时间:2024-05-24
张新燕,王浩翔,牛文全,2
水氮供应对温室滴灌番茄水氮分布及利用效率的影响
张新燕1,王浩翔1,牛文全1,2
(1. 西北农林科技大学水利与建筑工程学院,杨凌 712100;2. 西北农林科技大学水土保持研究所,杨凌 712100)
为探讨温室番茄水肥一体化滴灌系统优化模式,通过温室番茄滴灌施肥试验,研究田间滴灌管布置方式、灌水量、施氮肥量这3个因素对土壤含水率、土壤硝态氮含量及水肥利用效率的影响。3种布置方式包括1管1行(T1)、1管2行(T2)和1管3行(T3);基于Penman-Monteith修正公式计算的潜在蒸散量(Potential Evapotranspiration,ET0)设计灌水量,3种灌水量处理包括50%ET0(W1)、70%ET0(W2)和90%ET0(W3);3种施氮肥量处理包括120(N1)、180(N2)和240 kg/hm2(N3)。采用正交试验设计,共9个处理。结果表明,不同管道布置方式土壤含水率分布趋势基本相同,土壤表层0~20 cm含水率较低,>20~40 cm土层深度土壤含水率分布较高,40 cm土层深度以下土壤含水率减小,且T1和T2布置方式较T3土壤含水率分布均匀。土壤硝态氮(NO3-N)质量分数随土层深度的增加而减小,0~30 cm土层硝态氮质量分数均值大于30~60 cm土层含量均值。T2布置方式土壤硝态氮含量均匀,深层淋失损失量小。灌水因素和施肥模式对番茄产量、水肥利用效率均有显著影响,获得番茄高产的滴灌施肥优化模式为T2(1管2行)W2(70% ET0)N3(240 kg/hm2);从高效的灌溉水利用效率和肥料偏生产力考虑,其滴灌施肥最优水平组合模式分别为T2(1管2行)W2(70% ET0)N2(180 kg/hm2)和T2(1管2行)W2(70% ET0)N1(120 kg/hm2)。结果可为温室番茄滴灌施肥生产实践提供一定的技术指导。
土壤含水率;施肥;温室;硝态氮;滴灌;产量;水分利用效率;肥料偏生产力
水肥合理利用是提高作物产量、品质和水肥利用率的关键因素。滴灌施肥技术通过滴头将溶有肥料的灌溉水滴入作物根区,是一种将灌溉有机结合施肥的先进技术。由于水肥的协调作用,采用滴灌施肥技术可为精确灌溉和施肥提供条件,显著地提高灌溉、施肥效率,提高作物产量、品质,从而提高经济效益。国内外学者针对棉花、椰子、柑橘、黄瓜、马铃薯等作物(果树)滴灌施肥技术开展了广泛研究,取得了大量研究成果[1-6]。番茄的营养价值很高,需求广泛,其生长需要足够的水和肥,肥料中的氮素是作物生长必需的营养元素之一,施氮量是影响番茄生长、产量和品质的主要因素[7-10]。国内外学者针对滴灌施肥条件下番茄的生长发育、产量品质、水氮利用效率等方面做了相应研究,Bar等[11-12]研究发现滴灌施肥可以同时节肥并提高番茄产量。Mahajan等[13]研究表明相较于常规灌溉,滴灌施肥可提高温室番茄产量59.5%,节水48.1%。Zotarelli等[14-15]研究了施氮方式对番茄产量的影响,发现滴灌能显著提高氮肥利用效率,膜下滴灌施肥和地下滴灌施肥比常规滴灌产量提高11%~80%,并且水氮处理对土壤溶质的迁移无交互效应。Li等[16]通过不同氮肥和灌水因素对番茄产量、品质等进行研究,得出对番茄产量、品质影响最大的是氮肥,其次是灌水。Wang等[17-18]研究发现,灌水量减少会造成一定的番茄产量减少。张燕等[19-20]发现增加施肥量和适当上调灌水下限可以显著提高番茄的光合速率、干物质量和产量,滴灌施肥可节水25%和节肥25%。贺会强等[21-23]试验表明增加施肥量可以显著提高番茄株高、叶面积和产量,但过高的施肥量反而不利于其生长和产量的提高。邢英英等[24]认为灌水量和施肥量对番茄植株的影响因其施入方式的不同差异很大。与常规沟灌施肥相比,滴灌施肥产量与灌水量和施肥量正相关,增加施肥量带来的增产效应大于灌水,且增加灌水量,降低施肥量,水分利用效率逐渐下降,肥料偏生产力逐渐上升。
滴灌施肥技术除了考虑灌水和施肥因素外,田间滴灌布置方式也有重要影响。田间滴灌管布置方式不仅影响滴灌系统的投入,而且影响水肥在土壤中的分布和作物的吸收利用,目前对综合考虑土壤水分布、作物种植方式等的研究较少[25-29]。为此,本研究通过温室番茄滴灌施肥技术试验,研究田间滴灌管布置方式、灌水量、施肥量对番茄的影响,及水肥一体化滴灌系统优化模式,以期为温室番茄水肥一体化技术的推广应用提供技术支撑和理论指导。
试验地位于陕西杨凌西北农林科技大学北区旱作试验温室,位于109°06'E,36°18'N。室外年平均气温14 ℃,多年平均降水量650 mm,年均蒸发量1 500 mm。试验温室长度24.5 m、跨度6 m、高度2.5 m,内均分为27个测坑(小区),测坑长2 m、宽1.5 m、深度2 m。测坑四周二四砖砌墙,水泥抹面,不透水;坑内土壤为杨凌壤土,容重1.35~1.40 g/cm3,土壤基本理化性质包括:pH值7.86,有机质质量分数1.152%,全氮0.123%,全磷0.078%,全钾1.850%。
