑制作用,导致N2O积累并释放;FNA与Nos内含Cu+的活性位点相结合,引起N2O的还原竞争性抑制,反硝化过程电子传递受阻,N2O释放;同时,III、IV阶段NOx-去除率下降,后一周期厌氧初始OHO消耗外碳源进行反硝化,微生物合成PHA减少,加剧了后续反硝化阶段还原酶之间电子竞争,Nos电子竞争能最弱,引起N2O积累并释放。
阶段I~IV,GAOs活性不断增强并竞争碳源储存PHA用于内源反硝化。GAOs内各亚群具有不同反硝化特性[15]。能分别将NO3-和NO2-还原至N2,而仅能还原NO3-至NO2-,从而引起NO2-积累并对PAOs活性产生抑制。经NO2-驯化,GAOs反硝化活性几乎不受NO2-影响,加剧了GAOs的竞争优势。部分GAOs内源反硝化过程的终产物是N2O而非N2[14],这也是导致高NO2-下N2O产率增加的重要原因。
为明确PAOs-GAOs竞争及氮、磷去除特性,根据GAOs、PAOs反应计量学模型(式1~式7),确定I、IV阶段各菌群碳源转化及反硝化特性,如图8所示。I阶段,62.0%外碳源由PAOs/DPAOs吸收转化为体内PHA,约为GAOs的2倍,少量外碳源(6%)用于异养菌反硝化;IV阶段,PAOs/DPAOs转化碳源比例降至36%,GAOs碳源转化增至56%,异养菌反硝化外碳源增至8%。缺氧阶段,DPAOs和GAOs分别完成进行内源反硝化。阶段I,系统内驯化出大量以NO3-为电子受体DPAOs,其脱氮比例达76%,与其外碳源转化相吻合,部分GAOs参与NO3-还原(24%);阶段IV,高浓度NO2-抑制DPAOs活性,有利于GAOs竞争优势,DPAOs脱氮比例降至51%,GAOs脱氮比例则增至49%。
图8 An/A/O-SBR内PAOs-GAO碳源竞争及反硝化特性示意图(I、IV阶段)
在PAOs-GAOs共生体系内,不同电子受体缺氧驯化,PAOs、GAOs体内Poly-P、PHA和Gly等合成及降解特性均会改变,进而引起系统反硝化除磷性能变化。当脱氮过程中存在大量NO2-时,GAOs较PAOs更具竞争优势,高浓度NO2-会抑制DPAOs的反硝化除磷过程,但是几乎不影响GAOs的内源反硝化过程,NO2-去除主要通过GAOs实现[10]。GAOs-PAOs共生体系有利于削弱高浓度NO2-对DPAOs的抑制作用,促进同步脱氮除磷。GAOs脱氮比例增加导致部分反硝化过程以N2O作为反硝化终产物并释放。
1)经不同电子受体驯化,An/A/O-SBR内污染物降解、内碳源转化均具有PAOs-GAOs共存特性。缺氧阶段NO3-有利于DPAOs富集,SBR内NOx-和TP去除率均大于95%,N2O产率为2.4%;NO2-还原过程DPAOs活性受到抑制,GAOs竞争碳源能力增强,厌氧阶段Poly-P分解减弱,缺氧吸磷活性降低,NOx-和TP去除率分别降至69.9%和50.5%,N2O产率达9.9%。
2)电子受体由NO3-调整为NO2-,厌氧过程ΔGly/CODin由0.67增至0.80,PAOs/DPAOs转化碳源由62.0%降至36.0%,ΔPO43-/CODin由0.31 mmol/mmol降至0.18 mmol/mmol;缺氧阶段PUA/PHAcon由0.32降至0.21 mmol/mmol,PUA/ΔGly由0.53 mmol/mmol降至0.21 mmol/mmol,微生物降解特性偏离于高度富集PAOs,GAOs代谢能力增强。
3)An/A/O-SBR内,NO2-投加抑制Nos活性,导致N2O大量释放。HNO2对Nos活性抑制以及系统内GAOs增殖促进了以N2O为反硝化终产物的反硝化脱氮过程,是导致阶段IV内N2O释放量大量增加主要原因。
[1]中华人民共和国生态环境部. 第一次全国污染源普查公报[R]. 2010:9-11.
