当前位置:首页 期刊杂志

小粒径颗粒状农产品介电特性的GEM公式参数确定

时间:2024-05-24

钟汝能,郑勤红,姚 斌,向 泰

小粒径颗粒状农产品介电特性的GEM公式参数确定

钟汝能1,郑勤红2※,姚 斌2,向 泰1

(1. 云南师范大学能源与环境科学学院,昆明 650500;2. 云南省光电信息技术重点实验室,昆明 650500)

介电特性是研究农产品微波辅助应用的重要参数。为了拓展有效介质公式(General Effective Medium,GEM)在农业工程领域的应用,探究农产品介电特性计算新方法,该研究针对颗粒状农产品,采用离散元法、有限元法和平均能量法建立了堆积型农业颗粒物料等效介电特性分析的数值模型,在模拟仿真数据和试验测量数据对比分析的基础上,提出适用于微波波段下颗粒状农产品介电特性计算的GEM公式较佳无量纲参数(=5、=0.5;称为Modified General Effective Medium of Agriculture,MGEMA),并采用多种农产品颗粒的试验数据验证了MGEMA的可行性、有效性和准确性。结果表明,真实谷粒和模拟谷粒的堆积角误差为0.45%,在农产品颗粒的相对介电常数(2.0~10.0)、相对介电损耗因子(0.1~0.9)、微波频率(2.0~12.2 GHz)、湿基含水率(2.0%~19.7%)和体积分数(18.2%~88.0%)计算条件下,MGEMA公式针对介电常数和介电损耗因子计算结果的最大偏差分别为0.40%和1.20%。研究可为三维情形下颗粒落料堆积型混合物的等效介电特性模拟分析提供一种参考方法,为室温下(24 ℃)小粒径农产品颗粒的介电特性研究提供一个理论公式。

农产品;介电特性;有效介质公式;模拟模型;参数确定

0 引 言

介电特性是指物质分子中的束缚电荷对外加电场的响应特性(=′−″)[1],其中,相对介电常数(′)表征电磁波能量的储存,相对介电损耗因子(″)表征电磁波能量的转化。开展农产品介电特性的基础研究具有较好的应用价值[2-4]。

前人的研究成果有效地推进了农产品微波(射频)加工、贮藏、输运、育种和非破坏性评价的发展,但与工业领域复合材料介电特性的应用研究相比,当前针对农业物料电磁效应的应用研究与市场的需求规模仍存在差距,具有普适性的介电特性预测模型或理论公式相对较少,相关的基础研究有待进一步深入开展[27]。截止目前,覆盖农产品颗粒的生成、堆放和介电特性计算全过程的模拟模型鲜见报道,GEM公式应用于农业物料等效介电特性分析的相关研究成果较少。本文以颗粒状农产品为对象,采用离散元法、有限元法和平均能量法建立了堆积型农业物料等效介电特性模拟模型,提出了适用于颗粒状农产品介电特性分析的GEM公式较佳无量纲参数(Modified General Effective Medium of Agriculture,MGEMA),通过数值计算、实例分析和试验测量对比分析验证了MGEMA 公式的正确性、准确性和有效性。

1 材料与方法

1.1 颗粒状农产品物料

广义的农产品是指来源于农业的初级产品,按照生产方式不同,可分为农产品、畜禽产品和水产品,其中农产品的种类包含谷类、豆类、薯类、蔬菜类和水果类[28]。在自然界中,这些农产品的原料或者种子普遍以颗粒的形式存在,且不同种类农产品的颗粒结构形状和颗粒大小不相同,如小麦、玉米、稻谷、大豆、花生果、菜籽等。

本文选取小粒径颗粒状农产品物料为试验对象,其中,小米产自新疆伊梨,稻谷、玉米碴粒、紫米、黑芝麻、野芥菜籽和油菜籽产自云南德宏。上述颗粒物料购于云南省呈贡县农贸市场,初始含水率分别为10.0%、14.6%、12.05%、14.17%、8.99%、10.64%、16.4%,除稻谷及玉米渣粒(经粉碎过筛处理)外,其余物料均为去除外壳后的自然状态农产品颗粒。