供试番茄品种为毛粉802,无限生长型的中晚熟品种,具有果实肉厚,不易裂果,品质佳,坐果力强等特点。
滴灌施肥设备主要由水源、水表、液压比例施肥泵、滴灌管和输配水管道系统等组成。供试用比例施肥泵进出水口径25 mm,流量20~2 500 L/h,水压0.02~0.3 MPa。采用内镶式滴灌管,管径16 mm,壁厚0.20 mm,工作压力50~100 kPa,滴头间距0.30 m,额定流量2.0 L/h。
设计3个试验因素(毛管布置方式、灌量和施氮量),每个因素3个水平,试验重复3次。毛管布置方式分别为:1管1行(T1)、1管2行(T2)和1管3行(T3),即1条滴灌管分别灌溉1行、2行和3行番茄;灌水量分别为50%ET0(W1)、70%ET0(W2)和90%ET0(W3),其中ET0为潜在蒸散量(Potential Evapotranspiration),根据王健等[30]日光温室Penman-Monteith修正公式,估算结果为310 mm;施氮肥量的3个水平分别为120 kg/hm2(N1)、180 kg/hm2(N2)和240 kg/hm2(N3),参照番茄品种试验的施肥管理进行。采用正交试验设计[31],选用正交表L9(34),最终确定9个试验因素组合,各3次重复,共27个小区,正交试验方案如表1所示。
表1 温室番茄正交试验组合方案
注:ET0为潜在蒸散发,mm。
ote: ET0is potential evapotranspiration, mm.
试验前对棚室测坑土地进行翻耕、平整。首先按施用量20 010 kg/hm2施入有机底肥(有机质质量分数>40%,氮、磷、钾配比为16:16:16),深翻。2018年6月15日定植,番茄幼苗移栽定植时,按照番茄植株行距50 cm、株距30 cm,种植密度6.6株/m2,南北行向进行种植,每个小区共3行。定植后所有处理均灌定植缓苗水30 mm。之后平均每隔约10 d灌1次水,在番茄生育期间(6月24日—9月25日)共灌水10次,试验处理W1、W2、W3实际灌水总量分别为160、220、280 mm。灌水量通过水表计量控制。试验用不同处理N肥各等分为10份,肥液通过液压比例施肥泵随灌溉水施入。田施P肥(120 kg/hm2,P2O543%)全部基施,在结果期的第一穗果膨大期和第二穗果膨大期追施K肥(150 kg/hm2,K2O 50%),其他管理遵照温室番茄管理措施进行。
土壤含水率测定:测量位置分别设在测坑中心(测位M1)、垂直滴灌管距中心10 cm处(测位M2)、垂直滴灌管距中心25 cm处(测位M3),在相应测位处埋置Trim管,测管埋深60 cm。用TDR水分测定仪测量土层10~60 cm深度土壤含水率,每间隔10 cm测定1次,土壤表层0~10 cm土壤水分采用取土烘干法测定。
土壤硝态氮NO3-N测定:测位位置布设与土壤含水率测位布置相同。在番茄收获拉秧后,取回测位土样,风干,磨细过筛,筛孔直径5 mm,用流动分析仪(Auto Analyzer-Ⅲ,德国Bran +Luebbe公司)测定土壤硝态氮NO3-N质量分数。
产量测定:在果实成熟期,采摘每个小区成熟果实,用电子天平称质量,通过换算获得番茄单产(kg/hm2)。
水分利用效率(Water Use Efficiency,WUE)是评价作物生长适宜程度的综合生理生态指标,反映了植物耗水与其干物质生产之间的关系。
WUE=0.1/ET (1)
式中WUE为水分利用效率,kg/m3;为产量,kg/hm2;ET为耗水量,mm。根据水量平衡原理,结合温室实际情况,不考虑天然降水和地下水补给以及地表径流和深层渗漏损失,耗水量ET为
EI=-Δ(2)
式中为总灌水量,mm;Δ为试验初期和末期0~60 cm土壤水分变化量,mm。张振华等[32-33]通过对1~4 L/h流量滴头进行点源入渗特性研究得到,垂向入渗距离不超过50 cm,且由于番茄等浅根作物根系深度多不足40 cm,本研究水量平衡采用0~60 cm计算。
肥料偏生产力(Partial Nitrogen Productivity,PNP)是反映当地土壤基础养分水平和化肥施用量综合效应的重要指标,用来表示肥料利用效率。
PNP=(3)
式中PNP为肥料偏生产力,kg/kg;为0~60 cm特定肥料纯养分(N素等)的投入量,kg/hm2。
7月19日,灌水后48 h土壤含水率分布,如图1所示。可以看出,灌水后水分经过48 h的入渗扩散,不同毛管布置方式下土壤含水率分布趋势基本相同。沿土层深度,0~20 cm表层土壤含水率较低,20~40 cm深度范围土壤含水率分布较高,40 cm土层深度以下土壤含水率有所减小。土壤含水率最大值分布在20~30 cm土层深度,最小土壤含水率分布在50 cm土层深度以下。距滴头越远,水平方向土壤含水率越小,滴头下方周围土壤含水率最大。除地表附近(土层深度<10 cm),50 cm深度以上土壤含水率的总体分布趋势为:T1和T3土壤含水率由大到小为测位M1>M2>M3,T2土壤含水率分布为测位M3>M2>M1。
