当前位置:首页 期刊杂志

温度对Mn-Ce/γ-Al2O3催化氧化柴油机尾气NO性能的影响

时间:2024-05-24

王 攀,殷俊晨,罗 鹏,雷利利,宋金瓯



温度对Mn-Ce/-Al2O3催化氧化柴油机尾气NO性能的影响

王 攀1,殷俊晨1,罗 鹏1,雷利利1,宋金瓯2

(1. 江苏大学汽车与交通工程学院,镇江 212013;2. 天津大学内燃机燃烧学国家重点实验室,天津 300072)

通过溶胶-凝胶法制备了MnCe/-Al2O3(∶为摩尔比,=4,6,8,10;=10)催化剂。利用X射线衍射(X-ray diffraction,XRD)和X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对催化剂的理化性能进行了表征,并在管式固定床反应器中考察了在不同温度下催化剂对NO的催化氧化活性影响规律。结果表明,NO转化率随着温度的升高而增加,在300 ℃时达到峰值,随后受热力学控制,NO转化率随温度的升高有所降低。在250~350 ℃温度区间,Mn10Ce/-Al2O3(≥6)催化剂都表现出较好的NO催化氧化活性。其中,6Mn10Ce/-Al2O3催化剂的低温催化活性较好,在200 ℃时对NO的转化率达44.8%,300 ℃时高达83.6%。Mn-Ce/-Al2O3催化剂的NO氧化性能由强到弱为:6Mn10Ce/-Al2O3> 8Mn10Ce/-Al2O3>10Mn10Ce/-Al2O3>4Mn10Ce/-Al2O3。

柴油机;排放控制;一氧化氮;催化氧化

0 引 言

柴油机的氮氧化物(NOx)排放是大气污染物之一,同时也是酸雨和光化学烟雾的重要前驱体[1],对大气环境和人体健康会造成严重危害,因此需要对其进行有效控制。目前,柴油机NOx后处理技术中主要有选择性催化还原(selective catalytic reduction,SCR)和NOx存储还原(NOxstorage and reduction,NSR)[2-3]。与SCR技术相比,NSR技术具有脱硝效率高、活性温度区间较宽、还原剂用量较少等优点[4],被认为是一种具有应用前景的NOx控制技术,该技术的关键是优化调节NO/NO2比率,以提高NOx脱除效率。与NO相比,NO2由于N-O键能较低,更容易被NSR催化剂存储还原,但柴油机NOx排放中NO占90%左右。因此,将柴油机排气中的NO氧化成NO2将有利于NOx排放的催化脱除。

与传统催化剂相比,贵金属催化剂(如铂Pt)具有较高的NO氧化性能,但其成本较高,且容易受硫毒化,这也限制了其在催化领域的广泛应用[5-6]。研究发现,过渡金属Mn在催化氧化反应中有较好的催化活性[7-9]。Wu等[10]在对MnOx/TiO2催化剂氧化NO的研究中发现,催化剂在反应温度高于250 ℃时,有较好的催化氧化NO活性,但其在低温时活性不高。稀土金属Ce是优良的催化剂助剂,CeO2具有较好的储放氧能力和氧化还原性质[11-14],采用掺杂Ce的方式可以改善Mn基催化剂的低温催化氧化活性[15-18]。李小海等[19]研究了掺杂Ce对Mn/TiO2催化剂性能的影响,发现掺杂Ce可以增大催化剂的比表面积以及提高催化剂对氧的吸附能力,从而提高了催化剂的氧化活性。Li等[20]对Mn-Ce-Ox催化剂氧化NO开展了研究,发现Ce的加入可以增强催化剂低温氧化NO的活性,在250 ℃时NO转化率提高了37%。综上分析可知,Mn-Ce催化剂具有良好的催化氧化NO活性。为了研究不同Mn/Ce比催化剂在不同温度下的NO氧化机理,本文通过溶胶-凝胶法制备了MnCe/-Al2O3(∶为摩尔比,=4,6,8,10;=10)催化剂,并对其理化性能进行表征,通过在管式固定床反应器上进行的模拟试验,深入分析了不同Mn/Ce比对Mn-Ce/-Al2O3催化氧化NO性能的影响。

1 试验部分

1.1 催化剂的制备

本文采用溶胶-凝胶法制备了一系列的MnCe/-Al2O3催化剂。首先,将适量-Al2O3粉末溶于适量的蒸馏水中,搅拌直至形成乳白色悬浊液;按照不同Mn/Ce摩尔比称取一定量的Ce(NO3)3·6H2O、C4H6MnO4·4H2O,分别溶于适量的去离子水中制成溶液,然后加入-Al2O3悬浊液中;加入Ce3+和Mn2+摩尔总量2倍的柠檬酸,和10%柠檬酸质量的聚乙二醇,80 ℃磁力搅拌,直至形成透明凝胶,110 ℃干燥24 h,自然冷却,再研磨成粉末,在马弗炉中300 ℃焙烧1 h,然后升温至500 ℃焙烧5 h,冷却后压片、破碎、筛选出40~60目的颗粒备用。

