时间:2024-05-24
魏钟博,边大红,杜 雄,Pushpa Raj,崔彦宏
黑龙港流域夏玉米生育期降水、需水和干旱时空分布特征
魏钟博,边大红,杜 雄,Pushpa Raj,崔彦宏※
(河北农业大学农学院/省部共建华北作物改良与调控国家重点实验室/河北省作物生长调控实验室,保定 071001)
黑龙港流域地下水超采导致水分极度匮乏,提高降水利用效率成为该区夏玉米生产的关键。该文利用黑龙港流域18个地面气象观测站1966—2015年逐日气象数据,对玉米全生育期及各生育阶段的有效降水量、需水量、作物水分亏缺指数、干旱发生频率的时空分布特征等进行了分析。结果表明,夏玉米全生育期有效降水量292.89~361.56 mm,呈“东北高、西南低”的趋势;需水量362.82~444.04 mm,呈“南部高,北部低”的趋势;近50年总有效降水量和需水量均呈下降趋势,且需水量的变化与平均日照时数、平均风速呈高度正相关;全区干旱发生频率为48.30%,其中南部超33.3%,中部及北部超66.6%;黑龙港中部和北部在成粒和灌浆阶段出现干旱的几率较大,南部在成粒阶段出现干旱的几率较大。该研究为黑龙港夏玉米降水资源的高效利用提供了理论依据。
降水量;蒸发蒸腾量;干旱;需水量;时空分布;夏玉米
黑龙港流域是中国重要的粮食产区,主要种植制度为冬小麦/夏玉米一年两熟。但常年的冬小麦生长季灌溉导致地下水严重超采,使黑龙港成为世界上最大的地下水漏斗区[1],灌溉用水受到极大限制。夏玉米作为黑龙港最重要的农作物之一,生长期间雨热同期,如何充分利用自然降水满足黑龙港夏玉米的水分需求,对促进该区域粮食生产具有重要意义。近年来,一些学者采用国际粮农组织(Food and Agriculture Organization of the United Nations,FAO)推荐的彭曼-蒙蒂斯(Penman-Monteith)公式和作物系数法,探讨了不同作物在不同生育时期的需水规律,并对不同区域尺度下河北省主要农作物的水分供需关系进行了系统的研究[2-4]。曹永强等[5-8]针对河北区域内作物需水量与缺水量开展了研究,并分别从整体和局部对夏玉米生育期需水量和降雨量的时空变化规律进行分析。万能涵等[9]以作物水分亏缺指数(Crop Water Deficit Index,CWDI)为干旱指标,对华北地区夏玉米不同生育阶段干旱的时空间分布特征进行了分析,指出河北大部分地区处于华北干旱中心。王宏等[10]通过研究河北省承德地区春玉米需水量,得出气象因子与春玉米发育中期的日最高气温、平均气温、风速、日照时数具有正相关关系。但上述研究采用的空间尺度较大,针对黑龙港夏玉米全生育时期及各生育阶段的降水量、需水量、水分亏缺等空间分布特征及变化趋势尚缺乏研究。
因此,在气候变暖及河北地区休耕、地下水压采的背景下[11],从时空角度明确夏玉米自然降水与需水的匹配度,是提高该区域夏玉米生长季降水利用效率、促进玉米生产的关键。本研究依据黑龙港流域18个气象站1966—2015年的逐日气象资料及有关玉米生育时期观测数据,对黑龙港流域夏玉米全生育期各生育阶段有效降雨量、需水量、干旱指数、气候倾向率、干旱频率的时空分布规律及变化特征进行了分析,探讨主要气象因子与黑龙港夏玉米需水量及区域平均单产的相关关系。以期进一步优化该区域夏玉米生产策略,提高区域降水资源利用效率,为黑龙港夏玉米高产稳产提供理论依据。
黑龙港流域位于河北省东南部(36°03′N~39°04′N,114°20′E~117°48′E),属华北平原低平原区,是海河平原重要组成部分,全年日照时数约2 550 h,多年平均气温11.7~13.3 ℃,全年平均降水量510~680 mm[12];本研究中黑龙港区域包括沧州、衡水市的全部,邢台市的10个县(隆尧、宁晋、巨鹿、新河、广宗、平乡、威县、清河、临西、南宫),邯郸市的10个县(临漳、成安、大名、肥乡、邱县、鸡泽、广平、馆陶、魏县、曲周)、保定市的5个县(高阳、安新、蠡县、博野、雄县)及廊坊市的2个县(大城、文安)(图1)。
图1 研究区域与地面气象观测站分布
选取黑龙港流域18个地面气象观测站1966—2015年的日尺度气象资料(中国气象局国家气象信息中心提供),包括气温(最高、最低、平均)、平均相对湿度、风速、日照时数、降雨量以及各气象站点经纬度等地理特征数据;分别调查大城县、南皮县、深州县、巨鹿县、曲周县等5个典型地区常规品种(郑单958)的实际播种和收获时间,并详细记录各生育阶段日期(表1),各气象站点所在区域的播种、拔节期、吐丝期、灌浆初期和生理成熟的日期由其临近的典型区域记录的物候期所确定。结合夏玉米的生长发育过程[13]及FAO-56划分原则[14],将玉米整个生育期划分为4个生育阶段:苗期阶段(播种—拔节期)、穗期阶段(拔节期—吐丝期)、成粒阶段(吐丝期—灌浆初期)、灌浆阶段(灌浆初期—生理成熟);夏玉米产量数据来自2007—2016年 《河北省农村统计年鉴》。