不同毛管布置方式下,相同土层深度土壤含水率分布均匀度不同。在灌水量W2时,20 cm深土层测位M1、M2、M3土壤含水率平均值T1、T2、T3依次为23.44%、20.51%、20.36%,其最大含水率和最小含水率相差依次为4.35%、3.93%、6.26%。30 cm深土层测位M1、M2、M3土壤含水率平均值T1、T2、T3依次为23.56%、22.35%、19.57%,最大含水率和最小含水率相差为1.37%、3.63%、7.59%。在20~30 cm土层深度不同毛管布置方式土壤含水率均值基本相同,但最大含水率最小含水率差值明显不同,T3布置方式差值最大,分布较散,其土壤含水率分布均匀性差,T1和T2布置方式差值较小,含水率分布比较集中均匀。这是因为灌水48 h后,T1和T2毛管布置方式湿润锋形成交汇,而T3布置方式滴灌管间距较大,在该时间段内没有形成湿润锋交汇,水分分布不均匀。其他灌水情况规律相同。
注:测位M1、M2、M3分别设在测坑中心、垂直滴灌管距中心10 cm处、垂直滴灌管距中心25 cm处,下同。
不同毛管布置方式,不同土层土壤含水率分布不同,如表2所示,W2灌水量下T1布置方式M1处耕层0~30 cm深度内土壤含水率最大,达23.71%,T3处理M3处含水率最小,仅有15.99%。T1、T2、T3布置的测位均含水率依次减小,分别为22.19%、20.20%、18.86%。毛管布置方式对测位M1的土壤含水率有显著影响,T1、T2处理的M2、M3处含水率均与T3差异显著。经过48 h水分扩散,T1、T2处理的土壤湿润锋出现交叉现象,而T3处理未出现土壤湿润锋交叉现象,测位M2、M3距离滴头较远,T3处理的M2、M3处含水率急剧减小,不同毛管布置方式处理之间的差异显著。30~60 cm深度土壤含水率变化规律与30 cm类似,但由于土壤水分入渗较浅,40 cm深度以下土壤含水率均明显减小,均小于0~30 cm深度土壤含水率值。测位M1、M2处含水率T1处理与T2、T3差异显著,M3处T3处理与T1、T2差异显著。灌水量W1、W3处理时土壤含水率分布基本相同。T1、T3处理的测位M1、M2处不同深度含水率均与T2差异显著,而M3处含水率T1、T2处理与T3差异显著。
表2 不同土层深度内土壤含水率均值
注:表中±为标准差,同一水分处理同列不同字母表示处理间差异显著(<0.05);下同。
Note: Symbol±shows standard deviation. Different letters in the same column for same water treatment indicate significant difference at<0.05; Same as below.
毛管布置方式不同,不同测位土壤最大含水率不同。灌水量W2时,测位M1处,T1处理的土壤含水率最大,达25.93%,其次为T3、T2;测位M2土壤含水率最大值由大到小的顺序为T1、T2、T3,测位M3处的最大含水率依次为T2>T1>T3。可见,T3布置方式含水率均较小,而T1、T2在不同位置含水率分布互有优势。
图2为番茄收获拉秧后,不同处理土壤硝态氮(NO3-N)分布情况。不同滴灌施肥模式下,随土层深度的增加,土壤硝态氮(NO3-N)质量分数呈减小趋势,0~30 cm土层硝态氮质量分数均值均大于30~60 cm土层均值。0~30 cm土层硝态氮质量分数均值最大为24.96 mg/kg(处理T3W1N3),30~60 cm土层硝态氮质量分数均值最大为16.71 mg/kg(处理T1W3N3)。由于番茄等浅根作物根系深度多不足40 cm,所以该水肥分布有利于番茄对水分和肥分的吸收利用。
在同一土层深度,T1和T3毛管布置方式,滴灌毛管穿过植株行,硝态氮质量分数由大到小分布与距滴头距离负相关,离滴头越远,硝态氮质量分数越高,依次为测位M3>M2>M1。T2布置方式相同,其滴灌毛管布置在植株行中间,硝态氮质量分数由大到小依次为测位M1>M2>M3。同时,由表3可以看出,T3管道布置时远离滴灌带的测位M3处不同深度的NO3-N质量分数在不同施N水平间出现显著差异(<0.05)。可见N素随水运移过程,积聚于湿润体边缘[34],从而与土壤含水率分布不同。从硝态氮分布上看,T1和T2管道布置方式灌溉时均已形成湿润体交汇,土壤水分分布均匀,不论是水平向还是垂向深度上,均较T3管道布置方式硝态氮分布均匀。
由表3可得,同一N处理下,0~30 cm土层测位M1处的硝态氮质量分数T2布置方式较T1和T3布置方式大,该测位位于作物根部,硝态氮含量越大越有利于根系对N的吸收利用。从变异系数CV看,T2布置方式的CV值在N2和N3处理下均小于T3布置,硝态氮分布较均匀。从硝态氮对根系的吸收利用情况和分布均匀性来看,相较于T1和T3这2种毛管布置方式,T2布置方式最优。
分析灌水因素、施氮肥模式及滴灌毛管布置方式3种因素对番茄产量的影响,滴灌毛管布置方式对番茄产量产生极显著影响(>0.05),灌水因素对番茄产量产生极显著影响(<0.01),施氮肥模式对其产生显著影响(<0.05),而水氮交互作用并不产生显著影响(=0.74),故进行主效应分析如表4所示。中、高水平灌水量W2、W3下番茄产量没有显著差异,和低灌水水平W1下番茄产量差异显著,不同施N水平下番茄产量均有显著差异。
