时间:2024-05-24
周 昊,徐爱俊,周素茵
·农业生物环境与能源工程·
生猪养殖污水水质指标相关性分析与建模
周 昊,徐爱俊,周素茵※
(1. 浙江农林大学信息工程学院,杭州 311300; 2. 浙江省林业智能监测与信息技术研究重点实验室,杭州 311300)
生猪养殖污水成分复杂且对环境存在较大的污染风险,常规实验室监测法准确性高但效率低且时效性差,自动监测法速度快但成本高。为寻求一种能兼顾两种方法优点的监测方案,该研究以一家规模生猪养殖场的排放污水为研究对象,对衡量污水水质的7个主要指标的变化特征、相关性和其中2个指标的回归建模进行了研究。通过对不同季节及不同气候条件下30组随机样本的检测与相关性分析,发现氨氮、总氮和电导率有相似的变化趋势且彼此之间均存在强相关性,相关系数分别为0.772、0.775和0.920。基于相关性分析结果,对氨氮和总氮分别进行了一元和多元回归分析建模,并确定了相对最佳的适合于氨氮的“多项式回归模型”和总氮的“综合模型”。经验证,两个模型的决定系数分别为0.855和0.953,可较好地用于评价生猪养殖污水中氨氮和总氮2个指标的浓度大小。基于这2个模型,生猪养殖污水需直接检测的主要指标的数量可有效减少、检测难度和成本均明显降低。因此,模型可为生猪养殖污水高效、低成本的自动监测方案的建立提供重要的理论基础。
生猪养殖污水;水质;相关性;回归分析
生猪养殖污水成分复杂,其包含的污染物浓度较高,极易造成下游地表和地下水体的富营养化,对生态环境构成极大的威胁[1-2]。多年来,生猪养殖污水的净化方法、处理工艺、主要指标的去除方法等一直都是研究的热点[3-10]。根据处理工艺的不同,生猪养殖污水的处理方式主要包括生态处理、工业处理和集中处理[11-13]。其中工业处理后的污水因直接排放到自然水体中而存在较大的环境污染风险,而关于该处理模式下的污水监测因受指标数量多、成本高等诸多因素的限制,目前主要还是采用常规的取样监测法[14-15]。因此,寻求一种快速、低成本的生猪污水指标监测方法是一个十分重要的发展方向。
衡量畜禽尤其是生猪养殖污水水质状况的主要指标有氨氮(ammonia nitrogen,NH3-N)、总磷(total phosphorus,TP)、总氮(total nitrogen,TN)和化学需氧量(chemical oxygen demand,COD)等[16]。针对这些指标的检测,除了传统的实验室化学检测法,一些新兴领域的测量方法和去除方法也相继问世。陈一辉等[17]基于生物药物的“酶法”检测污水中NH3-N含量,该方法操作简单,精度和灵敏度高,但所用试剂不易保存,且成本相对较高;何金成等[18-19]利用近红外光谱法先后实现了废水中COD、五日生化需氧量(five-day biochemical oxygen demand,BOD5)和酸碱度(potential of hydrogen,pH)等指标的快速测量与预测建模,能较好的反应水体中有机物含量;Luo等[20]提出了一种基于人工湿地种植肉芽孢菌高效去除生猪污水中TP的方法;干方群等[21]发现了高岭土对畜禽废水中的TP有较好的净化效果;基于神经网络模型的水质预测与评价也是一种较常用的水质研究方法[22-24]。
基于相关性分析方法,寻找水质指标与其他因子的关系的研究也较为普遍。张贤龙等[25]研究发现艾比湖流域的水质指标溶解氧(dissolved oxygen,DO)和COD可通过二维荧光峰值进行快速估算;徐利等[26]得出张家口市清水河中叶绿素a与TP呈极显著正相关;Copetti等[27]通过实验室分析法和现场连续测量相结合,对意大利米兰的Seveso河流中微量金属与浊度、总可溶性固形物等分析,发现二者相关程度较高。张苒等[28]通过对广东省主要流域的2个水质自动监测站连续3年的自动监测数据的分析,发现pH、浊度、电导率(electrical conductivity,EC)和DO之间均有不同程度的相关,同时EC与TP、COD和NH3-N均具有较强的相关性,并基于该特点成功实现了污水的预警监测。