[2]刘梦雪,曾非凡,文红平,等. 生物滴滤塔/景观滤床工艺高效处理农村污水[J]. 农业环境科学学报,2020,39(5):1094-1102.
Liu Mengxue, Zeng Feifan, Wen Hongping, et al. An efficient trickling filter/landscape biofilter-bed technique for rural domestic sewage treatment[J]. Journal of Agro-Environment Science, 2020, 39(5): 1094-1102. (in Chinese with English abstract)
[3]潘碌亭,谢欣迁,王九成,等. 脱氮除磷生物滤池填料制备及其对农村生活污水的处理效果[J]. 农业工程学报,2017,33(9):230-236.
Pan Luting, Xie Xinqian, Wang Jiucheng, et al. Preparation of denitrification and dephosphorization biological fillers and its effect on treatment of rural domestic sewage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 230-236. (in Chinese with English abstract)
[4]Chen Y, Li S, Lu Y, et al. Simultaneous Nitrification, Denitrification and Phosphorus Removal (SNDPR) at low atmosphere pressure[J]. Biochemical Engineering Journal, 2020, 160(15): 107629
[5]张兰河,庄艳萍,王旭明,等. 温度对改良A2/O工艺反硝化除磷性能的影响[J]. 农业工程学报,2016,32(10):213-219.
Zhang Lanhe, Zhuang Yanping, Wang Xuming, et al. Effect of temperature on denitrifying phosphorus removal efficiency using modified A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 213-219. (in Chinese with English abstract)
[6]Li C, Liu S, Ma T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a Sequencing Batch Reactor (SBR) under low temperature[J]. Chemosphere, 2020, 229: 132-141.
[7]Rubio-Rincon F J, Lopez-Vazquez C M , Welles L, et al. Cooperation between candidatus competibacter and candidatus accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164.
[8]Wang X, Wang S, Zhao J, et al. A novel stoichiometries methodology to quantify functional microorganisms in Simultaneous (partial) Nitrification Endogenous Denitrification and Phosphorus Removal (SNEDPR)[J]. Water Research, 2016, 95: 319-329.
[9]Fan Z, Zeng W, Wang B, et al. Microbial community at transcription level in the synergy of GAOs andfor saving carbon source in wastewater treatment[J]. Bioresource Technology, 2020, 297: 122454.
[10]王晓霞,王淑莹,赵骥,等. SPNED-PR系统内PAOs- GAOs的竞争关系及其氮磷去除特性[J]. 中国环境科学,2018,38(2):551-559.
Wang Xiaoxia, Wang Shuying, Zhao Ji, et al. The competitive relationships of PAOs-GAOs in Simultaneous Partial Nitrification-Endogenous Denitrification and Phosphorous Removal (SPNED-PR) systems and their nutrient removal characteristics[J]. China Environmental Science, 2018, 38(2): 551-559. (in Chinese with English abstract)
[11]Wang X, Wang S, Xue T, et al. Treating low carbon/nitrogen (C/N) wastewater in Simultaneous Nitrification-endogenous Denitrification and Phosphorous Removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200.
[12]Wang X, Zhao J, Yu D, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of Endogenous Partial Denitrification and Phosphorus Removal (EPDPR)[J]. Chemical Engineering Journal, 2019, 355: 560-571.
[13]Ji J, Peng Y, Wang B, et al. A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial- denitrification and denitrifying dephosphatation[J]. Water Research, 2020, 170: 115363.
[14]Ribera-Guardia A, Marques R, Arangio C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113.
[15]Zhou Y, Pijuan M, Zeng R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying- enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42: 8260-8265.