表1 夏玉米各生育期在各典型地区的生长时段
1.3.1 玉米需水量计算
采用FAO推荐的分段单值平均作物系数法计算玉米逐日需水量[15]。玉米各生育期内需水量及总需水量由生育期内逐日需水量累加得出。根据玉米不同生长阶段的作物系数可以计算得到玉米需水量如式(2)所示
1.3.2 生育期内有效降雨量
1.3.3 生育期水分亏缺指数与干旱频率
作物水分亏缺指数(Crop Water Deficit Index,CWDI)是用来表示夏玉米水分亏缺程度的常用指标,因此结合前人研究[18],通过式(5)计算水分亏缺指数。
作物水分亏缺状况可以通过CWDI直接反应,当CWDI≤0时,表示有效自然降水能够满足玉米需水量,当CWDI>0时,表示有效自然降水不能满足玉米需水量,且当CWDI≥0.35时,玉米将发生干旱。现参考国家标准《农业干旱等级》以及万能涵[9]等指标的设定,对CWDI值进行了分级,见表2。
表2 基于作物水分亏缺指数的农业干旱等级
某一站点某一生育阶段干旱发生的年次数与气象资料总年数之比,即为夏玉米不同生育阶段各干旱等级的发生频率如式(6)所示
/(6)
式中为统计资料的总年数,本研究为50年;为年中该生育阶段出现的某一干旱等级的次数。
1.3.4 气候倾向率
采用最小二乘法,将气象要素变化趋势用一次线性方程表示如式(7)所示
通过Python、Microsoft Excel对气象站数据进行整理;利用SPSS19.0进行相关性、显著性分析;利用ArcGIS10.2软件的反距离加权法(Inverse Distance Weighted,IDW)进行空间插值并作图。
黑龙港流域1966—2015年夏玉米生育期及各生育阶段有效降水量的时空分布(图2)。由图2a所示,全生育期有效降水量总体呈由东北向西南逐渐减少趋势,变化范围在292.89~361.56 mm,平均为326.46 mm;各生育阶段有效降水量空间分布如图2b~图2e,苗期、穗期2个阶段有效降水量均自东北向西南呈逐渐减少趋势,成粒、灌浆2个阶段有效降水量自东北向西南呈逐渐增加趋势。各生育阶段平均有效降水量顺序依次为:穗期阶段107.64 mm、苗期阶段131.09 mm、成粒阶段67.63 mm、灌浆阶段19.93 mm,分别占全生育期的比例依次为40.15%、32.97%、20.72%和6.10%。
图2 1966—2015年玉米全生育期及各生育阶段有效降水量空间分布
近50年来,黑龙港流域夏玉米全生育期有效降水量呈降低趋势(图3a),气候倾向率变化范围为-28.90~0.04 mm/10a,平均为-11.76 mm/10a;各生育阶段气候倾向率空间分布情况如图3a~图3e,苗期、穗期和成粒3个阶段的有效降水量总体呈下降趋势,穗期阶段下降最快为-9.70 mm/10a,而灌浆阶段有效降水量总体呈增加趋势,为1.04 mm/10a。从黑龙港流域全域来看,黑龙港北部地区有效降水量在苗期、穗期、成粒3个阶段均呈下降趋势,范围在-8.00~-34.00 mm/10a之间,灌浆阶段呈上升趋势。中部地区有效降水量在苗期、穗期、灌浆3个阶段呈下降趋势,范围在0~-15.80 mm/10a之间,成粒阶段呈上升趋势。南部地区有效降水量在穗期、成粒2个阶段呈下降趋势,范围在-5.00~-13.00 mm/10a之间,在苗期、灌浆2个阶段呈上升趋势。
图3 1966—2015年玉米全生育期及各生育阶段有效降水量气候倾向率空间分布
黑龙港流域1966—2015年夏玉米全生育期及各生育阶段需水量的时空分布(图4)。由图4a可知,全生育期年均需水量总体由西南向东北方向逐渐减少,变化范围在362.82~444.04 mm,平均值395.45 mm;各生育阶段需水量分布如图4b~图4e,4个阶段需水量整体均呈自东北向西南增加趋势。各生育阶段平均需水量顺序依次为:穗期阶段141.22 mm、成粒阶段133.35 mm、苗期阶段86.62 mm、灌浆阶段34.20 mm。分别占全生育期的比例依次为35.71%、33.72%、21.90%、和8.65%。
图4 1966—2015年全生育期及各生育阶段需水量空间分布
近50年来,黑龙港流域全生育期年均需水量除中部偏西地区呈逐年上升趋势外,其余地区均呈下降趋势(图 5a),需水量变化趋势(指需水量与时间线性回归的斜率)为-20.20~25.39 mm/10a,平均为-6.26 mm/10a;各生育阶段需水量变化趋势空间分布如图 5a~图5e,4个阶段的需水量均呈下降趋势,其中苗期下降最快为-2.50 mm/10a。从黑龙港流域全域来看,中部偏西地区在4个阶段均呈上升趋势,范围在0~25.39 mm/10a之间,中部偏东地区在4个阶段均呈下降趋势。南部与北部地区在4个阶段均呈下降趋势,但南部下降速率要高于北部地区。南部及北部需水量下降速率范围分别为-3.00~-21.00 mm/10a和-2.00~-15.00 mm/10a。