综上所述,国内外不乏对水质指标的检测、相关性分析等研究,但针对生猪养殖污水水质指标间关系的分析等却鲜见报道。本研究以一家污水处理工艺成熟、猪只生产均衡的规模生猪养殖场的排放污水为研究对象,对污水中的7个指标(NH3-N、TP、TN、COD、pH、EC和DO)进行了特征分析、相关性分析和部分指标的回归建模,分别得到了NH3-N和TN的回归模型。以这些模型为理论依据,旨在探寻一种高效、低成本的生猪养殖污水水质自动监测方案。
选择浙江省北部地区一家规模生猪养殖场作为采样点。该养殖场占地33.35 hm2,各类猪舍建筑面积约30 000 m2,每年生猪出栏量约20 000头。养殖场的污水处理工程采用较为先进的“养殖废水低C/N比厌氧沼液高效脱氮除碳处理”工艺。
1.2.1 样本采集
为提高研究结论的准确性与可靠性,分别在不同的季节,以及阴雨天、晴天、雪天等不同气候、不同天气情况下进行随机采样,采集目标为各道污水处理工序中的不同水样。其中2018年10月和11月,2019年3月和5月各采样4次;2019年1月、2月和7月各采样3次;2018年12月、2019年4月和6月各采样5次,共计样本数量40组。将每次采集的样本中取一组作为检验样本,遴选出建模样本30组,检验样本10组。
1.2.2 指标检测及方法
本研究的检测指标为电导率(electrical conductivity,EC)、酸碱度(potential of hydrogen,pH)和溶解氧(dissolved oxygen,DO),以及《畜禽养殖业污染物排放标准》中规定的氨氮(ammonia nitrogen,NH3-N)、总磷(total phosphorus,TP)、总氮(total nitrogen,TN)和化学需氧量(chemical oxygen demand,COD)。其中,EC、pH和DO等均于现场检测,之后使用相应容器对水样进行密封,立即运送到实验室对NH3-N、TP、TN和COD 4个水质指标进行实验室化学法检测。
1)指标检测方法
各指标的检测方法及仪器如表1所示。
表1 水质指标检测方法及仪器
2)数据分析方法
采用SPSS 24.0软件对污水中各水质指标进行Pearson相关性分析、相关系数计算以及数据建模;采用Origin Pro 9.0软件进行图表绘制。
将检测后的水质指标数据输入SPSS软件进行分析,得到各自的统计特征如表2所示。由于每组水样中溶解氧(dissolved oxygen,DO)的大小基本无变化,故将其忽略。
表2 水质指标的统计特征
由表2可以看出,氨氮(ammonia nitrogen,NH3-N)、电导率(electrical conductivity,EC)和总氮(total nitrogen,TN)3个指标的变异系数相对较高,均超过了40%,浓度大小波动较大;而总磷(total phosphorus,TP)、化学需氧量(chemical oxygen demand,COD)和酸碱度(potential of hydrogen,pH)的变异系数仅为24%、20%和6%,数值变化幅度相对较小。
各水质指标浓度或数值变化情况如图1所示,在不同工序、不同采样时间以及不同季节、气温等条件下,仅NH3-N、TN和EC的变化趋势相似,除此之外,其余各指标浓度或大小变化均无明显规律可循。
图1 水质指标浓度或数值变化
综合表2和图1可以看出,NH3-N、TN和EC 3个指标的大小总体均呈缓慢下降趋势,因此推测三者之间可能存在某种联系,但直接从图表中得出具体的数值关系,难度系数较大。
首先对研究的6个水质指标进行分组。基于各指标的测量方法的不同以及所用传感器检测成本的高低,将NH3-N、COD、TP和TN 4个在实验室进行化学法检测的指标归纳入组Ⅰ;将pH和EC 2种由仪器直接检测的指标归纳入组Ⅱ。组Ⅰ内各指标检测成本及复杂程度总体来说均高于组Ⅱ内各指标,对组Ⅰ和组Ⅱ中各指标进行Pearson相关性分析,分析结果如表3所示。
表3 各水质指标间的相关系数
注:*表示<0.05,**表示<0.01。
Note: * Indicates<0.05, ** indicates<0.01.