表3 不同土层深度土壤硝态氮质量分数均值
表4 番茄产量显著性影响
不同滴灌施肥模式对番茄产量的影响如表5所示。由表可知,灌水量对应极差最大,为18 237.2 kg/hm2,则它是对产量影响最大的因素。施氮量对产量的影响仅次于灌水量,且产量随着施氮量增加而增加。从极差分析可知,处理T2W2N3的产量最高,为107 104 kg/hm2。
表5 不同处理番茄产量和水氮利用效率及其极差分析
柯布-道格拉斯(Cobb-Douglas)生产函数模型运用数学的方法来描述生产过程中变量与变量之间的依存关系,表达多种投入因素对产量的影响程度。研究中由于管道布置方式对番茄产量没有显著影响,因此以灌水量和施肥量为自变量,以蕃茄产量为因变量,采用柯布-道格拉斯模型进行回归分析,拟合结果如式(4)所示:
由式(4)可知,在试验条件下,灌水量的生产弹性大于施N肥量的生产弹性,即灌水量每增加1%,番茄产量增加约36.77%,施N肥量每增加1%,番茄产量增加约30%。极差分析和柯布-道格拉斯模型拟合结果均表明,灌水对产量的影响大于施肥。
不同滴灌施肥处理水氮利用效率如表5所示。WUE最高达到47.8 kg/m3,最低仅有29.6 kg/m3。由极差分析可知,对WUE影响最大的因素是灌水量,施氮肥因素影响次之,,滴灌毛管布置方式影响最小,处理T3W2N2的WUE最高。与反映植物耗水指标的WUE不同,PNP反映肥料投入量效应。在所有处理中,PNP最优的处理是T2W3N1,为244.22 kg/kg。对于PNP,施氮肥因素(极差94.3 kg/kg)影响最大,灌水水平其次,滴灌毛管布置方式影响最小,且PNP随着施肥量的增加而减小。
番茄在中国可以四季生产,其生长需要足够的水和肥。张燕等[19]认为大水大肥的管理模式非但不能提高产量,还会导致蔬菜品质下降、水肥利用率低、土壤盐渍化等负面影响,而合理的水肥调控不仅可以促进植物生长,还有利于其品质等的改善[35]。而在中国氮肥的利用率不足肥料投入的30%[36],较发达国家低20个百分点,其余多以硝态氮形式残留于土壤中,极易通过挥发、淋溶和径流等途径损失[37-38],造成土壤肥力下降、农作物产量品质降低等,而通过滴灌施肥,可有效地调节施用肥料的数量和种类,并可将肥料施于根区,保证根区养分的供应,减少养分的淋失,显著地提高肥料养分的利用率。Lazcano等[39]发现在25 cm以上表土层土壤残余硝酸盐变化很大(30~200 kg/hm2),合理施N是提高氮肥利用率的重要措施。本研究发现,控制合理的灌水量、施氮肥量以及滴灌毛管的布置方式,不仅可保证根区水分和养分的供应,提高水氮利用率,而且可提高作物产量。
滴灌施肥也并非减少硝酸盐下渗的有效途径,除非灌水和施氮措施合理可行。袁宇霞等[20]发现增加施肥量和适当上调灌水下限可以显著提高番茄的光合速率、干物质量和产量,过高反而不利于其生长和产量的提高。土壤中N分布取决于N源和施入量、作物溶移能力以及根区水分布情况。本研究得出,N素等溶质随水入渗运移其分布趋势和土壤含水率分布基本一致。在土层深度30 cm范围内土壤含水率分布较高,土壤硝态氮(NO3-N)含量随土层深度的增加有减小趋势,0~30 cm土层硝态氮含量大于30~60 cm土层含量。Zhou等[40]在番茄非充分灌溉中也得到了相同结果,在番茄结果中后期,施氮量随含水率增加而增加,水分利用效率达到最优。另外,研究得出土壤硝态氮含量离滴头越远,含量越高,即验证了N素随水运移,易于积聚于湿润体边缘[34],因此通过灌溉措施控制根区湿润体可以提高水氮利用率[41],同时减少N的淋失[42]。
田间滴灌管布置方式对根区水分和N素含量分布具有重要影响。研究发现,在滴灌施肥方式下,土壤含水率在20~30 cm范围内最大,硝态氮含量在表层30 cm以上最大,30 cm以下随深度减小。由于湿润锋运移不同,虽然同深度土壤含水率均值基本相同,但1管1行(T1)和1管2行(T2)布置方式不同测位土壤含水率差值较小,含水率在根区分布比较集中均匀,而1管3行(T3)布置方式差值较大,分布均匀性差。由于番茄这种浅根系作物其根系集中在土层深度40 cm以内,深层水分和养分不利于作物根系的吸收利用,使得T3布置方式30~60 cm的硝态氮累积残余量最大。另外,增大滴管带间距是减少滴灌系统投资的重要因素之一[43]。Satpute等[26]研究发现沙壤土种植番茄滴灌带铺设方式1管2行布置比1管1行布置可节省投资35%~41%。本研究中1管2行管道布置方式(T2)相较于T1布置方式毛管使用数量减少,投资相应减少。总的来说,T2布置方式与T1和T3相比较,节省投资,土壤水分和土壤硝态氮质量分数均匀,深层淋失损失量小,有利于提高番茄的水氮利用效率。