图5 1966—2015年玉米全生育期及各生育阶段需水量变化趋势空间分布
如图6a可知,全生育期作物水分亏缺指数(CWDI)高值区分布在中部,低值区分布在北部,变化趋势在0.07~0.26之间,平均值为0.17;各生育阶段CWDI空间分布如图6b~图6e。苗期、穗期2个阶段(图6b~图6c)CWDI均小于0.35,水分亏缺区域主要集中在中南部;成粒阶段CWDI范围为0.42~0.57,平均值为0.49,全域达到轻旱及以上水平,北部地区为中旱区,中部和南部地区为轻旱区;灌浆阶段CWDI范围为0.13~0.65,平均值为0.41,南部地区为无旱区,北部地区为轻旱区,中部偏东地区为中旱区。可见,黑龙港南部地区在成粒阶段容易出现轻旱,北部及中部地区在成粒、灌浆阶段容易出现干旱,且最高达中度干旱。
图6 1966—2015年玉米全生育期及各生育阶段作物水分亏缺指数CWDI空间分布
由近50年各生育阶段干旱发生频率的空间分布可知(图7),黑龙港中部及北部地区干旱发生频率大于南部地区,且主要发生在成粒和灌浆2个阶段。南部地区4个生育阶段发生干旱的年份占比均超33.3%。中部与北部地区成粒和灌浆阶段发生干旱的年份占比均超66.6%。由表3所示,1966—2015年,苗期、穗期2个阶段发生干旱的频率分别为25.77%和35.22%,且出现轻旱的频率最大,分别为9.11%和11.67%。成粒阶段发生干旱的频率为68.11%,出现重旱的频率最大为22.11%。灌浆阶段发生干旱频率为64.10%,出现特旱的频率最大,为30.44%。从全生育期看,50年来发生干旱频率为48.30%,根据各干旱等级频率排序为:特旱(14.67%)>重旱(12.44%)>中旱(11.11%)>轻旱(10.08%)。
图7 1966—2015年玉米各生育阶段干旱频率的空间分布
表3 玉米全生育期及不同生育阶段各干旱等级发生频率
由典型地区需水量与主要气象因子的相关性分析表明(表4),平均最高气温、平均日照时数与需水量呈正相关关系,平均相对湿度与需水量成负相关关系,且5个气象站规律一致。从气候倾向率及其显著性来看,5个典型气象站的平均气温、平均最低气温显著增加,平均日照时数、平均风速显著降低。从需水量来看,5个气象站需水量均呈降低趋势,其中4个站呈极显著降低趋势。可见,夏玉米需水量的显著降低与平均日照时数和平均风速的显著降低有关。平均单产与有效积温具有显著性正相关关系,相关系数为0.52(<0.05)。有效降水量、日照时数与平均单产的相关系数分别为-0.40和0.11,相关性不显著。表明玉米平均单产主要受生育期内热量资源的影响,生育期内有效降水、日照时数与玉米平均单产相关性不明确,这可能是因为生育期内补充灌溉掩盖了上述因素对产量的影响。
表4 影响夏玉米需水量的气象因子分析
注:*为通过显著性检验(<0.05),**为通过极显著性检验(<0.01)。
Note: * for the significance of the test (<0.05), ** for the extreme significance test (<0.01).
在气候变化的背景下,近年来华北地区缺水日益严重、干旱频发[20]。提高作物的降水利用效率、稳定产量成为黑龙港农业研究的重要课题之一[21-22]。本研究结果表明,黑龙港全域有效降水均不能满足夏玉米生育期水分需求,尤其是中部地区缺水最为严重。从时空角度分析,由于降水与需水的时空间分布不平衡,导致北部地区在成粒、灌浆阶段容易出现旱情,西南部地区在成粒阶段容易出现旱情。本研究当中,穗期阶段干旱发生频率为35.22%,且南部地区高于北部地区。前人研究表明,穗期是作物需水临界期,缺水会导致玉米雌穗生长发育受到抑制,授粉受精不良,严重影响玉米产量[23-24],即使之后有充足的水分供应对产量的影响也难以恢复[25]。因此,严防穗期阶段出现的干旱对于保证该区夏玉米稳产具有重要意义。本研究表明,尤其是北部和中部地区,成粒与灌浆阶段水分亏缺比较严重,干旱发生频率均超66.6%。因此,该区域应选用抗旱能力强、生育期短、灌浆速率高的品种[26]。也可以通过秸秆还田和深松等措施提高土壤储水能力,促使夏季降水补充地下水,达到夏水秋用的目的[27-28]。
