当前位置:首页 期刊杂志

基于文献分析的北方冬麦田氨挥发特性

时间:2024-05-24

康 飞,孟凡乔

基于文献分析的北方冬麦田氨挥发特性

康 飞,孟凡乔※

(中国农业大学资源与环境学院农田土壤污染防控与修复北京市重点实验室,北京 100193)

中国北方地区是冬小麦-夏玉米种植体系的主要集约化农业区,过去30多年间化学氮肥投入量大和肥料利用率低的现象较为普遍,氨挥发等农业面源污染严重,需要对冬小麦生长过程中的氨挥发规律及测定方法等进行系统研究。该研究对1980年至2018年的华北平原冬小麦氨挥发文献进行研究总结,采用回归方程和T检验等统计学方法分析了不同施氮水平、施肥时期和测定方法对冬小麦氨挥发的影响。研究发现,随着化肥施氮量的增加,冬小麦氨挥发累积量呈现指数函数增加趋势(=2.64e0.006 6x),净氨挥发量呈现幂函数增加特征(=0.004 81.358 9)。不考虑激发效应的净氨挥发量比考虑激发效应的高估约21.8%。冬小麦生产中,基追比为1∶1的情况下,基肥期氨挥发量显著高于追肥期氨挥发量(<0.05),占整个生育期氨挥发量分别为58.7%和41.3%。在180 kg/hm2氮肥水平时,海绵吸收法与真空抽气法测定的氨挥发数量无显著性差异。冬小麦季的氨挥发控制,应该重点通过优化氮肥施用数量,主要在基肥期进行控制。田间生产中,采用海绵吸收法和真空抽气法监测氨挥发应考虑不同施肥水平下的高估。

冬小麦;氨挥发;氮肥量;施肥时期;真空抽气法;海绵吸收法

0 引 言

化学合成氮肥是农田生态系统的主要氮素来源,在作物产量和品质形成中起着关键作用[1-2],但过量施用氮肥也带来了巨大的资源环境压力。上世纪80年代改革开放以来,中国冬小麦生产中氮肥投入量逐年增加,根据《2018年中国统计年鉴》,2017年全国小麦总产高达13 433万t,氮肥施用量高达2 222万t,分别是1980年的2.43倍和2.38倍,其中2017年北方冬小麦播种面积高达1 753万hm2,小麦产量高达10 713万t,分别占全国的71.52%和79.75%,是中国重要的冬小麦产区[3]。全国耕地平均氮肥施用量为240 kg/hm2,单位种植面积施氮量远高于非洲和欧美等地区,是全球氮高投入地区之一[4]。

氮肥施入土壤-植物体系后,除了被作物吸收利用以外,主要以土壤残留、氨挥发、淋溶和硝化-反硝化等多种途径损失到环境中[5],其中氨挥发是重要的气态氮素损失途径,其损失率为22%±10%[6]。在农业源氨排放中,每年因农田施肥导致的氨排放占整个农业源氨排放总量的40%[7],2013年全国由化学氮肥引起的氨挥发累积量高达5.21 Tg NH3[8],全球范围内,18%的氮肥投入则以氨挥发形式损失[9]。氨挥发不仅降低氮肥利用率,造成肥料的浪费,而且还引起许多环境和生态问题[10],氮肥过量施用引起的氨挥发成为大气氨的重要来源,对于大气污染物PM2.5形成有重要贡献[11]。中国华北地区土壤多为中性或微碱性,盐渍土多呈碱性(pH值在6.8~8.5之间)[12],与南方酸性土壤相比,施肥后华北地区土壤氨挥发的比例更高[13]。作物生产中,氨挥发的数量不仅受氮肥数量的影响[14],还会受灌溉量、施肥时期、耕作措施、温度和土壤pH等人为和自然因素的影响[15]。对于华北地区,由于气候类型和土壤性质差异较小,各地研究得到的氨挥发数量和比例差异较小,呈现出相似的规律。过去30多年间,尽管对华北平原氨挥发进行了大量的试验研究,但是针对氨挥发的整合研究较为欠缺,很少研究采用不干扰自然气象条件的微气象学法和风洞法[16-17]。大量文献表明,中国大多数氨挥发试验采用简便易行的真空抽气法或海绵吸收法,但尚缺乏对这两类方法进行系统分析。另外,以往研究计算土壤净氨挥发只是用氨挥发总量减去不施氮处理土壤的氨挥发,忽略了激发效应。