1.2 混合物等效介电特性的仿真原理

在有限元方法中,每个网格单元所拥有的静电能为

式中为网格单元编号:为电势,V;、、为坐标轴方向;εv分别表示第个单元的介电特性和体积,m3。混合体储存的静电能(W,J)为

由电磁理论可知,电容器中所存储的静电能W(J)可等效地表示为

式中1−2为两个极板之间的电势差,V;为两极板之间的距离,m;为极板面积,m2;0为真空中的介电常数(8.85×10-12F/m),ε为混合物的等效介电特性。令W=W,求解式(2)~(3)即可获得混合物的等效介电特性(ε)。

为准确模拟计算各向同性混合物的介电特性,可生成同一条件下的多个模拟模型,取其所有模型计算结果的平均值作为数值结果,即:

1.3 农业颗粒物料等效介电特性的数值模型

对于农业颗粒物料而言,由于农产品颗粒在填料装载器中以落料堆积的状态存在,因此,采用不同的技术方法联合实现农产品颗粒的堆积状态仿真和模拟模型的数值计算,具体步骤为:一是采用基于离散元法的EDEM软件完成不同结构形状(如椭球状、圆柱状等)农产品颗粒的建模和颗粒在装载器中的堆积过程仿真,得到每一个颗粒在装载器中的位置坐标和方向向量矩阵数据。依据方向余弦矩阵理论,编制MATLAB程序将方向向量矩阵数据换算为笛卡尔坐标系中、、轴对应的方向向量。二是应用COMSOL多物理场耦合有限元软件的“App开发器”功能,使用“录制”方法生成不同结构形状颗粒的建模代码,并依次读取每一个颗粒的位置坐标和方向向量,重现颗粒堆积状态。三是使用COMSOL网格剖分功能中的“物理场控制网格”对模型进行自由四面体网格剖分,网格剖分级别和单元质量优化级别分别设置为“细化”、“中等”,对基体物质、基质颗粒物质进行物理属性赋值。四是按前述步骤依次生成不同体积分数的物料模型,按1.2节原理对电容器模型进行数值求解,得到所分析农业颗粒物料的等效介电特性数据。

1.4 数据处理与分析

采用离散元颗粒分析软件EDEM 2018(EDEM Solutions inc.英国爱丁堡)完成颗粒构建及堆积仿真,采用多物理场耦合有限元软件COMSOL Multiphysics 5.3(COMSOL INC. 瑞典斯德哥尔摩)、数据处理软件Matlab R2012a(Math Works,美国马萨诸塞州)和Origin 8.5(Atos Origin,荷兰阿姆斯特丹)完成堆积重现、模型构建、数值计算和数据处理分析。使用矢量网络分析仪(ZNB20, Rohde & Schwarz Ltd,德国慕尼黑),85051B 7 mm/APC-7同轴空气线(Agilent Technology,马来西亚槟城)和卤素水分测定仪(DHS-16,常州衡正电子仪器有限公司,精度为5 mg,测量范围:0~100%,温度范围:室温~160 ℃)进行农业物料的等效介电特性测量。使用游标卡尺(MITUTOYO 500-173,日本香川,精度为0.02 mm)测量颗粒的规格参数。