近年来,随着对黑龙港流域地下水超采的治理,冬小麦面积不断压缩[11,29]。因此,该地区玉米生产就出现了春播、夏播、早夏播(晚春播)等多种种植形式。从热量资源角度来考虑,早播可延长玉米生长期,增加热量,从而有利于实现玉米高产[30]。有研究表明,影响华北平原春玉米生长发育和产量的最重要气象因子是总降雨量[1]。黑龙港流域降水高峰主要集中在7—8月份,约占全年降水量的68.7%,而4—6月份处于干旱阶段[31]。从生长发育进程来判断,春播和早夏播玉米在吐丝期前易受到干旱胁迫,而不利于籽粒形成。灌浆期又正好处于阴雨寡照阶段,又不利于籽粒灌浆[32]。因此,从降水资源角度出发,黑龙港流域并不适合玉米春播或早夏播,生产优势依然是夏玉米。本研究表明,黑龙港夏玉米苗期、穗期2个阶段有效降水量为238.73 mm,占全生育期的73.21%,而成粒、灌浆2个阶段有效降水量明显低于同期玉米需水量,水分平均亏缺33.26 mm。所以,有必要在当前种植制度下,开展多点田间播期试验,进一步量化玉米需水量、有效降水量和产量之间的关系,提高夏玉米需水临界期与降水的时空耦合度,为黑龙港夏玉米稳产提供更多理论依据。
1)1966—2015年黑龙港流域玉米生育期年均有效降水量变化范围在292.89~361.56 mm,平均值为326.46 mm,总体呈“东北高,西南低”的趋势。需水量变化范围在362.82~444.04 mm,平均值395.45 mm,总体呈“南部高,北部低”的趋势;苗期、穗期、成粒和灌浆阶段有效降水量分别占全生育期的32.97%、40.15%、20.72%和6.10%。需水量分别占全生育期的35.71%、33.72%、21.90%和8.65%。
2)近50年来全生育期有效降水量、需水量总体均呈逐年下降趋势,变化趋势分别为-11.76 mm/10a和-6.26 mm/10a,且需水量的降低与平均日照时数和平均风速的显著降低有关;从全生育期看,有效降水量在穗期阶段下降最快,为-9.70 mm/10a。需水量在苗期下降最快,为-2.50 mm/10a。
3)黑龙港夏玉米发生干旱频率为48.30%。其中南部地区4个生育阶段发生干旱的年份占比均超33.3%。中部与北部地区成粒和灌浆阶段发生干旱的年份占比均超66.6%。
4)苗期、穗期2阶段水分亏缺区域主要在中南部。成粒、灌浆阶段的作物水分亏缺指数(Crop Water Deficit Index,CWDI)均值分别为0.49和0.41,其中黑龙港南部地区在成粒阶段容易出现轻旱,北部及中部地区在成粒、灌浆阶段容易出现干旱,且最高达中度干旱。
[1] 明博,朱金城,陶洪斌,等. 黑龙港流域玉米不同生育阶段气象因子对产量性状的影响[J]. 作物学报,2013,39(5):919-927. Ming Bo, Zhu Jincheng, Tao Hongbin, et al. Effects of meteorological factors at different growth stages on yield traits of maize (L. ) in Heilonggang Basin[J]. Acta Agronomica Sinica, 2013, 39(5): 919-927. (in Chinese with English abstract)
[2] 刘玉春,姜红安,李存东,等. 河北省棉花灌溉需水量与灌溉需求指数分析[J]. 农业工程学报,2013,29(19):98-104. Liu Yuchun, Jiang Hongan, Li Cundong, et al. Analysis of irrigation water requirement and irrigation requirement index for cotton of Hebei province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 98-104. (in Chinese with English abstract)
[3] 李春强,李保国,洪克勤. 河北省近35年农作物需水量变化趋势分析[J]. 中国生态农业学报,2009,17(2):359-363. Li Chunqiang, Li Baoguo, Hong Keqin. Trend of crop water requirement in recent 35 years in Hebei province[J]. Chinese Journal of Eco-Agriculture. 2009, 17(2): 359-363. (in Chinese with English abstract)
[4] 于海磊,吴息,李珊,等. 衡水地区冬小麦生长后期需水量变化特征[J]. 湖北农业科,2016,55(14):3546-3548,3554. Yu Hailei, Wu Xi, Li Shan. et al. The characteristics of water requirement change during the later growth stage of winter wheat in Hengshui[J]. Hubei Agricultural Sciences, 2016, 55(14): 3546-3548, 3554. (in Chinese with English abstract)