本研究收集了1980年以来中国北方地区冬小麦氨挥发的田间试验,对相关数据进行了收集、录入和整合分析,研究化肥施氮量和施肥时期对氨挥发总量、净氨挥发量的影响,并对不同氨挥发测定方法进行比较分析,以其为该地区冬小麦氮肥合理施用和减少氨挥发损失提供科学依据。

1 研究材料与方法

1.1 文献收集

本研究通过对中国知网将近40 a的有关冬小麦氨挥发的文章检索,从中提取有关数据。文献主要来源为中国知网核心期刊上发表的期刊文献以及硕博学位论文,通过主题词“小麦”、“氨挥发”和“氮”等关键字的搜索,从中进行查阅筛选,从中提取和整理本研究所需要的数据。本研究所筛选文献和数据点应满足以下条件,即1)田间试验位于北方地区;2)种植作物为冬小麦;3)测定氨挥发所用方法为海绵吸收法或真空抽气法,微气象学法和风洞法的文献较少,不在本次研究范围之内;4)田间试验所用肥料为化学氮肥(主要包括尿素等铵态氮肥),排除施用粪肥和缓控释肥等其他类型肥料的文献;5)只选取农民常规处理的数据,排除特殊处理(例如肥料深施、垄作覆膜等不同农田灌溉措施的处理);6)试验设置3个或3个以上重复。

本研究共收集和使用文献31篇,其中采用海绵吸收法测定氨挥发的文章有17篇,采用真空抽气法的文章14篇。氨挥发观测数据共120个,其中采用海绵吸收法的观测数据为67个,采用真空抽气法的为53个。

1.2 研究区域

本次研究的北方冬小麦区,定义为主要分布在秦岭、淮河以北,长城以南的地区,该区域冬小麦产量约占全国小麦总产量的79%左右[3],包括河南、河北、山东、陕西、山西等省区。这些地区地处暖温带季风气候和大陆性季风气候区,气候温和,年平均气温、降水量、日照时长以及种植制度等方面差异不大;主要土壤类型有棕壤、褐土、潮土和风沙土等,耕性良好,矿物养分丰富,因此该区冬小麦氨挥发排放规律较为一致。

1.3 土壤净氨挥发和激发效应计算

不考虑激发效应的净氨挥发量计算公式如下

1=N−N0(1)

根据孙昭安的研究[18],每增加10 kg/hm2时的激发效应为1%,因此考虑激发效应的净氨挥发量和不考虑激发效应的净氨挥发量的高估比例的计算公式如下

2=N−N0×(1+/1 000)(2)

3=(1−2)/2×100%(3)

式中1为不考虑激发效应的净氨挥发量,2为考虑激发效应的净氨挥发量,3为不考虑激发效应的净氨挥发比考虑激发效应的高估比例,%,为化肥施氮量,N0为不施氮肥的土壤氨挥发量,N为施肥量为的土壤氨挥发量,单位均为kg/hm2。

1.4 数据分析

数据采用Microsoft Excel 2016进行回归方程的拟合和制作箱线图,采用SPSS25软件进行T检验等统计分析。

数据处理中对于未施氮肥的氨挥发缺失数据计算方法:先计算其他文献试验中所有未施肥处理的氨挥发平均值,对于高于平均值3倍和低于平均值1/3的数据剔除,然后计算平均值,作为未施氮肥处理的氨挥发值。

2 结果与分析

2.1 不同化肥施氮量对氨挥发的影响

研究发现,该区冬小麦常规化肥施氮量范围在72.5~400 kg/hm2之间(=47),平均值为243±12.2 kg/hm2。常规施肥处理的氨挥发量范围在1.01~57 kg/hm2之间,平均值为19.80±2.26 kg/hm2,而不施肥处理的氨挥发量在0.01~14.7 kg/hm2之间,平均值为4.12± 0.57 kg/hm2。随着化肥施氮量的增加,由氨挥发造成的肥料氮损失量也在逐渐增加(图1a),而且冬小麦全生育期的氨挥发总量与化肥施氮量关系为指数函数关系(=2.64e0.006 6x)。

净氨挥发为从施氮肥处理的氨挥发总量中扣除土壤不施氮肥处理(背景值)的氨挥发,反映了由化学氮肥引起的氨挥发量。常规施肥处理的净氨挥发量平均值为15.2±2.14 kg/hm2,占化肥施氮量比例为6.27%±0.98%。随着化肥施氮量的增加,净氨挥发量呈幂函数(=0.004 81.358 9)(图1b)。所有试验处理的净氨挥发量范围在0.43~52.5 kg/hm2之间,平均值为10.6%±1.26 kg/hm2,占化肥施氮量的平均比例为5.41%±0.64%。