通过研究发现,灌水量和施肥量对番茄产量均有显著影响,且灌水因素大于施肥因素。水分利用效率和肥料偏生产力受灌水量和施N肥量作用影响显著,体现了水肥间的互促互作。这与邢英英等[44]研究结果一致。同样在其他作物和灌水技术上也有类似结论,谷晓博等[45]研究表明灌溉和施氮处理对冬油菜籽粒产量、耗水量、WUE和PNP影响作用均达显著水平。向友珍等[46]通过甜椒试验和模型验证得到,甜椒经济产量和水分利用效率WUE随灌水量增加呈先增加后减小的趋势。水分胁迫可提高大枣的肥料贡献率值,植株的氮肥利用率最高[47]。Daniel等[48]研究发现地下滴灌条件下,施氮因素不及灌水对番茄产量的影响。而Li等[16]通过2种尿素肥料(包膜尿素和碳基尿素)和2种灌水水平(充分灌,亏缺灌(90%))的研究,发现番茄产量影响最大的是肥,其次为水。这是由不同试验条件下不同的地力和生产力水平造成的。
田间滴灌管布置方式、灌水量、施N肥量等对温室番茄田间土壤含水率分布、硝态氮质量分数、番茄产量、水氮利用效率等均有不同程度的影响。
1)土壤含水率与硝态氮质量分数均受管道布置方式影响。N素等溶质随灌溉水入渗运移,其分布趋势和土壤水分布基本一致。20~40 cm土层深度范围土壤含水率分布较高;T1和T2布置方式较T3布置土壤含水率分布均匀。土壤硝态氮(NO3-N)质量分数随土层深度的增加呈减小趋势,0~30 cm土层硝态氮质量分数均值均大于30~60 cm土层均值;T2管道布置方式相较于T1和T3布置硝态氮含量均匀。
2)灌水因素和施肥模式对番茄产量、水氮利用效率均有显著影响,适宜的灌水量、氮肥施用量及合适的田间滴灌管道布置方式不仅能使番茄获得高产,还能维持高效的灌溉水利用效率和肥料偏生产力。在本试验条件下,获得番茄高产的灌水量因素、施肥模式以及管道布置方式的最优组合为W2(70%ET0)、N3(240 kg/hm2)、T2(1管2行),可为当地温室番茄滴灌施肥生产实践提供参考。但从高效的灌溉水利用效率和肥料偏生产力角度考虑,番茄滴灌施肥模式的最优水平组合分别为W2(70%ET0)、N2(180 kg/hm2)、T2(1管2行)和W2(70%ET0)、N1(120 kg/hm2)、T2(1管2行)。
[1] 吴立峰,张富仓,周罕觅,等. 不同滴灌施肥水平对北疆棉花水分利用率和产量的影响[J]. 农业工程学报,2014,30(20):137-146. Wu Lifeng, Zhang Fucang, Zhou Hanmi, et al. Effect on drip irrigation and fertilizer application on water use efficiency and cotton yield in North of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 137-146. (in Chinese with English Abstract)
[2] Indu Sinha, Buttar G S, Brar A S. Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower[J]. Agricultural Water Management, 2017, 185: 58-64.
[3] Jayakumar M, Janapriya S, Surendran U. Effect of drip fertigation and polythene mulching on growth and productivity of coconut (L. ), water, nutrient use efficiency and economic benefits[J]. Agricultural Water Management, 2017, 182: 87-93.
[4] Wolff M W, Hopmans J W, Stockert C M, et al. Effects of drip fertigation frequency and N-source on soil N2O production in almonds[J]. Agriculture, Ecosystems and Environment, 2017, 238: 67-77.
[5] Wei Qin, Marius Heinen, Nalentijn B T, et al. Exploring optimal fertigation strategies for orange production, using soil–crop modelling[J]. Agriculture, Ecosystems and Environment, 2016, 223: 31-40.
[6] Wang Haidong, Li Jing, Cheng Minghui, et al. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber[J]. Scientia Horticulturae, 2019, 243: 357-366.