[5] 曹永强,赵博雅,袁立婷. 保定市主要作物需水量和缺水量特征分析[J]. 中国农业资源与区划,2018,39(8):150-157. Cao Yongqiang, Zhao Yabo, Yuan Liting. Analysis of the water demand and water shortage in main crops in Baoding city[J]. Chinese Journal of Agricultural Resources and Regional Planning. 2018, 39(8): 150-157. (in Chinese with English abstract)
[6] 曹永强,朱明明,李维佳. 河北省典型区主要作物有效降雨量和需水量特征[J]. 生态学报,2018,38(2):560-570. Cao Yongqiang, Zhu Mingming, Li Weijia. Effective precipitation and water requirements of crops in Hebei province over 60 years[J]. Acta Ecologica Sinica, 2018, 38(2): 560-570. (in Chinese with English abstract)
[7] 曹永强,李晓瑞. 河北省夏玉米主产区作物需水量和缺水量研究[J]. 中国农村水利水电,2018,2018(10):141-147,152. Cao Yongqiang, Li Xiaorui. Research on the crop water demand and water shortage in the main producing areas of summer maize in Hebei province[J]. China Rural Water and Hydropower, 2018, 2018(10): 141-147, 152. (in Chinese with English abstract)
[8] 曹永强,刘明阳,张路方. 河北省夏玉米需水量变化特征及未来可能趋势[J]. 水利经济,2019,37(2):46-52,87. Cao Yongqiang, Liu Mingyang, Zhang Lufang, Variation characteristics of water demand of summer maize crop and possible future trends in Hebei province[J]. Journal of Economics of Water Resources, 2019, 37(2): 46-52, 87. (in Chinese with English abstract)
[9] 万能涵,杨晓光,刘志娟,等. 气候变化背景下中国主要作物农业气象灾害时空分布特征(Ⅲ):华北地区夏玉米干旱[J]. 中国农业气象,2018,39(4):209-219. Wan Nenghan, Yang Xiaoguang, Liu Zhijuan, et al. Temporal and spatial variations of agro-meteorological disasters of main crops in China in a changing climate (Ⅲ): Drought of summer maize in North China Plain[J]. Chinese Journal of Agrometeorology, 2018, 39(4): 209-219. (in Chinese with English abstract)
[10] 王宏,谭国明,孙庆川,等. 承德春玉米需水量变化及其与气象因子的关系[J]. 气象与环境学报,2012,28(4):69-72. Wang Hong, Tan Guoming, Sun Qingchuan, et al. Variation of spring corn water requirement and its relationship with the meteorological factors in Chengde, Hebei province[J]. Journal of Meteorology and Environment, 2012, 28(4): 69-72. (in Chinese with English abstract)