[16]Theoni Maria Massara, Simos Malamis, Albert Guisasol, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017(596/597): 106-123.
[17]APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. Baltimore[M]. Port City Press, 1998.
[18]Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406.
[19]Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136.
[20]Oehmen A, Zeng R J, Yuan Z, et al. Anaerobic metabolism of propionate by polyphosphate- accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechno- logy and Bioengineering, 2005, 91(1): 43-53.
[21]Cho E, Molof A H. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal[J]. Journal of Environmental management 2004, 73(3): 183-187.
[22]Guerrero J, Guisasola A, Baeza J A. Controlled crude glycerol dosage to prevent EBPRfailures in C/N/P removal WWTPs[J]. Chemical Engineering Journal, 2015, 271: 114-127.
[23]Wang X, Wang S, Zhao J, et al. A novel stoichio- metries methodology to quantify functional microor- ganisms in Simultaneous Nitrification-Endogenous Denitrification and Phosphorous Removal (SNEDPR)[J]. Water Research, 2015, 95: 319-329.
[24]Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research, 1999, 33(8): 1871-1883.
[25]Zhou Y, Oemen A, Lim M, et al. The role of nitrite and Free Nitrous Acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682.
[26]Zhou Y, Ganda L, Lim M, et al. Free Nitrous Acid (FNA) inhibition on Denitrifying Polyphosphate Accumulating Organisms (DPAOs)[J]. Applied Microbiology and Biotechnology, 2010, 88(1): 359-369.
[27]Zhou Y, Pijuan M, Yuan Z, et al. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by polyphosphate accumulating organisms[J]. Biotechnology and Bioengineering, 2007, 98(4): 903-912.
[28]Wang Y, Geng J, Ren Z, et al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J]. Bioresource Technology, 2011, 102(10): 5674-5684.
[29]Smolders GJF, Vandermeij J, Vanloosdrecht MCM, et al. Model of the anaerobic metabolism of the biological phosphorus removal process stoichiometry and pH influence[J].Biotechnology Bioengineering, 1994,43: 461-470.
[30]Zeng RJ, SaundersAM, Yuan Z,et al. Identification and comparison of aerobic and denitrifying polyphosphate accumulating organisms[J]. Biotechnology Bioengineering, 2003,83:140-148.
[31]Third K A, Burnett N, Cord-Ruwisch R, Simultaneous nitrifification and denitrifification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology Bioengeering, 2003, 83: 706-720.
[32]Jiang Y, Wang B, Wang L, et al. Dynamic response of denitrifying poly-P accumulating organisms batch culture to increased nitrite concentration as electron acceptor[J]. J. Enviromental Science Health A, 2006, 41: 2557-2570.
[33]Wang Y, Pan M, Yan M, et al. Characteristics of anoxic phosphors removal in sequence batch reactor[J]. Environmental Science in China,2007, 19:776-782.
[34]Rubio-Rincon FJ, Lopez-Vazquez CM, Welles L, et al. Cooperation betweenandI, in denitrification and phosphate removal processes[J]. Water Reseach,2017, 120: 156-164.
[35]Yuan C, Wang B, Peng Y, et al. Enhanced nutrient removal of Simultaneous Partial Nitrification, Denitrification and Phosphorus Removal (SPNDPR) in a single-stage anaerobic/ micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257:127744.
[36]Welles L, Tian W D, Saad S, et al. Accumulibacter clades TypeⅠand Ⅱ performing kinetically different glycogen- accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83: 354-366.
[37]张建华,王淑莹,张淼,等. 不同反应时间内碳源转化对反硝化除磷的影响[J]. 中国环境科学,2017,37(3):989-997.
Zhang Jianhua,Wang Shuying, Zhang Miao, et al. Effect of conversion of internal carbon source on denitrifying phosphorus removal under different reaction time[J]. China Environmental Science 2017, 37(3): 989-997. (in Chinese with English abstract)
[38]Wei Y, Wang S Y, Ma B, et al. The effect of poly-- hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal[J]. Bioresource Technology, 2014, 170: 175-182.