1.2 催化剂的评价

催化剂活性测试在管式固定床反应器上进行,测试示意图如图1所示。将催化剂(0.3 mL)置于石英反应管中部,然后通入混合气体,进行程序升温测试活性。反应测试的混合气体组成为:500×10-6体积分数的NO,10%体积分数的O2,以N2为平衡气,空速为55 000 h-1。出口气体中NO和NO2的浓度通过美国Thermo 42iHL NOx分析仪测量。催化剂活性测试中NO转化率(NO)按下式计算

式中NO2 out表示反应器出口处NO2的体积分数,NOin表示反应器入口处NO体积分数。

图1 催化剂活性测试示意图

Fig.1 Schematic diagram of catalyst activity test

1.3 催化剂的表征

XRD在德国Bruker/D8 ADVANCE型射线衍射仪上进行测试,辐射源采用CuKα(=0.154 068 nm),扫描角速度为7(°)/min,20°~80°扫描,晶粒大小根据Scherrer公式进行计算

/(cos)

式中为Scherrer常数;为晶粒尺寸,nm;为实测样品衍射峰半高宽度,rad;为衍射角;为X射线波长。

XPS在美国Thermo Fisher Scientific 生产的ESCALAB250Xi型仪器上进行,该仪器采用Al K(= 1 486.6 eV)作为X射线源,分辨率为0.43 eV,分析范围为0~5 000 eV,所测元素的结合能以表面污染碳(结合能=284.6 eV)为标准进行校正。

2 结果与讨论

2.1 催化剂XRD表征

Mn10Ce/-Al2O3(=4,6,8,10)催化剂的XRD谱图如图2所示。由图2可见,在2为25.74°、5.32°、37.93°、43.53°、53.72°、57.65°、66.68°和68.36°出现了典型的-Al2O3特征衍射峰(PDF No. 48-0366)。CeO2的特征衍射峰与纯CeO2(JCPDS:PDF 34-0394)较为接近,但存在向高角度偏移现象。催化剂在2为28.74°出现了一个较宽的衍射峰,说明有无定形Ce结构存在[21-22]。MnO2的特征峰与纯MnO2的特征衍射峰(JCPDS:PDF 65-7467)重合度比较高,且在2为27.32°,57.10°出现了MnO2与CeO2重叠的特征衍射峰。此外,在2为31.84°处出现了Mn2O3特征衍射峰,与文献[23-24]相一致。随着值增加,2为31.84°处的Mn2O3特征衍射峰强度先变强后变弱,说明随着的增加,催化剂制取过程中Mn2O3的生成量先增多后减少,在=6时,有较多Mn2O3晶体出现。通过Scherrer方程可以估算CeO2晶粒尺寸为26 nm。CeO2衍射峰向高角度偏移,主要是因为CeO2中半径较大的Ce4+被半径较小的Mn4+和Mn3+所取代,引起的晶胞收缩所致[25],这有助于提高氧空位浓度,从而增加催化剂的活性。

2.2 催化剂的评价

在150~400 ℃温度范围内,6Mn10Ce/-Al2O3催化剂作用下,NO2浓度随时间变化曲线如图3所示。由图3可以看出,在250 ℃以下,NO2浓度到达稳定的时间在900 s以上,在300 ℃时,稳定时间迅速降低为570 s;之后,随着温度的升高稳定时间缓慢降低。

表1为不同Mn/Ce摩尔比催化剂在不同温度下的NO转化率。由表1可见,不同Mn/Ce摩尔比的NO转化率呈现先增加后降低的变化规律。温度为300 ℃时,NO转化率最高,之后受热力学控制,NO2会发生热分解现象,从而使得NO转化率随温度升高有所降低。

在400~450 ℃时,受热力学影响,所有催化剂的NO转化率几乎相同。在250~350 ℃温度区间内时,4Mn10Ce/-Al2O3催化剂的NO催化氧化活性最差,其他催化剂性能较为接近;低于200 ℃时,6Mn10Ce/-Al2O3催化剂表现出最好的低温催化活性,在200 ℃时催化氧化NO的转化率已达44.8%。所测样品的NO氧化性能由强到弱的顺序为:6Mn10Ce/-Al2O3>8Mn10Ce/-Al2O3> 10Mn10Ce/-Al2O3>4Mn10Ce/-Al2O3。