[11] 王学,李秀彬,辛良杰,等. 华北地下水超采区冬小麦退耕的生态补偿问题探讨[J]. 地理学报,2016,71(5):829-839. Wang Xue, Li Xiubin, Xin Liangjie, et al. Ecological compensation for winter wheat abandonment in groundwater over-exploited areas in the North China Plain[J]. Journal of Geographical Sciences, 2016, 71(5): 829-839. (in Chinese with English abstract)
[12] 郑鑫. GIS支持下的黑龙港地区土地生产潜力研究[D]. 北京:北京林业大学,2011. Zheng Xin. Study on Land Productivity Potential of Heilonggang Region Based on GIS[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract)
[13] 周玉芝,段会军,姬惜珠,等. 河北省夏播玉米品种主要农艺性状演变规律的研究[J]. 河北农业大学学报,2005,28(2):1-4,22. Zhong Yuzhi, Duan Huijun, Ji Xizhu, et al. Study on the developing rule of summer-planting maize varieties in Hebei province[J]. Journal of Agricultural University of Hebei, 2005, 28(2): 1-4, 22. (in Chinese with English abstract)
[14] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements[M]. Rome: Food and Agriculture Organization of United Nation, 1998.
[15] 刘钰,Pereira L S. 对FAO推荐的作物系数计算方法的验证[J]. 农业工程学报,2000,16(5):26-30. Liu Yu, Pereira L S. Validation of FAO methods for estimating crop coefficients[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 26-30. (in Chinese with English abstract)
[16] 曹永强,李晓瑞,朱明明. 河北省主要作物系数时空分布特征[J]. 水利水电科技进展,2019,39(2):37-45. Cao Yongqiang, Li Xiaorui, Zhu Mingming. Spatial and temporal distribution characteristics of main crop coefficients in Hebei province[J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 37-45. (in Chinese with English abstract)
[17] 朱明明. 河北省主要作物全生育期有效降雨量及需水规律研究[D]. 沈阳:辽宁师范大学,2017. Zhu Mingming. Effective Precipitation and Water Requirements of Main Crops in Whole Growth Period in Hebei Province over 60 Years[D]. Shenyang: Liaoning Normal University, 2017. (in Chinese with English abstract)
[18] 郭进考,史占良,何明琦,等. 发展节水小麦缓解北方水资源短缺—以河北省冬小麦为例[J]. 中国生态农业学报,2010,18(4):876-879. Guo Jinkao, Shi Zhanliang, He Mingqi, et al. Developing of water-saving wheat cultivars to limit water shortage in North China: A case study of Hebei province[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 876-879. (in Chinese with English abstract)
[19] 康绍忠,蔡焕杰. 农业水管理学[M]. 北京:中国农业出版社,1996.