注:实线为趋势拟合线,虚线为95%置信区间线,下同。

2.2 不同冬小麦施肥时期对氨挥发的影响

冬小麦生产中,基肥期常规施氮量为0~240 kg/hm2,氨挥发总量平均为6.58±0.74 kg/hm2,净氨挥发量平均为6.35%±0.93 kg/hm2,占该期施氮量的比例为4.89%± 0.66%。基肥期氨挥发累积量与化肥施氮量的回归方程为二次型函数(=−0.000 12+0.081 4+1.89),即随化肥施氮量的增加,氨挥发总量呈现先增加后降低的趋势(图2a)。追肥期,常规施氮量为0~240 kg/hm2,氨挥发总量为5.92±0.83 kg/hm2,净氨挥发量平均为5.91± 1.17 kg/hm2,占该期施氮量的比例为6.09%±1.20%。追肥期氨挥发总量与化肥施氮量的回归方程为指数函数(=1.43e0.011 3x),说明冬小麦在追肥时期随化肥施氮量的增加,氨挥发总量呈指数形式增加,即增幅随氮肥水平不断增加(图2c)。无论是基肥期还是追肥期,净氨挥发量随施氮量增加均呈现幂函数的增加趋势(图2b和图2d)。

图2 冬小麦氨挥发总量和净氨挥发量在基肥期和追肥期与化肥施氮量的关系

通过48对基/追肥施氮量为1:1的文献样本进行分析发现,基肥期冬小麦氨挥发样本的中位数、平均值、上下限均低于追肥氨挥发的样本(图3),根据配对T检验结果(T=2.685,=0.01),基肥期氨挥发累积量(平均值为7.13 kg/hm2)显著高于追肥期(平均值为5.03 kg/hm2)(<0.05),两者占总氨挥发量的比例分别为58.7%和41.3%。

图3 基/追比为1:1条件下冬小麦基肥和追肥期的氨挥发累积量

2.3 海绵法和抽气法测定氨挥发的比较

采用海绵吸收法测得氨挥发总量的平均值为12.8±1.63 kg/hm2,净氨挥发量平均值为12.5±1.92 kg/hm2,净氨挥发量占化肥施氮量的比例为6.29%±0.97%左右。采用海绵吸收法时,氨挥发总量与化肥施氮量的回归方程为指数函数(=2.70e0.006 5x)(图4a),净氨挥发量与化肥施氮量的回归方程为幂函数(=0.024 51.07)(图4b)。真空抽气法测得氨挥发总量为10.6±1.31 kg/hm2,净氨挥发量平均为8.73±1.6 kg/hm2,占化肥施氮量的比例为4.38%±0.76%左右。采用真空抽气法时,氨挥发总量与化肥施氮量的回归方程为指数函数(=2.56e0.006 8x)(图4c),净氨挥发量与化肥施氮量的回归方程为幂函数(=0.001 31.59)(图4d)。海绵吸收法测得氨挥发总量为12.8±1.63 kg/hm2,净氨挥发量平均为12.5± 1.92 kg/hm2,占化肥施氮量的比例为6.29%±0.97%。无论是海绵吸收法还是真空抽气法,冬小麦氨挥发总量随化肥施氮量增加均呈指数形式增加,而净氨挥发量均呈幂函数形式增加,增速低于氨挥发总量。

根据海绵吸收法和真空抽气法测定氨挥发的拟合方程,计算施氮量为180 kg/hm2时,2方法测定的氨挥发总量相当。当施氮量<180 kg/hm2时,海绵吸收法测定的氨挥发量比真空抽气法高0~5%;施氮量在180~400 kg/hm2区间范围内,真空抽气法测定的氨挥发量比海绵吸收法高0~6.9%,但采用配对T方法,发现2方法的测定结果无显著差异(>0.05)。