表3中的相关性分析结果表明,在不同条件下采集的水样样本中:NH3-N与TN、NH3-N与pH、NH3-N与EC、EC与TN这4组数据均存在极显著相关关系(<0.01)。其中TN与EC之间存在极强的显著正相关关系,Pearson相关系数高达0.920;NH3-N分别与TN和EC 2个指标存在较强的显著正相关关系(<0.05),Pearson相关系数分别为0.772和0.775;此结果与2.1小节中NH3-N、EC和TN 3个指标变化规律大致相似的情况相吻合。
除此之外,NH3-N和pH间虽存在极显著相关关系,但相关系数只有0.564;NH3-N和TP、TP和TN、TP和EC之间虽有显著的相关关系,但相关系数也都较低,均小于0.50;其余水质指标之间则既不存在显著相关关系,Pearson相关系数也不高,对本研究的后续建模没有参考价值。
2.3.1 模型构建
由2.2中的分析可知,NH3-N、TN和EC 3个水质指标两两之间均存在较高的显著相关性。基于该相关性,本研究构建了三者之间的具体回归模型。
首先建立3个一元回归模型:“NH3-N和EC之间的回归模型”、“TN和EC之间的回归模型”、“NH3-N和TN之间的回归模型”。在“NH3-N和EC之间的回归模型”及“TN和EC之间的回归模型”中,因EC检测方便且精度较高,故将其设为自变量,TN和NH3-N作为组Ⅰ内被替代检测的指标,分别设作因变量;而在NH3-N和TN之间的回归模型中,则将NH3-N设为因变量,TN设为自变量。表4、表5和表6中分别列出了三者之间不同方法下的拟合效果。
表4 NH3-N和EC拟合效果比较
注:RSS为残差平方和,MSR为均方回归,2为决定系数,下同。
Note: RSS is Residual sum of squares, MSR is Mean square regression,2is coefficient of determination, the same below.
由表4可知,NH3-N和EC的3种回归模型中,线性式的模型拟合效果远低于另外2种模型,二次式与多项式虽然有相似的RSS和决定系数2,但多项式模型的MSR仅为90.08,明显小于二次式模型,因此多项式是NH3-N和EC的最佳回归模型,其拟合效果如图2a所示。
表5 TN和EC拟合效果比较
TN和EC之间的回归模型经过筛选分别选用了线性式、幂次式以及多项式。由表5可知,无论是RSS还是MSR,幂次式较其他2种模型都具有极大优势,且幂次式具有较大的决定系数2,因此幂次式是TN和EC的最佳回归模型,其拟合效果如图2b所示。
根据NH3-N和TN之间的数据关系,也分别选用了线性式、二次式及多项式3种回归模型。表6的3种模型中,多项式的RSS为56.91,MSR为86.75,相对另外2种模型较小,决定系数2为0.82,远高于线性式和二次式。因此NH3-N和TN使用多项式建立模型时,其拟合度最优,拟合效果如图2c所示。
表6 NH3-N和TN拟合效果比较
图2 拟合效果
由图2b可知,TN和EC的拟合线性度最高,同时图2c中的NH3-N和TN也有较好的拟合效果,故本研究尝试将图2b和图2c中的两个模型组合,以EC为自变量、以TN为中间变量、以NH3-N为因变量,建立式(1)中的组合回归模型,其拟合效果如图2d所示。
综上分析,本研究针对NH3-N为因变量而建立的模型为多项式回归模型以及组合后的回归模型,分别将其定义为模型Ⅰ和模型Ⅱ;针对TN而建立的模型为幂次式回归模型,将其定义为模型Ⅲ。
2.3.2 模型验证
为了检验回归模型的准确性,调取准备好的10组检验样本数据,对上文得到的模型Ⅰ、模型Ⅱ、模型Ⅲ进行模型精度检验。根据各模型自变量的要求,将对应的检验样本水质指标实测值代入到各回归模型中,得到各回归模型中因变量的估算值,根据得到的估算值与相应的实测值建立线性拟合图,通过样点距离1:1标准参考线的离散程度、拟合线与1:1标准参考线的偏离程度以及2值的大小来衡量回归模型的准确性[29]。
1)针对NH3-N的模型验证
模型Ⅰ和模型Ⅱ的NH3-N估算值与实测值线性拟合效果分别如图3a和图3b所示。从NH3-N各样点的分布来看,模型Ⅰ所对应的拟合图中样点分布的密集程度高于模型Ⅱ;从线性拟合线来看,模型Ⅰ所对应的拟合图中,样点的线性拟合线与1:1标准参考线的偏离程度更小;从决定系数2来看,模型Ⅰ对应拟合图中,NH3-N估算值与实测值的决定系数2为0.855,而模型Ⅱ对应拟合图中的决定系数2仅为0.803。因此从各方面来看,模型Ⅰ的拟合精度高于模型Ⅱ。
2)针对TN的模型验证
模型Ⅲ中,TN的估算值与实测值线性拟合效果如图3c所示。TN样点距1:1标准参考线分布得很近且较为集中,样点的线性拟合线与1:1标准参考线的偏差较小,TN的估算值与实测值的决定系数2为0.948,故模型Ⅲ的准确性较高。
图3 模型验证
2.3.3 综合建模