[20] 胡亚南,李阔,许吟隆. 1951-2010年华北平原农业气象灾害特征分析及粮食减产风险评估[J]. 中国农业气象,2013,34(2):197-203. Hu Yanan, Li Kuo, Xu Yinlong. Characteristic analysis of agricultural meteorological disasters and risk assessment of the crop loss in North China Plain during 1951-2010[J]. Chinese Journal of Agrometeorology, 2013, 34(2): 197-203. (in Chinese with English abstract)
[21] Zhang Xiying, Chen Suying, Liu Mengyu, et al. Improved water-use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005, 97(3): 783-790.
[22] 董宝娣,张正斌,刘孟雨,等. 小麦不同品种的水分利用特性及对灌溉制度的响应[J]. 农业工程学报,2007,23(9):27-33. Dong Baodi, Zhang Zhengbin, Liu Mengyu, et al. Water use characteristics of different wheat varieties and their responses to different irrigation schedulings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 27-33. (in Chinese with English abstract)
[23] Wang Fei, Wang Zongmin, Yang Haibo, et al. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI[J]. Science China Earth Sciences, 2018, 61(8): 1098-1111.
[24] 宋凤斌,戴俊英. 干旱胁迫对玉米雌穗生长发育和产量的影响[J]. 吉林农业大学学报,2000,22(1):18-22. Song Fengbin, Dai Junying. Effect of drought stress on growth and developing of female inflorescence and yield of maize[J]. Journal of Jilin Agricultural University, 2000, 22(1): 18-22. (in Chinese with English abstract)
[25] 王同朝,李小艳,杜园园,等. 时空交替间隔灌溉对夏玉米田水分和产量形成的影响[J]. 华北农学报,2013,28(4):115-122. Wang Tongchao, Li Xiaoyan, Du Yuanyuan, et al. Effects of tempo-spatial alternate furrow irrigation on farmland moisture and yield formation in summer maize[J]. Acta Agriculturae Boreali Sinica, 2013, 28(4): 115-122. (in Chinese with English abstract)
[26] 魏湜. 玉米生态基础[R]. 北京:中国农业出版社,2010.
[27] 孔凡磊,张海林,翟云龙,等. 耕作方式对华北冬小麦—夏玉米周年产量和水分利用的影响[J]. 中国生态农业学报,2014,22(7):749-756. Kong Fanlei, Zhang Hailin, Zai Yunlong, et al. Effects of tillage methods on crop yield and water use characteristics in winter-wheat/summer-maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7): 749-756. (in Chinese with English abstract)
[28] 赵亚丽,薛志伟,郭海斌,等. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响[J]. 中国农业科学,2014,47(17):3359-3371. Zhao Yali, Xue Zhiwei, Guo Haibin, et al. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. (in Chinese with English abstract)
[29] 王学,李秀彬,辛良杰,等. 华北平原农户主动退耕冬小麦的影响因素模型分析及政策启示[J]. 农业工程学报,2018,34(9):248-257. Wang Xue, Li Xiubin, Xin Liangjie, et al. Driving factors on winter wheat abandonment by farmers in North China Plain and its policy implication[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 248-257. (in Chinese with English abstract)
[30] 刘明,陶洪斌,王璞,等. 播期对春玉米生长发育、产量及水分利用的影响[J]. 玉米科学,2009,17(2):108-111. Liu Ming, Tao Hongbin, Wang Pu, et al. Effects of sowing date on growth, yield formation and water utilization of spring maize[J]. Journal of Maize Sciences, 2009, 17(2): 108-111. (in Chinese with English abstract)
[31] 雷廷,张兆吉,费宇红,等. 海河平原1956年—2011年降水特征分析[J]. 南水北调与水利科技,2014,12(1):32-36,41. Lei Ting, Zhang Zhaoji, Fei Yuhong, et al. Analysis of precipitation characteristics in the Haihe River Plain from 1956 to 2011[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(1): 32-36, 41. (in Chinese with English abstract)
[32] 孙宏勇,张喜英,陈素英,等. 气象因子变化对华北平原夏玉米产量的影响[J]. 中国农业气象,2009,30(2):215-218. Sun Hongyong, Zhang Xiying, Chen Suying, et al. Effect of meteorological factors on grain yield of summer maize in the North China Plain[J]. Chinese Journal of Agrometeorology, 2009, 30(2): 215-218. (in Chinese with English abstract)
Characteristics of spatial-temporal distribution of precipitation, water requirement and drought for summer maize growth period in Heilonggang Basin
Wei Zhongbo, Bian Dahong, Du Xiong, Pushpa Raj, Cui Yanhong※
(071001)