表1 不同Mn/Ce摩尔比催化剂在不同温度下的NO转化率

2.3 XPS表征分析

6Mn10Ce/-Al2O3和8Mn10Ce/-Al2O3催化剂的Ce 3d XPS结合能谱图如图4a所示。从图4a中可以看出谱图中含有6个显著的特征峰,Ce 3d3/2的主峰和两个激峰位于900.9,908.2和917.0 eV,而位于882.4,889.1和898.8 eV峰位属于Ce 3d5/2的主峰和两个激峰。以上6个峰位对应CeO2(Ce4+)的最终价态。Ce3+的特征峰峰位(885.1~885.8 eV,903.5~904.2 eV)没有被检测,说明Ce元素在催化剂中以4价态存在。

6Mn10Ce/-Al2O3和8Mn10Ce/-Al2O3催化剂Mn 2p的XPS的结合能谱图如图4b所示。由图4b可见,Mn 2p谱图含有两个特征峰,即自旋轨道双峰Mn 2p1/2以及Mn 2p3/2。642 eV处的峰位属于Mn 2p3/2,与纯MnO2(614.7~642.4 eV)中的Mn 2p3/2结合能较为接近。结合XRD分析结果,可确定催化剂中存在MnO2。653.6 eV 处的Mn 2p1/2峰位,对应Mn3+(653.57~653.61 eV)价态。Mn 2p3/2的XPS峰形的不对称也进一步证实Mn3+和Mn4+同时存在,这表明催化剂中活性组分Mn以Mn4+和Mn3+混合价态的形式存在。

6Mn10Ce/-Al2O3和8Mn10Ce/-Al2O3催化剂O 1s 的XPS谱图如图4c所示。由图4c可见,催化剂的O 1s峰均包含两个对称峰,这表明催化剂含有两种类型的氧物种。其中,较低结合能(529.0~529.1 eV)处的峰为金属氧化晶格氧O2-(定义为O)特征峰,较高结合能(531.1~531.2 eV)处的峰则认为是表面化学吸附氧(定义为O)。此外,2种催化剂的晶格氧含量不同,其主要原因是它们的活性组分配比不同。NO氧化过程主要是:MnO2将气相氧活化,活性氧氧化吸附在催化剂表面的NO,生成NO3-,MnO2被还原为MnO;NO3-受热分解成NO2,MnO最终被CeO2释放的晶格氧氧化为MnO2。因此,较高含量的O更有利于将NO转化成NO2。

a. Ce 3db. Mn 2pc.O 1s

3 结 论

1)Ce主要以无定形结构存在于Mn10Ce/-Al2O3(=4,6,8,10)催化剂中;而Mn在催化剂中主要以MnO2形式出现,当=6时,有较多Mn2O3晶体出现。

2)CeO2中半径较大的Ce4+被半径较小的Mn4+和Mn3+所取代,有助于催化剂氧空位的形成,提高催化剂的催化氧化NO的性能。

3)随温度升高,催化剂的NO转化率呈现先增加后降低的变化规律,在300℃时,NO转化率达到峰值83.6%。其中,NO氧化性能由强到弱的顺序为:6Mn10Ce/-Al2O3>8Mn10Ce/-Al2O3>10Mn10Ce/-Al2O3>4Mn10Ce/-Al2O3。

[1] 王欢,吕丽,王东辉,等. 铜锰复合氧化物室温催化氧化NO的研究[J]. 北京化工大学学报:自然科学版,2010,37(4):24-28.

Wang Huan, Lü Li, Wang Donghui, et al. NO catalytic oxidation over copper manganese oxide at room temperature[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2010, 37(4): 24-28. (in Chinese with English abstract)

[2] Maria P R, Isabella N, Enrico T. Experimental study of the NO oxidation to NO2over metal promoted zeolites aimed at the identification of the standard SCR rate determining step[J]. Top Catal, 2013, 56: 109-113.

[3] Visconti C G, Lietti L, Manenti F, et al. Spectrokinetic analysis of the NOxstorage over a Pt-Ba/Al2O3lean NOxtrap catalyst[J]. Topics in Catalysis, 2013, 56(1): 311-316.

[4] 孙英,黄妍,赵威,等. 负载型钙钛矿催化氧化NO及抗SO2性能研究[J]. 燃料化学学报,2014,42(10):1246-1252.