图4 分别采用海绵吸收法和真空抽气法测定的冬小麦氨挥发总量和净氨挥发量与化肥施氮量的关系

3 讨 论

3.1 不同施氮量对土壤氨挥发的影响

在农田中,影响氨排放量的主要因素是施肥量[7]。冬小麦各施肥期氨挥发速率和总量均随着施氮量增加而增加[19-24],施用氮肥显著促进土壤氨挥发[25],不同施氮方式下氨挥发速率、挥发累积量及其占施氮量的比例均随施氮量的增大而增大[14]。本研究发现,氨挥发总量与化肥施氮量的拟合回归方程是指数函数,冬小麦常规施肥处理下氨挥发总量占化肥施氮量的比例平均为8.12%。Chen等研究结果有所不同[16],该研究发现冬小麦氨挥发总量与施氮量的拟合结果呈一次函数关系,氮肥引起的氨挥发比例平均值为22%,显著高于本研究总结海绵吸收法和真空抽气法测定的氨挥发量(<0.05)。原因可能是Chen等[16]收集的数据主要采用微气象学法或风洞法等方法学上引起的差异[23, 26]。海绵吸收法和真空抽气法简单易行,经济快捷,适用于田间小区对比试验[6],数据整合的结果也验证了在超过一定施氮量后,多余的氮素会以更高比例挥发损失的结果[27],也进一步说明,优化施氮量是控制氨挥发的有效措施[28]。

3.2 不同施肥时期对土壤氨挥发的影响

本研究中,冬小麦基肥期氨挥发累积量显著高于追肥期(<0.05),基肥期氨挥发量占整个生育期氨挥发量的58.7%,追肥期占41.3%,与大部分研究发现是一致的[14, 29-33]。有研究结果发现麦田土壤氨挥发损失主要来自于追肥[24-25, 34],主要是由于该研究追肥期氮肥投入量占总施肥量的比例较高(60%)。小麦基肥撒施,与土壤表层混合,基肥时期环境温度较高,有利于铵根离子挥发成NH3,而追肥期是小麦需要养分的时期,吸收铵态氮的速度也高,而且追施后立即灌水,使尚未水解的尿素淋洗到土壤深层,减少了铵态氮在土壤的聚集,从而减少了氨挥发[35]。因此,适当控制基肥氮肥投入,可以有效降低氨挥发损失。

3.3 化学氮肥对土壤氨挥发的激发效应

激发效应是指外加有机物质或含氮物质而使土壤中原来有机质的分解速率改变的现象,有机碳分解,其中包含的N也会损失,其中一种重要损失方式就是氨挥发[36]。许多研究表明,化肥施入促进了土壤中有机物进一步分解,显著促进土壤氨挥发[37]。铵态氮肥对土垫旱耕人为土和黄土正常新成土表现出正的激发效应,且低肥力土壤激发效应高于高肥力土壤[38-40]。研究表明,秸秆和氮肥同时添加会增加土壤胞外酶活性和利用秸秆碳的真细比,进而加剧了秸秆降解和土壤激发效应强度[41]。

需要指出的是,以前诸多研究在计算土壤净氨挥发时,采用的是施氮肥处理减去不施氮肥处理,忽略了氮肥对土壤氨挥发的激发效应,因此计算得出的由于氮肥引起的净氨挥往往被高估了。本研究根据孙昭安[18]对冬小麦氮肥对激发效应的研究,估算出不考虑激发效应的净氨挥发比考虑激发效应的氨挥发平均高估了21.8%±3.57%(图5),这一研究发现值得今后特别注意。

3.4 海绵吸收法和真空抽气法测定氨挥发

双层海绵吸收法回收率和精确度较高,测定氨挥发相对于密闭法要更加准确和精确,回收率为99.5%,变异系数仅为0.77%,适于田间土壤氨挥发的原位测定[42]。杨阳等[43]在2011-2013年黄土高原南部冬小麦田测定氨挥发也采用该方法,回收率为99%。Zhang等[44]在内蒙古草原测定氨挥发时,该方法回收率为87%以上。吴艳香等研究表明,与海绵吸收法(回收率为94.95%)相比,真空抽气法的回收率较高,为96.9%[45]。周伟等研究发现,真空抽气法回收率为90%,变异系数在5%以内[46]。

图5 考虑激发效应与不考虑激发效应的净氨挥发量与不考虑激发效应的净氨挥发量的高估比例

综上可知,真空抽气法的优点是明显消除相邻两块地之间的干扰,改善了小区之间的气象条件,但是空气流将密闭室空气中的氨带到系统外用酸吸收,导致取样室内外压差较大,并在一定范围内随通气频率的增加而增大,且压力较大情况下可能高估。海绵吸收法相对简单,成本较低,易于控制条件,应用广泛,且大部分研究发现回收率较高,但无法考虑风速对氨挥发的影响[26]。

4 结 论

中国北方冬小麦生产中,氨挥发总量随化肥施氮量的增加呈指数函数形式增加,净氨挥发量则呈幂函数形式增加,基肥期氨挥发量显著高于追肥期。常规氮肥水平下,净氨挥发量占化肥施氮量的平均比例为6.27%。降低氮肥,特别是基肥期氮肥施用量,或者改善施肥方式(如快速灌溉和覆土),可以有效降低氨挥发数量。不考虑氮肥对于土壤氨挥发的激发效应,会导致净氨挥发数量高估(21.8%)。田间试验中,在180 kg/hm2氮肥水平时,海绵吸收法和真空抽气法获得的氨挥发水平相当,在低于和高于该氮肥水平时,海绵吸收法和真空抽气法监测获得的氨挥发数量偏高。

[1]巨晓棠,谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报,2014,20(4):783-795.