在上述模型建立和验证过程中,虽已得出针对TN的较高精度回归模型,但由于缺乏对比参照模型,极易导致结论的片面性,同时NH3-N的回归模型精度也有待提高。为此,本研究对NH3-N、TN和EC 3个水质指标进行综合建模:
1)以NH3-N为因变量,EC和TN分别为自变量1、2建立式(2)中的综合模型
2)以TN为因变量,NH3-N和EC分别为自变量1、2建立式(3)中的综合建模
同样,本研究将针对NH3-N建立的综合模型定义为模型Ⅳ,针对TN建立的综合模型定义为模型Ⅴ。
图4 综合模型验证
2.3.4 综合模型验证
为验证综合模型的准确性,本研究再次进行估算值与实测值的相关性分析,以验证回归方程的拟合程度。同样调取10组检验样本数据,将指标真实值与估算值建立线性拟合图,通过样点距离1:1标准参考线的离散程度、拟合线与1:1标准参考线的偏离程度以及2值的大小来衡量回归模型的准确性。
1)针对NH3-N的综合模型验证
观察模型Ⅳ对应的NH3-N估算值与实测值线性拟合效果(图4a)可知,模型Ⅳ样点分布较散,距离1:1标准参考线较远,样点的线性拟合线与1:1标准参考线的偏离程度大,决定系数2仅为0.607,故模型Ⅳ的拟合精度远不如模型Ⅰ。
2)针对TN的综合模型验证
将模型Ⅴ与模型Ⅲ进行估算值与实测值线性拟合效果的对比(图3c和图4b)后发现,模型Ⅴ对应的TN样点分布较模型Ⅲ更为集中,其样点线性拟合线与1:1标准参考线明显有着更小的距离偏差,且模型Ⅴ所对应的估算值与实测值拟合图中决定系数2值更高(0.953)。因此,模型Ⅴ的精确度更高,能更准确地通过NH3-N和EC来描述养殖污水中的TN含量。
评估生猪养殖污水排放是否达标的关键依赖于各水质指标的监测结果的大小。但生猪养殖污水成分构成极其复杂,除了本研究中的主要指标外,还含有铜、铁、锌、锰等多种微量元素、抗生素、悬浮物等污染物。本研究仅仅是根据《畜禽养殖业污染物排放标准》的规定,对污水中的几个主要指标氨氮(ammonia nitrogen,NH3-N)、总磷(total phosphorus,TP)、总氮(total nitrogen,TN)、化学需氧量(chemical oxygen demand,COD)、酸碱度(potential of hydrogen,pH)和电导率(electrical conductivity,EC)等的浓度或数值进行了检测、相关性分析与部分指标的建模。在本研究中的污水指标检测环节,为保障数据测量的精度和模型的准确性,pH和EC的现场采集分别使用的是具有温度自动补偿功能和较高精度(±0.01 pH和±0.5% F.S)的便携式仪器,溶解氧(dissolved oxygen,DO)使用的具有盐度补偿功能、精度为±0.01 mg/L的荧光溶氧仪;4个主要指标(NH3-N、TN、TP和COD)的检测采用的仍是传统的实验室化学检测法,该方法虽然存在效率低、时效性差、人工成本高等缺点,但数据的准确性和可靠性可以得到保障[30]。
基于以上分析,本研究中构建的NH3-N和TN的回归模型在准确性和可靠性上均有较好的基础数据保障。但模型的精度是否可以进一步提高、是否与微量元素等其他污染物之间也存在相关性、是否存在多因素之间的协同效应与时序影响将是后期值得探讨的问题。
高效低成本监测意味着基于少于生猪养殖污水常规检测指标数量的传感设备及在线检测设备便可达到全面监测污水指标的目的,同时能兼顾常规检测方法的准确性、可靠性和自动检测方法的便捷性、时效性。关于2种方法的监测效果对比及是否存在较好的一致性,刘京等[30]对15个国家地表水水质自动监测站中的COD、NH3-N、TP、pH和DO共5个指标进行了连续3个月的站房外常规监测、站房内常规监测和自动监测,共获得6219组有效监测数据,分析发现常规监测法得到的两组数据基本一致,同时与自动监测数据有相同的变化趋势,但一致程度均有所下降。该结果表明,可以基于自动监测数据对各水质指标建立相应的回归模型,从而实现准确、快速的水质指标的监测。因此,基于本研究中的模型Ⅰ和模型Ⅴ,构建生猪养殖污水水质高效、低成本的自动监测方案是可行的。方案中涉及的指标包括EC、pH、NH3-N、TP、TN和COD,其中在线检测难度大、成本高[31]的TN无需直接检测,其浓度可根据模型Ⅴ由NH3-N、EC的值计算得出,而检测难度和成本相对较低的NH3-N浓度可根据模型I由EC大小得到;EC和pH的检测采用与表1中相应仪器同类型电极,检测简单且成本较低;而TP和COD数据通过基于自动监测数据的回归模型获得。与传统监测方法相比,该方案中需监测的指标数量明显减少,使得监测总体难度下降、监测成本降低、监测效率提高。建立生猪污水部分重要监测指标的回归模型,构建基于模型并兼顾两种监测方法优点的高效、低成本自动监测方案是本研究的主要研究目的和创新点。此处只是从监测指标的角度进行了探讨,关于监测方案的具体实现将是下一步研究的内容。