Sun Ying, Huang Yan, Zhao Wei, et al. Research on catalytic performance of supported perovskite catalyst for NO oxidation and resistance to SO2poisoning[J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 1246-1252. (in Chinese with English abstract)

[5] Li J, Kumar A, Kamasamudram K, et al. Time- dependent hysteresis in the NO oxidation to NO2on Pt-based catalysts[J]. Catalysis Today, 2015, 258(4): 169-174.

[6] Shang D, Zhong Q, Cai W. High performance of NO oxidation over Ce-Co-Ti catalyst: The interaction between Ce and Co[J]. Applied Surface Science, 2015, 325(6): 211-216.

[7] Shen M Q, Zhao Z, Chen J H, et al. Effects of calcium substitute in LaMnO3perovskites for NO catalytic oxidation[J]. Journal of Rare Earths, 2013, 31(2): 119-123.

[8] 唐晓龙,李华,易红宏,等. 过渡金属氧化物催化氧化NO实验研究[J]. 环境工程学报,2010,4(3):629-643.

Tang Xiaolong, Li Hua, Yi Honghong, et al. Transition metal oxides catalysts for oxidation of nitric oxide[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 629-643. (in Chinese with English abstract)

[9] Zhao B H, Rui R, Wu X D, et al. Comparative study of Mn/TiO2and Mn/ZrO2catalysts for NO oxidation[J]. Catalysis Communications, 2014, 56(41): 36-40.

[10] Wu Z B, Tang N, Xiao L. MnOx/TiO2composite nanoxides synthesized by deposition precipitation method as a superior catalyst for NO oxidation[J]. Journal of Colloid and Interface Science, 2010, 352(1): 143-148.

[11] Muhammad S M, Anil K P, Heon P H. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2catalyst for NH3-SCR[J]. Applied Catalysis B Environmental, 2014, 152/153(25): 28-37.

[12] Lin F, Wu X D, Weng D. Effect of barium loading on CuOx-CeO2catalysts: NOxstorage capacity, NO oxidation ability and soot oxidation activity[J]. Catalysis Today, 2011, 175(1): 124-132.

[13] Ming C, Ye D Q, Liang H, et al. Catalytic combustion performance of soot over cerium-based transition metal composite oxide catalysts[J]. Acta Scientiae Circumtantiae, 2010, 30(1): 158-164.

[14] Wang S J, Zou G C, Xu Y, et al. Ce-based catalysts for simultaneous removal of both diesel soot and NOx[J]. Journal of Molecular Catalysis(China), 2015, 29(1): 60-67.

[15] Qi G S, Li W. NO oxidation to NO2over manganese-cerium mixed oxides[J]. Catalysis Today, 2015, 258(3): 205-213.

[16] Dimitrios D, Theophilos I. VOC oxidation over MnOx-CeO2catalysts prepared by a combustion method[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 303-312.

[17] Li K, Tang X L, Yi H H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Oxcatalyst[J]. Chemical Engineering Journal, 2012, 192(2): 99-104.

[18] Li H, Tang X L, Yi H H, et al. Low-temperature catalytic oxidation of NO over Mn-Ce-Oxcatalyst[J]. Journal of Rare Earth, 2010, 28(1): 64-68.

[19] 李小海,张舒乐,钟秦. 铈掺杂Mn/TiO2催化氧化NO的性能[J]. 化工进展,2011,30(7):1503-1508.

Li Xiaohai, Zhang Shule, Zhong Qin. Catalytic oxidation of NO over Ce-doped Mn/TiO2[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1503-1508. (in Chinese with English abstract)

[20] Li X H, Zhang S L, Jia Y, et al. Selective catalytic oxidation of NO with O2over Ce-doped MnOx/TiO2catalysts[J]. Journal of Natural Gas and Chemistry, 2012, 21(1): 17-24.

[21] Zou Z Q, Meng M, Guo L H, et al. Synthesis and characterization of CuO/Ce1-XTiXO2catalysts used for low-temperature CO oxidation[J]. J Hazard Mater, 2009, 163(2/3): 835-842.

[22] 王攀,谷文业,雷利利,等. 催化剂存储还原柴油机NOX排放的试验[J]. 农业工程学报,2015,31(9):230-234.

Wang Pan, Gu Wenye, Lei Lili, et al. Experiment of NOXstorage and reduction from diesel engine with NSR catalysts[J]. Transactions of the Chinese Society of Agricultural Engineering, (Transactions of the CSAE), 2015, 31(9): 230-234. (in Chinese with English abstract)

[23] Liu S, Wu X D, Weng D, et al. Combined promoting effects of platinum and MnOX–CeO2supported on alumina on NOX-assisted soot oxidation: Thermal stability and sulfur resistance[J]. Chemical Engineering Journal, 2012, 203(6): 25-35.