Ju Xiaotang, Gu Baojing. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese with English abstract)

[2]武良,张卫峰,陈新平,等. 中国农田氮肥投入和生产效率[J]. 中国土壤与肥料,2016(4):76-83.

Wu Liang, Zhang Weifeng, Chen Xinping, et al. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland[J]. Soil and Fertilizer Sciences in China, 2016(4): 76-83. (in Chinese with English abstract)

[3]国家统计局. 中国统计年鉴2018[M]. 北京:中国统计出版社,2018.

[4]Liu Xuejun, Zhang Ying, Han Wenxuan, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.

[5]Ju Xiaotang, Zhang Chong. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862.

[6]赵荣芳,陈新平,张福锁. 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J]. 土壤学报,2009,46(4):684-697.

Zhao Rongfang, Chen Xinping, Zhang Fusuo. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain[J]. Acta Pedologica Sinica, 2009, 46(4): 684-697. (in Chinese with English abstract)

[7]卢丽丽,吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报,2019,24(1):149-162.

Lu Lili, Wu Genyi. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162. (in Chinese with English abstract)

[8]Ouyang Wei, Lian Zhongmin, Hao Xin, et al. Increased ammonia emissions from synthetic fertilizers and land degradation associated with reduction in arable land area in China[J]. Land Degradation & Development, 2018, 29(11): 3928-3939.

[9]Pan Baobao, Lam Shu Kee, Mosier Arvin, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 232: 283-289.

[10]张福锁,崔振岭,王激清,等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报,2007,24(6):687-694.

Zhang Fusuo, Cui Zhenling, Wang Jiqing, et al.Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6): 687-694. (in Chinese with English abstract)

[11]Zeng Yang, Tian Shili, Pan Yuepenng. Revealing the Sources of Atmospheric Ammonia: a Review[J]. Current Pollution Reports, 2018, 4(3): 189-197.

[12]吕贻忠,李保国. 土壤学[M]. 北京:中国农业出版社,2006.

[13]朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境,2000,9(1):1-6.

Zhu Zhaoliang. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract)

[14]杨淑莉,朱安宁,张佳宝,等. 不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J]. 干旱区研究,2010,27(3):415-421.

Yang Shuli, Zhu Anning, Zhang Jiabao, et al. Ammonia volatilization loss and its affecting factors under different amounts and ways of N application in field[J]. Arid Zone Research, 2010, 27(3): 415-421. (in Chinese with English abstract)

[15]翟学旭,王振林,戴忠民,等. 灌溉与非灌溉条件下黄淮冬麦区不同追氮时期农田土壤氨挥发损失研究[J]. 植物营养与肥料学报,2013,19(1):54-64.

Zhai Xuexu, Wang Zhenlin, Dai Zhongmin, et al. Ammonia volatilization loss in Huang Huai winter wheat cultivation areas under irrigated and rainfed conditions[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 54-64. (in Chinese with English abstract)

[16]Chen Xinping, Cui Zhenling, Fan Mingsheng, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489.

[17]苏芳,丁新泉,高志岭,等. 华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J]. 中国环境科学,2007,27(3):409-413.

Su Fang, Ding Xinquan, Gao Zhiling, et al. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain[J]. China Environmental Science, 2007, 27(3): 409-413. (in Chinese with English abstract)

[18]孙昭安. 不同供氮条件下冬小麦生产向土壤碳库的输入及氮素损失特征[D]. 北京:中国农业大学,2018.

Sun Zhao’an. Allocation of Winter Wheat Photosynthesized Carbon into Soil Carbon Pool at Different Rates of Nitrogen Fertilization and Nitrogen Losses[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)

[19]王秀斌,周卫,梁国庆,等. 优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发[J]. 植物营养与肥料学报,2009,15(2):344-351.