[7] 张燕,张富仓,强生才,等. 水肥供应对温室滴灌施肥番茄生长及水氮利用的影响[J]. 干旱地区农业研究,2017,35(4):103-109. Zhang Yan, Zhang Fucang, Qiang Shengcai, et al. Effects of irrigation and fertilization on growth, water and nitrogen use of tomato in greenhouse under fertigation[J]. Agricultural Research in the Arid Areas, 2017, 35(4): 103-109. (in Chinese with English Abstract)
[8] 陈修斌,潘林,王勤礼,等. 温室番茄水肥耦合数学模型及其优化方案研究[J]. 南京农业大学学报,2006,29(3):138-141. Chen Xiubin, Pan Lin, Wang Qinli, et al. Water-fertilizer coupling effects and its optimization in greenhouse tomato production[J]. Journal of Nanjing Agricultural University, 2006, 29(3): 138-141. (in Chinese with English Abstract)
[9] 陈碧华,郜庆炉,段爱旺,等. 水肥耦合对番茄产量和硝酸盐含量的影响[J]. 河南农业科学,2007,36(5):87-90. Chen Bihua, Gao Qinglu, Duan Aiwang, et al. Coupling effect of water and fertilizer on tomato yield and nitrate content[J]. Journal of Henan Agricultural Sciences, 2007, 36(5): 87-90. (in Chinese with English Abstract)
[10] 张学科,李惠霞,张倓,等. 滴灌条件下水氮减量对番茄氮素利用效率的影响[J]. 灌溉排水学报,2018,37(3):45-50. Zhang Xueke, Li Huixia, Zhang Tan, et al. Effects of different water and nitrogen levels on nitrogen use efficiency under drip irrigation[J]. Journal of Irrigation and Drainage, 2018, 37(3): 45-50. (in Chinese with English Abstract)
[11] Bar Yose N B, Sagiv B. Response of tomatoes to N and water applied via trickle irrigation system. I. [J]. Nitrogen Agron J 1982, 74: 633-637.
[12] Lara D, Adjanohoun A, Ruiz J. Response on tomatoes sown in the non-optimal season to fertigation on a compacted red ferralitic soil[J]. Cultivar Tropicales, 1996, 17(1): 8-9.
[13] Mahajan G, Singh K G. Response of greenhouse tomato to irrigation and fertigation[J]. Agricultural Water Management, 2006, 84(1/2): 202-206.
[14] Zotarelli L, Dukes M D, Scholberg J M S, et al. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling[J]. Agricultural Water Management, 2009, 96(8): 1247-1258.
[15] Zotarelli L, Scholberg J M, Dukes M D, et al. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling[J]. Agricultural Water Management, 2009, 96(1): 23-34.
[16] Li Yanmei, Sun Yanxin, Liao Shangqiang, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato[J]. Agricultural Water Management, 2017, 186: 139-146.
[17] Wang Chenxia, Gu Feng, Chen Jinliang, et al. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies[J]. Agricultural Water Management, 2015, 161: 9-19.
[18] Jensen C R, Battilani A, Plauborg N. Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes[J]. Agricultural Water Management, 2010, 98: 403-413.
[19] 张燕,张富仓,袁宇霞,等. 灌水和施肥对温室滴灌施肥番茄生长和品质的影响[J]. 干旱地区农业研究,2014,32(2):206-212. Zhang Yan, Zhang Fucang, Yuan Yuxia, et al. The effect of irrigation and fertilization on growth and quality of tomato under fertigation in greenhouse[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 206-212. (in Chinese with English Abstract)
[20] 袁宇霞,张富仓,张燕,等. 滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响[J]. 干旱地区农业研究,2013,31(1):76-83. Yuan Yuxia, Zhang Fucang, Zhang Yan, et al. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 76-83. (in Chinese with English Abstract)
[21] 贺会强,陈凯利,邹志荣,等. 不同施肥水平对日光温室番茄产量和品质的影响[J]. 西北农林科技大学学报:自然科学版,2012,40(7):135-140. He Huiqiang, Chen Kaili, Zou Zhirong, et al. Effects of different fertilization levels on yield and quality of greenhouse tomato[J]. Journal of Northwest A&F University: Na Sci Ed, 2012, 40(7): 135-140. (in Chinese with English Abstract)
[22] 王秀康,邢英英,张富仓. 膜下滴灌施肥番茄水肥供应量的优化研究[J]. 农业机械学报,2016,47(1):141-150. Wang Xiukang, Xing Yingying, Zhang Fucang. Optimal amount of irrigation and fertilization under drip fertigation for tomato[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 141-150. (in Chinese with English Abstract)
[23] 贾宋楠,范凤翠,刘胜尧,等. 滴灌供肥对设施番茄生长和品质的影响[J]. 节水灌溉,2017(7):28-33,34. Jia Songnan, Fan Fengcui, Liu Shengyao, et al. The effect of drip irrigation on growth and quality of tomato in greenhouse[J]. Water Saving Irrigation, 2017(7): 28-33, 34. (in Chinese with English Abstract)
[24] 邢英英,张富仓,张燕,等. 滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响[J]. 中国农业科学,2015,48(4):713-726. Xing Yingying, Zhang Fucang, Zhang Yan, et al. Effect of irrigation and fertilizer coupling on greenhouse tomato yield, quality, water and nitrogen utilization under fertigation[J]. Scientia Agricultura Sinica, 2015, 48(4): 713-726. (in Chinese with English Abstract)
[25] Pitts D J, Arnold C E, Grimm J M. Influence of lateral tubing location and number on growth and yield of tomatoes with micro irrigation[J]. Proceedings of the Florida State Horticulture Society, 1989, 102: 304-307.