[24] Wu X D, Lee H R, Liu S, et al. Regeneration of sulfated MnOX-CeO2-Al2O3soot oxidation catalyst by reduction with hydrogen[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 716-721.

[25] 晏冬霞,王华,李孔斋,等. 铈铁锆三元复合氧化物上碳烟的催化燃烧[J]. 燃料化学学报,2011,39(3):229-235.

Yan Dongxia, Wang Hua, Li Kongzhai, et al. Catalytic combustion of soot on Ce-Fe-Zr-O ternary mixed oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 229-235. (in Chinese with English abstract)

Effects of temperature on oxidation characteristics of NO catalyzed by Mn-Ce/-Al2O3from diesel engine exhaust

Wang Pan1, Yin Junchen1, Luo Peng1, Lei Lili1, Song Jinou2

(1.,,212013,; 2.,,300072,)

With the aim of studying the effect of Mn-Ce catalysts on the NO oxidation activity, a series ofMnyCe/-Al2O3(:is mole ratio,=4, 6, 8, 10;=10) catalysts were synthesized by a sol-gel method. The samples were dried at 110 ℃ for 24 h , calcined in air for 1 h at 300℃and then for 5 h at 500 ℃to obtain the required 40-60 mesh powder.The effect of metallic Mn and Ce on their microstructure and catalytic properties were investigated by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) analysis. According to the results of analysis, the diffraction peaks of Mn2O3became stronger and then shifted to weaker with the value ofincreasing from 4 to 10, while Mn2O3reached up to its peak value whenwas 6. The grain size of cerium in the form of CeO2was 26 nm as indicated by Scherrer equation. CeO2diffraction peak shifted to a higher angle, due to the cell shrinkage caused by the fact that a part of Ce4+ions were replaced by Mn4+and Mn3+, which improved the oxygen vacancy concentration and increased the activity of catalyst. The dissymmetric peak of Mn 2p3/2observed in XPS spectra proved that Mn3+and Mn4+were both present in theMn10Ce/-Al2O3catalyst. MnO2could be reducted to MnO while MnO would be oxidated to MnO2by the lattice oxygen generated by CeO2. And the peak of O 1s indicated that the content of lattice oxygen of 6Mn10Ce/-Al2O3and 8Mn10Ce/-Al2O3was different, which was mainly because of the different Mn/Ce ratio. The higher level of O was more favorable to the oxidative of NO. Furthermore, the effects of temperature on the catalytic oxidation activity of NO were investigated based upon a tubular fixed bed reactor in the range of 150-450 ℃ with an inside diameter of 10 mm and plugged between two silica wool layers to prevent the sample being blew away. The gases used in test were 500 ppm NO, 10% O2, with N2in balance and a space velocity of 55 000/h. Results show that NO2concentration over 6Mn10Ce/-Al2O3catalysts reached stable after 900 s under 250℃, while the stable time reduced to 570 s at 300 ℃ and slowed down with the rising of temperature. NO conversion rate under different Mn/Ce ratios first increased and then decreased with the rise of temperature and reached up to the peak value at 300℃. It should be noticed that NO conversion rate would decrease as the further increase of temperature because of NO generated by the thermodynamics of NO2. In addition, NO conversions of all the catalysts kept almost the same in the temperature range from 400 to 450 ℃, due to the accelerated thermal decomposition of NO2under the influence of high temperature. TheMn10Ce/-Al2O3(≥6) catalysts showed better NO catalytic oxidation activity, over the temperature range from 250℃ to 350℃. Among all the catalysts, 6Mn10Ce/-Al2O3catalyst showed the highest catalytic activity at low temperature, and NO conversion rate reached up to 44.8% at 200 ℃ and 83.6% at 300 ℃,respectively. The reason was that the properties of the catalysts depended mainly on the active components, especially the Mn/Ce ratio. The results also indicated that MnOxwas the main contributor for NO oxidation, and the catalysts showed better oxidation capacity with the increase of MnOx. The NO oxidation activity followed the trend 6Mn10Ce/-Al2O3> 8Mn10Ce/-Al2O3>10Mn10Ce/-Al2O3>4Mn10Ce/-Al2O3.

diesel engines; emission control; nitric oxide; catalytic oxidation

10.11975/j.issn.1002-6819.2016.24.010

TK421+.5

A

1002-6819(2016)-24-0077-05

2016-04-20

2016-10-13

国家自然科学青年基金(51206068);江苏省自然科学青年基金(BK2015040369);天津大学内燃机国家重点实验室开放基金(K15-07)

王 攀,男,副教授;研究方向:发动机排放控制。镇江 江苏大学,212013。Email:wangpan@ujs.edu.cn

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!