Wang Xiubin, Zhou Wei, Liang Guoqing, et al. Effect of optimized nitrogen application on ammonia volatilization from soil in winter wheat-summer corn rotation system in Northern China[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 344-351. (in Chinese with English abstract)

[20]山楠,毕晓庆,杜连凤,等. 基施氮肥对麦田冬前氨挥发损失的影响[J]. 中国土壤与肥料,2013(6):47-51.

Shan Nan, Bi Xiaoqing, Du Lianfeng, et al. Effect of basal nitrogen fertilization on cornfield ammonia volatilization loss ahead of winter in-site conditions[J]. Soil and Fertilizer Sciences in China, 2013(6): 47-51. (in Chinese with English abstract)

[21]马银丽,吉艳芝,李鑫,等. 施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响[J]. 生态环境学报,2012,21(2):225-230.

Ma Yinli, Ji Yanzhi, Li Xin, et al. Effects of N fertilization rates on the NH3volatilization and N2O emissions from the wheat-maize rotation system in North China Plain[J]. Ecology and Environmental Sciences, 2012, 21(2): 225-230. (in Chinese with English abstract)

[22]巨晓棠,刘学军,邹国元,等. 冬小麦/夏玉米轮作体系中氮素的损失途径分析[J]. 中国农业科学,2002,35(12):1493-1499.

Ju Xiaotang, Liu Xuejun, Zou Guoyuan, et al. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2002,35(12): 1493-1499. (in Chinese with English abstract)

[23]董文旭,胡春胜,张玉铭. 华北农田土壤氨挥发原位测定研究[J]. 中国生态农业学报,2006,14(3):46-48.

Dong Wenxu, Hu Chunsheng, Zhang Yuming. In situ determination of ammonia volatilization in field of North China[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 46-48. (in Chinese with English abstract)

[24]刘红梅,庞凤梅,赖欣,等. 供氮水平和有机无机配施对麦田土壤氨挥发的影响[J]. 安徽农业科学,2012,40(12):7122-7719,7249.

Liu Hongmei, Pang Fengmei, Lai Xin, et al. Effects of nitrogen fertilizer rate and combined application of organic manure and chemical fertilizer on soil ammonia volatilization in winter-wheat field[J]. Journal of Anhui Agriculture Science, 2012, 40(12): 7122-7719, 7249. (in Chinese with English abstract)

[25]郑凤霞,董树亭,刘鹏,等. 长期有机无机肥配施对冬小麦籽粒产量及氨挥发损失的影响[J]. 植物营养与肥料学报,2017,23(3):567-577.

Zheng Fengxia, Dong Shuting, Liu Peng, et al. Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 567-577. (in Chinese with English abstract)

[26]Yang Jie, Jiao Yan, Yang Wenzhu, et al. Review of methods for determination of ammonia volatilization in farmland[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 1-8.

[27]Jiang Yu, Deng Aixing, Bloszies Sean, et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen[J]. Biology and Fertility of Soils, 2017, 53(3): 269-274.

[28]Huang Shan, LvWeisheng, Bloszies Sean, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016, 192: 118-125.

[29]王珏,巨晓棠,张丽娟,等. 华北平原小麦季氮肥氨挥发损失及影响因素研究[J]. 河北农业大学学报,2009,32(3):5-11.

Wang Jue, Ju Xiaotang, Zhang Lijuan, et al. Ammonia volatilization of N fertilizer and influencing factors in the North China Plain[J]. Journal of Agricultural University of Hebei, 2009, 32(3): 5-11. (in Chinese with English abstract)

[30]山楠,赵同科,毕晓庆,等. 不同施氮水平下小麦田氨挥发规律研究[J]. 农业环境科学学报,2014,33(9):1858-1865.

Shan Nan, Zhao Tongke, Bi Xiaoqing, et al. Ammonia volatilization from wheat soil under different nitrogen rates[J]. Journal of Agro-Environment Science, 2014, 33(9): 1858-1865. (in Chinese with English abstract)

[31]上官宇先,师日鹏,韩坤,等. 垄作覆膜条件下冬小麦田的氨挥发研究[J]. 干旱地区农业研究,2011,29(5):163-168.

Shang Guanyuxian, Shi Ripeng, Han Kun, et al. The dynamics of ammonia volatilization in winter wheat field with furrow planting system and ridge with plastic film mulching[J]. Agricultural Research in the Arid Areas, 2011, 29(5): 163-168. (in Chinese with English abstract)

[32]倪康,丁维新,蔡祖聪. 有机无机肥长期定位试验土壤小麦季氨挥发损失及其影响因素研究[J]. 农业环境科学学报,2009,28(12):2614-2622.