在研究过程中不乏待改善之处。由于实验条件有限,本研究最终采样40组,样本容量偏小,易引发由于测量值异常而导致模型精度降低的情况,而足够大的样本容量有助于研究过程中及时排除异常值,提高模型的精度。另外,本研究在模型建立环节选择了相对简单的建模方法,在此基础上进行模型对比分析、模型验证、综合建模和综合模型验证,满足了用简单易测指标推导高难度、高成本测量指标的基本要求。而更精确的回归模型不仅可以达到替代检测的基本目的,也可对各替代指标进行精准的估算,对养殖污水,乃至各类工业污水的监测都具有十分重要的意义,也是本研究亟需不断努力且不断改进的方向。
通过数据分析,确定了生猪养殖污水中NH3-N、TN和EC 3个指标之间均存在极显著的正相关关系。基于这3个指标的强相关性,首先构建出NH3-N、TN和EC两两之间的回归模型,通过比较各模型的决定系数2、残差平方RSS和均方回归MSR筛选出拟合效果最佳的回归模型(模型Ⅰ和模型Ⅲ);在此基础上,将模型Ⅰ与模型Ⅲ组合并建立出新的NH3-N回归模型(模型Ⅱ);随后研究又对3个指标进行综合建模,分别得出了NH3-N综合模型(模型Ⅳ)和TN综合模型(模型Ⅴ)。至此本研究共建立模型Ⅰ-Ⅴ 5个回归模型。在模型验证环节,利用10组检验样本数据,对模型的拟合效果进行模型精度验证,并最终筛选出能较好地反映污水中NH3-N和TN浓度的最佳回归模型:模型Ⅰ和模型Ⅴ。基于这2个模型,对生猪养殖污水高效、低成本的自动监测方案进行了可行性分析。
[1] 吴建敏,徐俊,翟云忠,等. 畜禽规模养殖废水污染因子监测评价分析[J]. 家畜生态学报,2009,30(4):48-51.
Wu Jianmin, Xu Jun, Zhai Yunzhong, et al. Monitoring and evaluation of wastewater pollution factors in livestock and poultry scale cultivation[J]. Journal of Domestic Animal Ecology, 2009, 30(4): 48-51. (in Chinese with English abstract)
[2] 郭瑞华,靳红梅,吴华山,等. 规模猪场污水多级处理系统中重金属总量及其形态变化特征[J]. 农业工程学报,2018,34(6):210-216.
Guo Ruihua, Jin Hongmei, Wu Huashan, et al. Total content of heavy metals and their chemical form changes in multilevel wastewater treatment system in intensive swine farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 210-216. (in Chinese with English abstract)
[3] 鲁为华,靳省飞,王树林,等. 伊犁绢蒿种子黏液提取工艺及对畜禽粪便污水的净化效果[J]. 农业工程学报,2018,34(21):245-252.
Lu Weihua, Jin Shengfei, Wang Shulin, et al. Extraction process of mucilaginous from seeds of seriphidium transiliense and its purification effect on livestock manure sewage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 245-252. (in Chinese with English abstract)
[4] Inawati O, Aznah N A, Zaini U, et al. Livestock wastewater treatment using aerobic granular sludge[J]. Bioresource Technology, 2013, 133: 630-634.
[5] Bong-yul T, Bong-sik T, Young-ju K, et al. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD)[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 307-315.
[6] Waki M, Yasuda T, Fukumoto Y, et al. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling[J]. Bioresource Technology, 2018, 250: 574-582.