2 结果与分析

2.1 颗粒堆积模型的有效性验证

采用真实稻谷籽粒堆和模拟稻谷籽粒堆的堆积角偏差来评价堆积模型的准确性。1)经除杂、去芒和筛分挑选后得到相对均匀的1 500粒长粒稻谷籽粒,将其以自然落料的形式堆积在不绣钢金属板上,得到真实稻谷堆的堆积形态[12]。从不同方位分多次测量了稻谷堆底的直径和高度,并使用MATLAB函数(tan′=2/,为稻谷堆底直径,m;为稻谷堆积高度,m)计算得到稻谷堆的平均堆积角(′)为20.20°。2)采用1.3节方法模拟生成椭球形稻谷籽粒在不锈钢金属板上自然堆积,设定颗粒的尺寸、数量与试验样品的平均值相一致,得到模拟稻谷堆的堆积形态。鉴于稻谷堆为左右对称结构,采用Origin软件的图像识别技术得到单侧稻谷堆的边缘轮廓曲线如图1实线所示,提取轮廓曲线数据并得到拟合直线如图1虚线所示,其中,拟合直线决定系数(2)为0.991,直线斜率()为0.366 2。由堆积角确定公式(=arctan||/π)计算得到模拟稻谷的堆积角()为20.11°。3)对比分析表明:从堆体的边缘扩散、结构形态上看,真实谷粒堆和模拟谷粒堆的正面堆积形态、侧面堆面形态基本吻合,二者的堆积角误差为0.45%,说明基于离散元法的谷物籽粒堆积模拟模型是准确性的。

为了验证有限元法重现颗粒堆积状态的准确性,运用离散元法在不绣钢材质的立方体填料器中生成椭球形谷物颗粒堆,并在有限元软件中编程重现了堆积现象,对比分析表明,上述2个方法所生成的颗粒大小、位置和方向一致,说明基于有限元法的颗粒堆积状态重现计算程序是正确的。

图1 模拟谷料的单侧轮廓线及线性拟合直线

2.2 农业颗粒物料等效介电特性的数值计算

2.3 农业颗粒物料的GEM公式参数确定

2.3.1 基于模拟模型数值结果的GEM公式参数

A=5、(5)

2.3.2 基于试验实例数据的GEM公式参数

为便于表达,将式(6)简称为MGEMA公式。从图3也可以看出,与模拟模型(Model:A=5、β=1−f1)数值结果相比,MGEMA公式(A=5、β=0.5)的计算结果更接近~ρ和LLL公式的计算值。说明在针对小麦颗粒“Scout 66”的计算中,式(6)比式(5)具有更好的准确性。

2.4 MGEMA公式的实例数据验证

表1 通过线性外推函数和多个介电混合方程计算得到的农产品颗粒介电特性(24 ℃)

2.5 MGEMA公式的试验测量验证

2.5.1 不同含水率农产品颗粒的MGEMA公式验证

表2 通过不同介电混合方程计算得到的不同含水率小米籽粒的介电特性对比情况(24 ℃)

2.5.2 不同种类农产品颗粒的MGEMA公式验证

表3 通过多个介电混合方程计算得到的不同种类农产品颗粒的介电特性对比情况(24 ℃)

3 讨 论

3.1 颗粒属性对模拟模型数值结果的影响

3.2 农业颗粒物料等效介电特性的预测方程

4 结 论

1)采用离散元法、有限元法和平均能量法建立了堆积型颗粒填充混合物等效介电特性分析的模拟模型,对比分析表明,模拟模型可以实现不同结构形状籽粒的生成和落料堆放,模拟稻谷籽粒堆和真实稻谷籽粒堆的堆积角误差为0.45%。与传统经典方程(LLL)计算结果相比较,模拟模型的数值结果呈现出以基质物质的体积分数50%为分界点的先高后低趋势,当基质物质的体积分数为50%时,二者相吻合。

2)采用数值计算和实例试验对比研究的方法,分析GEM公式的理想参数,获得适合于堆积型颗粒状农产品介电特性分析的GEM公式较佳无量纲参数为=5、=0.5。对比分析表明,在农产品颗粒的介电常数(2~10)、介电损耗因子(0.1~0.9)、含水率(2.0%~19.7%)、频率(2.0 ~12.2 GHz)和体积分数(18.2%~88.0%)计算条件下,MGEMA公式针对介电常数和介电损耗因子的最大误差分别为0.40%和1.20%,MGEMA公式具有一定的计算准确性。