[26] Satpute G U, Pawade M N. Effect of drip layout and planting geometries of tomato (L. ) on crop yield and cost of drip system[C]. Beijing: International Agricultural Engineering Conference, 1992.
[27] Mbarek K B, Boujelben A. Behavior of tomato () and red pepper (L. ) crops under greenhouse conditions conducted in single and twin rows[J]. Tropicultura, 2004, 22 (3): 97-103.
[28] Oner Cetin, Demet Uygan. The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return[J]. Agricultural Water Management, 2008, 95: 949-958.
[29] Badr M A, Abou-Hussein S D, El-Tohamy W A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region[J]. Agricultural Water Management, 2016, 169: 90-97.
[30] 王健,蔡焕杰,李红星,等. 日光温室作物蒸发蒸腾量的计算方法研究及其评价[J]. 灌溉排水学报,2006,25(6):11-14. Wang Jian, Cai Huanjie, Li Hongxing, et al. Study and evaluation of the calculation methods of reference crop evapotranspiration in solar-heated greenhouse[J]. Journal of Irrigation and Drainage, 2006, 25(6): 11-14. (in Chinese with English Abstract)
[31] 杨德. 试验设计与分析[M]. 北京:中国农业出版社,2002.
[32] 张振华,蔡焕杰,郭永昌,等. 滴灌土壤湿润体影响因素的实验研究[J]. 农业工程学报,2002,18(2):17-20. Zhang Zhenhua, Cai Huanjie, Guo Yongchang, et al. Experimental study on factors effecting soil wetted volume of clay loam under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(2): 17-20. (in Chinese with English Abstract)
[33] 汪志荣,王文焰,王全九,等. 点源入渗土壤水分运动规律实验研究[J]. 水利学报,2000(6):39-44. Wang Zhirong, Wang Wenyan, Wang Quanjiu, et al. Experimental study on soil water movement from a point source[J]. Journal of Hydraulic Engineering, 2000(6): 39-44. (in Chinese with English Abstract)
[34] Li Jiusheng, Zhang Jianjun, Ren Li. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source[J]. Irrigation Science, 2003, 22: 19-30.
[35] 史星雲,李强,张军,等. 滴灌条件下水肥耦合对酿酒葡萄生长发育及果实品质的影响[J]. 西北农业学报,2019(2):225-236. Shi Xingyun, Li Qiang, Zhang Jun, et al. Effects of water and fertilizer coupling on growth and quality of wine grape under drip irrigation[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019(2): 225-236. (in Chinese with English Abstract)
[36] 张福锁,崔振岭,王激清,等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报,2007,24(6):687-694. Zhang Fusuo, Cui Zhenling, Wang Jiqing, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6): 687-694. (in Chinese with English Abstract)
[37] Home P G, Panda R K, Kar S. Effect of method and scheduling of irrigation on water and nitrogen use efficiencies of Okra (Abelmoschus esculentus)[J]. Agricultural Water Management, 2002, 55(2): 159-170.
[38] 张文新,张成军,赵同科,等,缓释氮肥减少菜田土壤硝酸盐淋溶研究[J]. 华北农学报,2010,25(5):166-170. Zhang Wenxin, Zhang Chengjun, Zhao Tongke, et al. Research on controlled release nitrogen fertilizer reducing nitrate leaching in vegetable fields[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(5): 166-170. (in Chinese with English Abstract)
[39] Lazcano C, Wade J, Horwath W R, et al. Soil sampling protocol reliably estimates preplant NO3−in SDI tomatoes[J]. Calif Agr, 2015, 69: 222-229.
[40] Zhou Huiping, Kang Shaozhong, Li Fusheng, et al. Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages[J]. Scientia Horticulturae, 2020, 263: 109-112.
[41] Singandhupe R B, Rao G S N, Patil N G, et al. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (L.)[J]. European Journal of Agronomy, 2003, 19: 327-340.
[42] Lv Haofeng, Lin Shan, Wang Yafang, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental Pollution, 2019, 245: 694-701.
[43] Lamm F R, Stone L R, Manges H L, et al. Optimum lateral spacing for subsurface drip-irrigated corn[J]. Trans ASABE, 1997, 40: 1021-1027.