[7] 张彩莹,王岩,王妍艳. 潜流人工湿地对畜禽养殖废水的净化效果[J]. 农业工程学报,2013,29(17):160-168.
Zhang Caiying, Wang Yan, Wang Yanyan. Purification effect of subsurface flow constructed wetland on livestock wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 160-168. (in Chinese with English abstract)
[8] Robert L K, Victor W E, Robert E B, et al. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000, 15: 41-55.
[9] Hu Y S, Kumar J L G, Akintunde A O, et al. Effects of livestock wastewater variety and disinfectants on the performance of constructed wetlands in organic matters and nitrogen removal[J]. Environmental Science & Pollution Research, 2011, 18(8): 1414-1421.
[10] 张颖,邓良伟. 猪场废水厌氧消化过程中的除磷效果[J]. 生态与农村环境学报,2012,28(1):93-97.
Zhang Ying, Deng Liangwei. Phosphorus removal from swine wastewater through anaerobic digestion[J]. Journal of Ecology & Rural Environment, 2012, 28(1): 93-97. (in Chinese with English abstract)
[11] Bilotta Patrícia, Steinmetz R L R, Kunz A, et al. Swine effluent post-treatment by alkaline control and UV radiation combined for water reuse[J]. Journal of Cleaner Production, 2017, 140: 1247-1254.
[12] 于涛,成水平,贺锋,等. 基于复合垂直流人工湿地的循环水养殖系统净化养殖效能与参数优化[J]. 农业工程学报,2008,24(2):188-193.
Yu Tao, Cheng Shuiping, He Feng, et al. Performance and optimization of recirculating aquaculture system combined with integrated vertical-flow constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 188-193. (in Chinese with English abstract)
[13] 张世羊,常军军,高毛林,等. 曝气对垂直流湿地处理水产养殖废水脱氮的影响[J]. 农业工程学报,2015,31(9):235-241.
Zhang Shiyang, Chang Junjun, Gao Maolin, et al. Impact of artificial aeration on nitrogen removal from aquaculture wastewater treated by vertical-flow constructed wetland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 235-241. (in Chinese with English abstract)
[14] 石奥,张建淼,王重庆,等. 北京市规模化畜禽养殖场粪便和污水监测及承载力估算[J]. 家畜生态学报,2018,39(4):63-67,96.
Shi Ao, Zhang Jianmiao, Wang Chongqing, et al. Monitoring and carrying capacity estimation of animal manure and wastewater in Beijing livestock farm[J]. Journal of Domestic Animal Ecology, 2018, 39(4): 63-67, 96. (in Chinese with English abstract)
[15] 杜卫莉. 我国南方养猪业污染现状监测分析[J]. 广东化工,2016,43(3):86-88,83.
Du Weili. Analysis of China’s southern hoggery pollution monitoring[J]. Guangdong Chemical Industry, 2016, 43(3): 86-88, 83. (in Chinese with English abstract)
[16] 张燕,刘雪兰,王月明,等. 中国规模化畜禽养殖污水处理中人工湿地的研究进展[J]. 环境科学与技术,2016,39(1):87-92.
Zhang Yan,Liu Xuelan,Wang Yueming,et al. Research progress of constructed wetland treating intensive livestock and poultry wastewater in China[J]. Environmental Science & Technology, 2016, 39(1): 87-92. (in Chinese with English abstract)
[17] 陈一辉,李伟民,伍培,等. 氨氮测定方法的对比研究[J]. 环境工程,2011,29(S1):234-236.
Chen Yihui, Li Weimin, Wu Pei, et al. Comparative study on determination methods of ammonia nitrogen[J]. Environmental Engineering, 2011, 29(S1): 234-236. (in Chinese with English abstract)
[18] 何金成,杨祥龙,王立人,等. 近红外光谱法测定废水化学需氧量[J]. 浙江大学学报:工学版,2007,41(5):752-755,789.
He Jincheng, Yang Xianglong, Wang Liren, et al. Determination of chemical oxygen demand in wastewater by near-infrared spectroscopy[J]. Journal of Zhejiang University: Engineering Science, 2007, 41(5): 752-755, 789. (in Chinese with English abstract)
[19] 何金成,杨祥龙,王立人,等. 基于近红外光谱法的废水COD、BOD5、pH的快速测量[J]. 环境科学学报,2007,21(12):2105-2108.