The severe over-exploitation of groundwater led to the problems of extreme water shortage and restricted irrigation in the Heilonggang Basin. Effective use of natural precipitation was one of the key approaches to solve the problem of water requirement for maize production in the Heilonggang Basin. The objective of this study was to analyze spatial-temporal distribution characteristics of effective precipitation and water requirement for maize production and define the water deficit region. Daily meteorological data from 18 surface meteorology stations from 1966 to 2015 were collected and phenological data of summer maize in 5 typical regions of the Heilonggang Basin were observed. The calculated index included effective precipitation, water requirement, the Crop Water Deficit Index (CWDI), the frequency of drought, and the correlation between water demand and meteorological factors during the maize whole growing period and 4 important stages. The water requirement of maize was estimated by using the Penman-Monteith equation of the Food and Agriculture Organization and crop coefficient method, and the crop coefficient of summer maize was identified by previous research of Hebei Province. The spatial distribution and evolution trend of drought for summer maize in different growth stages were analyzed by using the CWDI. Furthermore, analyzing the temporal and spatial distribution characteristics of the all calculated index in the whole growing period and each growth stage of maize was drew by the Inverse Distance Weighted (IDW) method of ArcGIS. The results showed that the range of annual effective precipitation in the summer maize growth period was from 292.89 mm to 361.56 mm, an average of the whole growth period was 326.46 mm, and the spatial distribution of effective precipitation during the whole growth period was showed a trend of ‘high in northeast and low in the southwest’. The annual average water requirement for maize ranged from 362.82 mm to 444.04 mm with an average of 395.45 mm during the whole growing period, and the spatial distribution of water requirement showed a trend of ‘higher in the south and lower in the north’. Total effective precipitation and water requirement during the whole growth period showed a downward trend year by year, and the climate tendency rates were -11.76 mm/10aand -6.26 mm/10a, respectively. Correlation analysis showed that the reduction in water requirement was related to a significant reduction in average sunshine hours and average wind speed. In the past 50 years, the drought frequency of summer maize during the whole growth period in the Heilonggang Basin was 48.30%. Among them, the proportion of drought-prone years of all the 4 growth stages were more than 33.3% in the southern regions and more than 66.6% during the kernel formation stage and grain filling stage both in the central and northern regions. The values of CWDI were less than 0.35 from the seedling stage to the ear developing stage and the water deficit regions were mainly concentrated in the central and southern regions. The average values of CWDI during the kernel formation stage and the grain filling stage were 0.49 and 0.41 respectively. The southern region of the Heilonggang basin was prone to light drought during the kernel development stage.The kernel formation stage and the grain filling stage were prone to occur drought in central and northern regions of the Heilonggang Basin, and the highest drought level reached moderate drought. Hybrid cultivars with higher drought resistance, shortened growth period and a higher rate of grain filling were recommended in the Heilonggang Basin to improve the drought resistance of summer maize, and soil water supply capacity could be increased through techniques such as subsoiling and straw-returning. This study could provide a theoretical basis for the efficient use of precipitation resources for summer maize in the Heilonggang Basin.
precipitation; evapotranspiration; drought; water requirement; spatial-temporal distribution; summer maize
魏钟博,边大红,杜雄,等. 黑龙港流域夏玉米生育期降水、需水和干旱时空分布特征[J]. 农业工程学报,2020,36(9):124-133.doi:10.11975/j.issn.1002-6819.2020.09.014 http://www.tcsae.org
Wei Zhongbo, Bian Dahong, Du Xiong, et al. Characteristics of spatial-temporal distribution of precipitation, water requirement and drought for summer maize growth period in Heilonggang Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 124-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.014 http://www.tcsae.org
2019-12-01
2020-03-25
国家科技支撑计划“粮食丰产科技工程”(2017YFD0300903);河北省玉米产业体系(HBCT2018020101)
魏钟博,博士生,主要从事作物高产生态生理研究。Email:qqwzb88@126.com
崔彦宏,教授,主要从事作物高产优质理论与技术研究。Email:cyh@hebau.edu.cn
10.11975/j.issn.1002-6819.2020.09.014
S274.1
A
1002-6819(2020)-09-0124-10
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!