3)本研究主要针对收获后的农产品颗粒进行探讨,技术方法可为三维情形下其他落料堆放农业散粒体的介电特性模拟分析提供参考,为常温下小粒径农产品颗粒的介电特性应用研究提供一个可借鉴公式,但是,MGEMA公式在更广泛条件下(如针对不同农业散粒体物料在收获、脱粒、加工、储藏不同实况应用环节实时的含水率,以及农业散体物料中较大粒径、不规则颗粒类等)的适用性研究有待进一步深入开展。

[1]施火结,张绍英,郑文鑫. 基于射频加热数值模型的介电系数混合方程研究[J]. 中国农业大学学报,2015,20(2):194-200.

Shi Huojie, Zhang Shaoying, Zheng Wenxin. Study on mixture equations of dielectric properties using numerical model of radio frequency heating[J]. Journal of China Agricultural University, 2015, 20(2): 194-200. (in Chinese with English abstract)

[2]Papa E, Medri V, Amari S, et al. Zeolite-geopolymer composite materials: Production and characterization[J]. Journal of Cleaner Production, 2017, 171(9): 76-84.

[3]张本华,钱长钱,焦晋康,等. 基于介电特性与SPA-SVR算法的水稻含水率检测方法[J]. 农业工程学报,2019,35(18):238-245.

Zhang Benhua, Qian Changqian, Jiao Jinkang, et al. Rice moisture content detection method based on dielectric properties and SPA-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 238-245.(in Chinese with English abstract)

[4]牛智有,刘芳宏,刘鸣,等. 平行极板电容传感器介电式颗粒饲料水分检测仪设计与试验[J]. 农业工程学报,2019,35(18):37-44.

Niu Zhiyou, Liu Fanghong, Liu Ming, et al. Design of dielectric pellet feed moisture detector based on parallel plate capacitance sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 37-44. (in Chinese with English abstract)

[5]Nelson S O. Density-permittivity relationships for powdered and granular materials[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(5): 2033-2040.

[6]廖意,蔡昆,张元,等. 高浓度纤维增强材料介电特性计算方法[J]. 物理学报,2016, 65(2): 024102.

Liao Yi, Cai Kun, Zhang Yuan, et al. An approach to characterize dielectric properties of fiber-reinforced composites with high volume fraction[J]. Acta Physica Sinica, 2016, 65(2): 024102. (in Chinese with English abstract)

[7]李滚,张亮,杜宁,等. 生物体系介电性质的复合材料理论模型[J]. 材料导报,2017(15):36-41.

Li Gun, Zhang Liang, Du Ning, et al. Composite material theoretical models for dielectric behavior of biological systems[J]. Materials Review, 2017(15): 36-41. (in Chinese with English abstract)

[8]Chen Wenshiush, Hsieh Mingyueh. Dielectric constant calculation based on mixture equations of binary composites at microwave frequency[J]. Ceramics International, 2017, 43: S343-S350.

[9]McLachlau D S, Blaskiewicz M, Newnham R E. Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73(8): 2187-2203.

[10]Zhao Xuanhe, Wu Yugong, Fan Zhigang, et al. Three-dimensional simulations of the complex dielectric properties of random composites by finite element method[J]. Journal of Applied Physics, 2004, 95(12): 8110-8117.

[11]钟汝能,郑勤红,向泰,等. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报,2018,32(24):4258-4263.

Zhong Runeng, Zheng Qinhong, Xiang Tai, et al. A modified general effective medium formula for calculating the effective dielectric properties of particle-filled binary composite materials[J]. Materials Review, 2018, 32(24): 4258-4263. (in Chinese with English abstract)

[12]贾富国,韩燕龙,刘扬,等. 稻谷颗粒物料堆积角模拟预测方法[J]. 农业工程学报,2014,30(11):254-260.