He Jincheng, Yang Xianglong, Wang Liren, et al. Rapid determination of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and pH in wastewater using near-infrared spectroscopy[J]. Acta Scientiae Circumstantiae, 2007, 21(12): 2105-2108. (in Chinese with English abstract)
[20] Luo Pei, Liu Feng, Liu Xinliang, et al. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum[J]. Science of the Total Environment, 2017, 576: 490-497.
[21] 干方群,徐子昊,杨一帆,等. 高岭土对畜禽废水中磷的净化效果及其费效分析[J]. 生态与农村环境学报,2019,35(6):795-800.
Gan Fangqun, Xu Zihao, Yang Yifan, et al. Phosphate removal efficiency of kaolin in livestock and poultry wastewater and its cost-benefit analysis[J]. Journal of Ecology and Rural Environment, 2019, 35(6): 795-800. (in Chinese with English abstract)
[22] 方骏,戴连奎. 基于混合神经网络模型的污水COD值预估法[J]. 中国给水排水,2003,19(12):6-10.
Fang Jun, Dai Liankui. Sewage COD value estimation method based on hybrid neural network model[J]. China Water & Wastewater, 2003, 19(12): 6-10. (in Chinese with English abstract)
[23] 王娟,张飞,王小平,等. 平行因子法结合自组织映射神经网络的三维荧光特征及其与水质的关系[J]. 光学学报,2017,37(7):357-367.
Wang Juan, Zhang Fei, Wang Xiaoping, et al. Three-dimensional fluorescence characteristics of parallel factor method combined with self-organizing map neural network and its relationship with water quality[J]. Acta Optica Sinica, 2017, 37(7): 357-367. (in Chinese with English abstract)
[24] 李宣谕. 基于人工智能对地表水的水质预测与评价研究[D]. 吉林:东北电力大学,2017.
Li Xuanyu. Research on Prediction and Evaluation of Surface Water Quality Based on Artificial Intelligence[D]. Jilin: Northeast Electric Power University, 2017. (in Chinese with English abstract)
[25] 张贤龙,张飞,张海威,等. 艾比湖流域地表水二维荧光峰值与水质指标关系初探[J]. 光谱学与光谱分析,2018,38(2):481-487.
Zhang Xianlong, Zhang Fei, Zhang Haiwei, et al. The preliminary study on the relationship between two dimensional fluorescence peak value of surface water and water quality indexes in ebinur lake basin[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 481-487. (in Chinese with English abstract)
[26] 徐利,郝桂珍,甄玉飞,等. 北方人为改造河流叶绿素a和环境因子时空分布特征及其相关性分析[J]. 科学技术与工程,2018,18(26):147-152.
Xu Li, Hao Guizhen, Zhen Yufei, et al. Spatial and temporal distribution characteristics and correlation of chlorophyll-a and environmental factors in northern China[J]. Science Technology and Engineering, 2018, 18(26): 147-152. (in Chinese with English abstract)
[27] Copetti D, Marziali L, Viviano G, et al. Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows[J]. Water Supply, 2019, 19(3): 953-966.
[28] 张苒,刘京,周伟,等. 水质自动监测参数的相关性分析及在水环境监测中的应用[J]. 中国环境监测,2015,31(4):125-129.
Zhang Ran, Liu Jing, Zhou Wei, et al. Study on the correlation of water quality automatic monitoring parameters and its application in aquatic environment monitoring[J]. Environmental Monitoring in China, 2015, 31(4): 125-129. (in Chinese with English abstract)
[29] 马驰. 基于Sentinel-1双极化雷达影像的土壤含盐量反演[J]. 农业工程学报,2018,34(2):153-158.
Ma Chi. Quantitative retrieval of soil salt content based on Sentinel-1 dual polarization radar image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 153-158. (in Chinese with English abstract)
[30] 刘京,魏文龙,李晓明,等. 水质自动监测与常规监测结果对比分析[J]. 中国环境监测,2017,33(5):159-166.
Liu Jing, Wei Wenlong, Li Xiaoming, et al. Comparative analysis of state surface water quality by automatic monitoring and laboratory monitoring[J]. Environmental Monitoring in China, 2017, 33(5): 159-166. (in Chinese with English abstract)
[31] 李文,吕赫,徐明刚,等. 多量程原位水质总磷总氮一体式在线监测仪[J]. 发光学报,2019,40(7):930-940.