Ni Kang, Ding Weixin, Cai Zucong. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J]. Journal of Agro-Environment Science, 2009, 28(12): 2614-2622. (in Chinese with English abstract)

[33]邓美华,尹斌,张绍林,等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤,2006,38(3):263-269.

Deng Meihua, Yin Bin, Zhang Shaolin, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(03): 263-269. (in Chinese with English abstract)

[34]董文旭,胡春胜,陈素英,等. 保护性耕作对冬小麦-夏玉米农田氮肥氨挥发损失的影响[J]. 中国农业科学,2013,46(11):2278-2284.

Dong Wenxu, Hu Chunsheng, Chen Suying, et al. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system[J]. Scientia Agricultura Sinica, 2013, 46(11): 2278-2284. (in Chinese with English abstract)

[35]曹兵,李新慧,张琳,等. 冬小麦不同基肥施用方式对土壤氨挥发的影响[J]. 华北农学报,2001,16(2):83-86.

Cao Bing, Li Xinhui, Zhang Lin, et al. Effect of different basal-dressing application methods on soil ammonia volatilization from winter wheat field[J]. Acta Agriculturae Boreali-Sinica, 2001, 16(2): 83-86. (in Chinese with English abstract)

[36]关连珠. 普通土壤学[M]. 北京:中国农业大学出版社,2016.

[37]朱霞,韩晓增,乔云发,等. 外加可溶性碳、氮对不同热量带土壤氨挥发的影响[J]. 环境科学,2009,30(12):3465-3470.

Zhu Xia, Han Xiaozeng, Qiao Yunfa, et al. Influence of soluble carbon and nitrogen on ammonia volatilization from different thermal zones soil[J]. Environmental Science, 2009, 30(12): 3465-3470. (in Chinese with English abstract)

[38]李紫燕,李世清,李生秀. 铵态氮肥对黄土高原典型土壤氮素激发效应的影响[J]. 植物营养与肥料学报,2008,14(5):866-873.

Li Ziyan, Li Shiqing, Li Shengxiu. Priming effect of ammonium nitrogen fertilizer on soil nitrogen in typical soils of Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 866-873. (in Chinese with English abstract)

[39]吕殿青,张树兰,杨学云. 外加碳、氮对土壤氮矿化、固定与激发效应的影响[J]. 植物营养与肥料学报,2007,13(2):223-229.

Lu Dianqing, Zhang Shulan, Yang Xueyun. Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 223-229. (in Chinese with English abstract)

[40]吕殿青,张树兰,杨学云. 外加碳、氮对黄绵土有机质矿化与激发效应的影响[J]. 植物营养与肥料学报,2007,13(3):423-429.

Lü Dianqing, Zhang Shulan, Yang Xueyun. Effect of supplying C and N on the mineralization and priming effect of organic matter in loessial soil[J]. Plant Nutrition and Fertilizer Science, 2007, 13(3): 423-429. (in Chinese with English abstract)

[41]贝水宽. 施肥对石灰性土壤硝化过程和激发效应相关微生物区系的影响[D]. 北京:中国农业大学,2019.

Bei Shuikuan. Effects of Fertilization on the Community Composition of Soil Microbiome Associated with Nitrification and Priming Effect on Calcareous Soils[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)

[42]王朝辉,刘学军,巨晓棠,等. 田间土壤氨挥发的原位测定:通气法[J]. 植物营养与肥料学报,2002,8(2):205-209.

Wang Chaohui, Liu Xuejun, Ju Xiaotang, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. (in Chinese with English abstract)

[43]杨阳,李娜,王林权,等. 垄作对降低黄土高原南部冬小麦田氨挥发风险的影响[J]. 环境科学研究,2015,28(3):431-439.

Yang Yang, Li Na, Wang Linquan, et al. Effects of ridge tillage practices on reducing ammonia volatilization from winter wheat fields in southern loess plateau of China[J]. Research of Environmental Sciences, 2015, 28(3): 431-439. (in Chinese with English abstract)

[44]Zhang Yunhai, He Nianpeng, Zhang Guangming, et al. Ammonia emissions from soil under sheep grazing in inner mongolian grasslands of China[J]. Journal of Arid Land, 2013, 5(2): 155-165.

[45]吴艳香. 土壤氨挥发方法优选及不同pH值的影响[J]. 贵州科学,2017,35(5):85-90.