Jia Fuguo, Han Yanlong, Liu Yang, et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 254-260. (in Chinese with English abstract)

[13]Nelson S O. Correlating dielectric properties of solids and particulate samples through mixture relationships[J]. Transactions of the ASAE, 1992, 35(2): 625-629.

[14]Guo Wenchuan, Zhu Xinhua. Dielectric properties of red pepper powder related to radio frequency and microwave drying[J]. Food & Bioprocess Technology, 2014, 7(12): 3591-3601.

[15]Shrestha B, Baik O D. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study[J]. Biosystems Engineering, 2013, 114(3): 195-204.

[16]Nelson S O. Dielectric Properties of Agricultural Materials and Their Applications[M]. Elsevier: Academic Press, 2015.

[17]周敏姑,欧业宝,张丽,等. 苹果介电特性对其射频加热均匀性的影响[J]. 农业工程学报,2019,35(20):273-279.

Zhou Mingu, Ou Yebao, Zhang Li, et al. Effect of dielectric properties on radio frequency heating uniformity of apple[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 273-279. (in Chinese with English abstract)

[18]Kent M. Complex permittivity of fish meal: A general discussion of temperature density and moisture dependence[J]. Journal of Microwave Power, 1977, 12(4): 341-345.

[19]Klein K. Microwave determination of moisture in coal: comparison of attenuation and phase measurement[J]. Journal of Microwave Power, 1981, 16(3): 289-304.

[20]Nelson S O, Trabelsi S. Factors influencing the dielectric properties of agricultural and food products[J]. Journal of Microwave Power and Electromagnetic Energy, 2012, 46(2): 93-107.

[21]Nelson S O, Trabelsi S. Use of material dielectric properties in agricultural applications[J]. Journal of Microwave Power and Electromagnetic Energy, 2016, 50(4): 237-268.

[22]秦文,张惠,邓伯勋,等. 部分农产品水分含量与其介电常数关系模型的建立[J]. 中国食品学报,2008(3):62-67.

Qin Wen, Zhang Hui, Deng Boxun, et al. Construction of the model on the correlation between moisture content and dielectric constant of some agricultural products[J]. Journal of Chinese Institute of Food Science and Technology, 2008(3): 62-67. (in Chinese with English abstract)

[23]Trabelsi S, Nelson S O. Microwave dielectric properties of cereal grains[J]. Transactions of the ASABE, 2012, 55(5): 1989-1996.

[24]Nelson S O, Trabelsi S. Principles for microwave moisture and density measurement in grain and seed[J]. Journal of Microwave Power and Electromagnetic Energy, 2004, 39(2): 107-117.

[25]郭文川,王婧,朱新华. 基于介电特性的燕麦含水率预测[J]. 农业工程学报,2012,28(24):272-279.

Guo Wenchuan, Wang Jing, Zhu Xinhua. Moisture content prediction of oat seeds based on dielectric property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 272-279. (in Chinese with English abstract)

[26]黄志刚,于立萍,李栋. 颗粒物料传热过程的数值模拟与研究[J]. 包装工程,2005(2):55-57.

Huang Zhigang, Yu Liping, Li Dong. Numerical simulation and test study on particulate materiel heat transfer[J]. Packag Engineer, 2005(2): 55-57. (in Chinese with English abstract)

[27]Routray W, Orsat V. Recent advances in dielectric properties measurements and importance[J]. Current Opinion in Food Science, 2018, 23: 120-126.

[28]冯力更.农产品质量管理[M].北京:中央广播电视大学出版社,2009.

[29]钟汝能,郑勤红,姚斌,等. 微波频段下颗粒状农产品的介电特性测量与分析[J]. 中国农业科技导报,2019,21(12):68-75.

Zhong Runeng, Zheng Qinhong, Yao Bin, et al. Measurement and analysis of dielectric property of granular agricultural products in the microwave frequency band[J]. Journal of Agricultural Science and Technology, 2019, 21(12): 68-75. (in Chinese with English abstract)

[30]尹文言. 颗粒分布状态对混合媒质效介电常数的影响[J]. 电波科学学报,1991(4):39-46.