Li Wen, Lü He, Xu Minggang, et al. Multi-range in-situ water quality total phosphorus total nitrogen integrated online monitor[J]. Chinese Journal of Luminescence, 2019, 40(7): 930-940. (in Chinese with English abstract)
Correlation analysis and modeling of water quality indexes for swine breeding wastewater
Zhou Hao, Xu Aijun, Zhou Suyin※
(1.,,311300,; 2.,311300,)
According to the difference of treatment process about swine breeding sewage, the treatment methods are divided into ecological treatment, industrial treatment and centralized treatment. The components of sewage treated by industrial treatment are extremely complex, there will be a great risk of environmental pollution if the sewage is directly discharged into the natural water body. It’s very important to monitor sewage quality. The monitoring methods commonly used in swine breeding sewage mainly include laboratory monitoring and automatic monitoring. The laboratory monitoring is traditional, which has the advantage of high data accuracy and the disadvantages of low efficiency and poor timeliness, the sewage indexes can be detected fast but costly using automatic monitoring method. To find a monitoring scheme that combined the advantages of laboratory monitoring method and automatic monitoring method, took the sewage from a large-scale pig farm as the research object, the change characteristics, correlation of seven main indexes of sewage quality and regression modeling of two main indexes were studied. The seven indeices were respectively ammonia nitrogen, total phosphorus, total nitrogen, chemical oxygen demand, the potential of hydrogen, dissolved oxygen and electrical conductivity. Through the detection and correlation analysis of 30 random samples from different seasons and climatic conditions, it was found that ammonia nitrogen, total nitrogen and electrical conductivity had similar variation trends and strong correlation each other, the correlation coefficient of ammonia nitrogen and total nitrogen was 0.772, and that of ammonia nitrogen and electrical conductivity was 0.775, the correlation coefficient of total nitrogen and electrical conductivity was 0.920. Based on the results of correlation analysis, many types of monadic regressive and multivariate regression models for ammonia nitrogen and total nitrogen were established respectively, the relatively optimal “polynomial regression model” (model I) for ammonia nitrogen and the “comprehensive model” (model V) for total nitrogen were determined by comparing the coefficient of determination, residual sum of squares and the mean square regression of each model. The verification results based on 10 sets of data showed that the estimated values of these two models were closest to the measured values, the coefficients of determination of model I and model V were 0.855 and 0.953 respectively. Therefore, these two models could be used to evaluate the concentration of ammonia nitrogen and total nitrogen in swine breeding sewage. The existing studies shown that the data obtained by laboratory monitoring and automatic monitoring had the same change law although the value was different, which meant that there was a good linear relationship between them, hence a linear regression model based on the automatic monitoring data could be established to achieve the monitoring of water quality indexes accurately and rapidly. Based on this conclusion and the above two models, the feasibility of an efficient and low-cost automatic monitoring scheme for swine breeding wastewater quality was analyzed in this study. The indexes involved in the solution included electrical conductivity, the potential of hydrogen, ammonia nitrogen, total phosphorus, total nitrogen, and chemical oxygen demand, the total nitrogen that was difficult and expensive to detect automatically does not require to detect directly, the concentration of which could be calculated by the value of ammonia nitrogen and electrical conductivity according to model V, the concentration of ammonia nitrogen with relatively low difficulty and cost could be obtained by the value of electrical conductivity according to model I, the detection of electrical conductivity and potential of hydrogen was more convenient and the cost was lower, the data of total phosphorus and chemical oxygen demand would be obtained by linear regression model based on automatic monitoring data. Compared with the existing monitoring methods, the number of indexes that needed to be detected directly in this scheme would be significantly reduced, which would make the overall difficulty and the cost of monitoring decreasing, and the monitoring efficiency improved. Consequently, these two models could provide an important theoretical basis for the establishment of an efficient and low-cost automatic monitoring scheme for swine breeding sewage.
swine breeding wastewater; water quality; correlation; regression analysis
周 昊,徐爱俊,周素茵. 生猪养殖污水水质指标相关性分析与建模[J]. 农业工程学报,2020,36(1):200-207.doi:10.11975/j.issn.1002-6819.2020.01.023 http://www.tcsae.org
Zhou Hao, Xu Aijun, Zhou Suyin. Correlation analysis and modeling of water quality indexes for swine breeding wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 200-207. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.023 http://www.tcsae.org
2019-10-11
2019-12-27
浙江省公益技术应用研究计划项目(LGN19F010001)
周 昊,从事污水监测等物联网方向的研究。Email:1220470928@qq.com
周素茵,讲师,从事电子电路的分析与设计及物联网方向的研究。Email:zsy197733@163.com
10.11975/j.issn.1002-6819.2020.01.023
S818.9
A
1002-6819(2020)-01-0200-08
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!