Wu Yanxiang. Optimization of ammonia volatilization testing methods and effects of pH value on ammonia volatilization[J]. Guizhou Science, 2017, 35(5): 85-90. (in Chinese with English abstract)

[46]周伟,田玉华,曹彦圣,等. 两种氨挥发测定方法的比较研究[J]. 土壤学报,2011,48(5):1090-1095.

Zhou Wei, Tian Yuhua, Cao Yansheng, et al. A comparative study on two methods for determination of ammonia volatilization[J]. Acta Pedologica Sinica, 2011, 48(5): 1090-1095. (in Chinese with English abstract)

Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis

Kang Fei, Meng Fanqiao※

(100193,)

Northern China is the main intensive agricultural area for winter wheat-summer maize production in China. In the past 30 years, chemical nitrogen (N) fertilizer was the main source of N input in the farmland ecosystem and plays a key role in crop production and soil quality. Due to the excessive application of chemical N fertilizer and frequent irrigation, fertilizer N usage efficiency was low and was also lost into the environment and this caused many negative environmental pollutions. Among the fates of fertilizer N applied, ammonia volatilization was an important gaseous N loss, and it was one of the main sources of atmospheric ammonia and significantly contributed to the formation of atmospheric pollutant PM2.5. Besides, compared with the acid soil in southern China, the proportion of ammonia volatilization from calcareous soil after N fertilization in northern China was higher. In the past, although many experimental studies have been carried out on ammonia volatilization in northern China Plain, few have systematically investigated the relationship between ammonia volatilization and fertilizer N used, and the efficacies of different ammonia collection methods, i.e., sponge absorption method and vacuum suction method. In this study, the works of literature on ammonia volatilization during the winter wheat season in northern China published from 1980 to 2018 were collected and the methods of regression analysis and T-test were adopted. Among the 31 papers collected in this study, 17 adopted the sponge absorption method and 14 adopted the vacuum suction method to measure the ammonia volatilized after N fertilization during the winter wheat season. The results showed that under farmer’s conventional N fertilization level, the cumulative total ammonia and net ammonia volatilization was exponentially (=2.64e0.006 6x)and power-functionally(=0.004 81.358 9) correlated with the fertilized N rate, respectively. Correspondingly, the average proportion of net ammonia volatilization to total chemical N applied was (6.27±0.98)%. Under the same N rate at the basal and topdressing stages, the corresponding ammonia volatilization was 58.7% and 41.3% of the total ammonia volatilization in the whole wheat season, indicating the higher contribution of N volatilization at the basal stage, and the importance of mitigation the ammonia volatilization for winter wheat season. At the fertilization rate of 180 kg/hm2during the winter wheat season, the ammonia volatilization determined by the vacuum suction method and the sponge absorption method was similar. At the fertilization rate of <180 kg/hm2, the ammonia volatilization determined by the sponge absorption method was 0-5% higher than that of the vacuum suction method and at 180-400 kg/hm2, the vacuum suction method was 0-6.9% higher than that of the sponge absorption method, although the statistic differences between these two methods were not significant. This study also found the priming effect of the ammonia volatilization due to chemical N fertilization was 21.8%±3.57%; the net ammonia volatilization determined without considering of priming effect was significantly higher than that determined with considering of priming effect. The mitigation of ammonia volatilization in the winter wheat season should focus on optimizing the N fertilization rate, mainly at the basal fertilization stage, and combined with other farming measures such as drip irrigation and soil mulching). During the field study of ammonia volatilization caused by chemical N fertilization, the priming effect and the overestimate of ammonia volatilization should not be neglected. Differences of NH3volatilization via the sponge absorption method and the vacuum suction method should also be taken into consideration.

winter wheat; ammonia volatilization; fertilizer N rate; fertilization period; vacuum suction; sponge absorption

康 飞,孟凡乔. 基于文献分析的北方冬麦田氨挥发特性[J]. 农业工程学报,2020,36(1):228-234.doi:10.11975/j.issn.1002-6819.2020.01.027 http://www.tcsae.org

Kang Fei, Meng Fanqiao. Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.027 http://www.tcsae.org

2019-11-24

2019-12-18

国家重点研发计划项目(2017YFD0800605和2016YFD0800104)

康 飞,博士,研究方向:面源污染与农田养分循环。Email:15612246306@163.com

孟凡乔,教授,博士,主要从事面源污染与农业物质循环研究。Email:mengfq@cau.edu.cn

10.11975/j.issn.1002-6819.2020.01.027

S143.1

A

1002-6819(2020)-01-0228-07

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!