Electronic acceptor denitrifying polyphosphorous PAOs-GAOs competition and N2O emission characteristics in bioreactor
Gong Youkui1, Wang Yibing1, Sun Hongwei2
(1.,,264670,; 2.,264005,)
Denitrifying Phosphorus Removal (DPR) was considered as one of the most promising biological treatment technologies, due to some superiorities of saving 50% carbon source, 30% energy requirement, and reducing 50% sludge production, regarding to N and P removal depend on nitrite and nitrate instead of oxygen. As a mixed cultivation process, limited carbon sources induced the competition of functional groups between Phosphorus Accumulation Organism (PAOS) and Glycogen Accumulation Organism (GAOs), as well as Ordinary Heterotrophic Organisms (OHOs). In this study, a lab scale Anaerobic/Anoxic/aerobic Sequencing Batch Reactor (An/A/O-SBR) was established to achieve a DPR process, with the sodium acetate (120 mg/L as COD) as electron donor, and NO3-/NO2-as electron acceptor (90 mmol/L). An investigation was made for the characteristics of nutrient removal, N2O release, as well as the contribution and competitive relationships between phosphorus and glycogen accumulating organisms (PAOs and GAOs) in the process after long term of acclimatization. During the anaerobic stage, the carbon source in raw wastewater was efficiently absorbed by PAOs (36%-62.3%)and GAOs (32.2%-55.7%), according to the sort of electron acceptor to enhance intracellular carbon storage. With NO3-as electron acceptor, the NO3-and PO43-removal efficiency was more than 95%, with 76.2% of nitrogen removal conducted by PAOs, and the rest by GAOs. In the anaerobic stage, the consumption of COD was stored in the form of PHA, while Gly was decomposed to provide energy for P release. The average P Release Amount (PRA) was 0.85 mmol/L with the PRA/ΔPHA of 0.29 mmol/mmol, close to the value of stoichiometry of typical DPAOs (0.24 mmol/mmol). During the anoxic stage, the average P Uptake Aamount (PUA) reached 28.9 mg/L. With NO2-as electron acceptor only, the N and P removal efficiency decreased to 69.9% and 50.5%, respectively. GAOs had a great advantage over PAOs at the presence of 30 mg/L nitrite, and it contributed to 76.2% of carbon absorption in an anaerobic stage and 49% of nitrogen removal in an anoxic stage. The PRA in anaerobic stage and PUA in anoxic stage decreased to 0.42 and 0.52mmol/L, respectively, with the PRA/ΔPHA decreased to 0.17 mmol/mmol and ΔGly/ΔPHA increased from 0.63 to 0.817 mmol/mmol. GAOs had a great tolerance to nitrite than PAOs, which alleviated the nitrite inhibition on PAOs at high nitrite concentration, thereby to ensure the nutrient removal in An/A/O-SBR.
electron migration; nitrogen compand; wastewater; denitrifying phosphorus accumulating organisms; glycogen accumulating organisms; electron acceptor; N2O
巩有奎,王一冰,孙洪伟. 生物反应器电子受体反硝化聚磷PAOs-GAOs竞争及N2O释放特性[J]. 农业工程学报,2020,36(23):241-249.doi:10.11975/j.issn.1002-6819.2020.23.028 http://www.tcsae.org
Gong Youkui, Wang Yibing, Sun Hongwei. Electronic acceptor denitrifying polyphosphorous PAOs-GAOs competition and N2O emission characteristics in bioreactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 241-249. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.028 http://www.tcsae.org
2020-07-31
2020-09-20
国家自然科学基金项目(51668031);烟职博士基金2018002号
巩有奎,博士,教授,研究方向为生活污水脱氮过程副产物释放及减量。Email:260943813@qq.com
10.11975/j.issn.1002-6819.2020.23.028
X703.1
A
1002-6819(2020)-23-0241-09
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!