Yin Wenyan. Effects of granular distribution on the effective dielectric constant of mixture media[J]. Chinese Journal of Radio Science, 1991(4): 39-46. (in Chinese with English abstract)

[31]Nelson S O, You T S. Relationships between microwave permittivities of solid and pulverised plastics[J]. Journal of Physics D Applied Physics, 1990, 23(3): 346.

[32]曲宝龙,王丽芳. 两相复合材料等效介电常数数值计算[J]. 功能材料,2016,47(1):1172-1176.

Qu Baolong, Wang Lifang. Numerical simulation for effective permittivity of two-phase composites[J]. Journal of Functional Materials, 2016, 47(1): 1172-1176. (in Chinese with English abstract)

Determination of parameters of GEM formula for dielectric properties of small size granular agricultural products

Zhong Runeng1, Zheng Qinhong2※, Yao Bin2, Xiang Tai1

(1.,,650500,; 2.,650500,)

The dielectric properties are the response characteristics of bound charge in molecules of matter to external electric field, and the fundamental researches on the dielectric properties of agricultural products can provide a basis for microwave processing, nondestructive sensing, etc. In order to extend the application of general effective medium (GEM) in agricultural engineering and explore the novel calculation method for dielectric properties of agricultural products, granular agricultural products were taken as the study objects in this paper. The simulation model and numerical method for analyzing the effective dielectric properties of the accumulative granular agricultural products were established by using discrete element method,finite element method and average energy method. In addition, a great deal of simulation and experimental measurement was carried out. Based on the comparative analysis of numerical calculation data and experimental measurements data,the best dimensionless parameter of GEM formula for calculating dielectric properties of granular agricultural products at microwave band was proposed as=5 and=0.5 ( called Modified General Effective Medium of Agriculture, MGEMA). The feasibility, validity and accuracy of the numerical model and MGEMA formula were verified through experimentally measured data of some kinds of granular agricultural products, including grain, wheat, millet, maize pulp,and rapeseed, etc. The results showed that the repose angle error between the real and simulated of grain particle materials was 0.45%. Under the conditions of dielectric constant (2.0-10.0), dielectric loss factor (0.1-0.9), microwave frequency (2.0-12.2 GHz), moisture content (2.0%-19.7%, wet basis) and volume fraction (18.2 %-88.0 %) of agricultural product particles,the maximum error of dielectric constant and dielectric loss factor that calculated by MGEMA formula were 0.40% and 1.20%,respectively. The accuracy was better than some traditional theoretical formulas. The method can be used for simulation analysis of effective dielectric properties of other kinds accumulation granular agricultural products in three dimension, and the MGEMA provides a theoretical formula with high accuracy for the dielectric properties study of granular agricultural products at room temperature (24 ℃).

agricultural products; dielectric property; MGEMA (Modified General Effective Medium of Agriculture, MGEMA); simulation model; parameter determination

钟汝能,郑勤红,姚斌,等. 小粒径颗粒状农产品介电特性的GEM公式参数确定[J]. 农业工程学报,2020,36(17):281-290.doi:10.11975/j.issn.1002-6819.2020.17.033 http://www.tcsae.org

Zhong Runeng, Zheng Qinhong, Yao Bin, et al. Determination of parameters of GEM formula for dielectric properties of small size granular agricultural products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 281-290. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.033 http://www.tcsae.org

2020-05-11

2020-08-12

国家自然科学基金项目(61961044;31560305)

钟汝能,博士,副教授,主要从事农业生物环境与新型能源工程研究。Email:zhong_rn@126.com。

郑勤红,博士,教授,博士生导师,从事有效介质和散射理论、计算电磁学研究。Email:zheng_qh62@aliyun.com

10.11975/j.issn.1002-6819.2020.17.033

S5; O441.6

A

1002-6819(2020)-17-0281-10

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!