[44] 邢英英,张富仓,吴立峰,等. 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量[J]. 农业工程学报,2015,31(增刊1):110-121. Xing Yingying, Zhang Fucang, Wu Lifeng, et al. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp. 1): 110-121. (in Chinese with English Abstract)
[45] 谷晓博,李援农,杜娅丹,等. 水氮耦合对冬油菜氮营养指数和光能利用效率的影响[J]. 农业机械学报,2016,47(2):122-132. Gu Xiaobo, Li Yuannong, Du Yadan, et al. Effects of water and nitrogen coupling on nitrogen nutrition index and radiation use efficiency of winter oilseed rape (BrassicaL.)[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 122-132. (in Chinese with English Abstract)
[46] 向友珍,张富仓,范军亮,等. 基于临界氮浓度模型的日光温室甜椒氮营养诊断[J]. 农业工程学报,2016,32(17):89-97. Xiang Youzhen, Zhang Fucang, Fan Junliang, et al. Nutrition diagnosis for N in bell pepper based on critical nitrogen model in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 89-97. (in Chinese with English abstract)
[47] 龚萍,刘洪光,何新林,等. 水肥配比对大枣氮素分布及利用效率的影响[J]. 节水灌溉,2018(11):10-15,19. Gong Ping, Liu Hongguang, He Xinlin, et al. Effect of the ratio of water-fertilizer nitrogen distribution and utilization efficiency in jujube trees[J]. Water Saving Irrigation, 2018(11): 10-15, 19. (in Chinese with English abstract)
[48] Daniel G, Brenna J A, Eugene M M, et al. Nitrogen in soil and subsurface drip-irrigated processing tomato plants(L. ) as affected by fertilization level[J]. Scientia Horticulturae, 2020, 261: 108-116.
Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse
Zhang Xinyan1, Wang Haoxiang1, Niu Wenquan1,2
(1.,,712100,; 2.,,712100,)
This study explored the optimal mode of drip fertigation system of tomato in greenhouse in Yangling, China (109°06'E,36°18'N). Three factors with three levels each were considered including drip irrigation pipeline layout, fertilizer-N application rate and irrigation amount. Three pipeline layout included single-plant row, two-plant row and three-plant row of one pipeline. Three irrigation amounts were 50%ET0, 70%ET0and 90%ET0(potential evapotranspiration) and ET0was calculated based on Penman-Monteith modifier formula. Three fertilizer-N amounts were 120, 180 and 240 kg/hm2. The experiment was carried out in 2018 following the orthogonal test design. During the experiment, soil moisture content and nitrate nitrogen content were determined. Water use efficiency and fertilizer utilization efficiency were calculated. The results showed that the drip irrigation pipeline layout, irrigation amount and fertilizer-N amount had different effects on soil moisture content distribution, nitrate nitrogen, tomato yield and water use efficiency and nitrogen utilization efficiency of greenhouse tomato. The distribution of soil water content in different drip irrigation pipeline layout was basically the same, the water content of the surface layer (0-20 cm) was lower and higher in the soil layer of 20-40 cm. The soil water content below 40 cm depth was decreased. The soil moisture content was low in the area far from the emitter but high in the area around the emitter. The moisture content distributions of single-plant row of one pipeline and two-plant row of one pipeline were much uniform than that of three-plant row of one pipeline. The soil nitrate nitrogen (NO3-N) content decreased generally with the soil depth, and the mean value of the nitrate nitrogen content in the 0-30 cm soil layer was greater than that at 30-60 cm. The maximum value of nitrate nitrogen content was 24.96 mg/kg in the 0-30 cm soil layer, and it was 16.71 mg/kg in the 30-60 cm soil layer. Under the same fertilizer-N treatment, the nitrate nitrogen content at the center of the test pit in the 0-30 cm soil layer was larger in the treatment of two-plant row of one pipeline mode than that in single-plant row and three-plant row of one pipeline. It would be conducive to the absorption and utilization of nitrogen by roots. The irrigation amount had an extremely significant effect on the yield of tomato. The fertilizer-N amounts had a significant effect on the yield. The tomato yield was not significantly different for the treatments of irrigation amount of 70%ET0and 90%ET0, and both treatments were significantly higher than that with the irrigation amount of 50%ET0. The irrigation amount and fertilizer-N application rate had significant effects on water use efficiency and partial nitrogen productivity. The optimized mode of drip fertigation with high yield of tomato was two-plant row of one pipeline, irrigation amounts 70%ET0and fertilizer-N application rate of 240 kg/hm2. Considering the high efficiency of irrigation water utilization and N-fertilizer partial factor productivity, the optimal combination mode of drip fertigation on tomato was two-plant row of one pipeline, irrigation amounts 70%ET0, N-fertilizer amounts 180 kg/hm2and two-plant row of one pipeline, irrigation amounts 70%ET0and N-fertilizer amounts 120kg/hm2, respectively. The result can provide some technical guidance for the production practice of the greenhouse tomato drip fertigation.
soil moisture; fertilization; greenhouse; nitrate nitrogen; drip irrigation; yield; water use efficiency; partial factor productivity
张新燕,王浩翔,牛文全. 水氮供应对温室滴灌番茄水氮分布及利用效率的影响[J]. 农业工程学报,2020,36(9):106-115. doi:10.11975/j.issn.1002-6819.2020.09.012 http://www.tcsae.org
Zhang Xinyan, Wang Haoxiang, Niu Wenquan. Effects of water and N-fertilizer supplies on the distribution and use efficiency of water and nitrogen of drip-irrigated tomato in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 106-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.012 http://www.tcsae.org
2019-09-03
2020-02-08
国家重点研发计划项目(2016YFC0400202)
张新燕,博士,副教授,主要从事节水灌溉理论与新技术研究。Email:xnvxy@nwsuaf.edu.cn
10.11975/j.issn.1002-6819.2020.09.012
S275.6;S157.4+1
A
1002-6819(2020)-09-0106-10
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!