当前位置:首页 期刊杂志

土壤水力特性异质性对土壤排水影响的瞬态随机分析

时间:2024-05-24

刁万英,刘 刚,司炳成



土壤水力特性异质性对土壤排水影响的瞬态随机分析

刁万英1,刘 刚1※,司炳成2

(1. 中国农业大学土壤与水科学系,北京 100193; 2. 西北农林科技大学水利与建筑工程学院,杨凌 712100)

土壤剖面水分入渗及再分布对生态和水文建模十分重要,而土壤异质性导致垂向的导水率值差异非常大。因此,该文假设在单位梯度下,用微扰法和运动波模型并结合随机分析研究一维瞬态土壤剖面排水的问题。采用Brooks-Corey模型,设饱和导水率和模型参数为随机变量。结果表明:1)饱和导水率方差增大对排水过程具有减缓的作用,有效饱和导水率较小;2)土壤导水率异质性越大,土壤蓄水能力越强;3)比较模型参数的波动与饱和导水率方差和模型参数的协方差,饱和导水率方差对排水影响更大;4)田间排水试验的结论与模型预测相一致。研究可为以长期自我维持的生态系统和高田间持水量为目标的土壤复垦提供依据。

异质性;排水;导水率;运动波;Brooks-Corey模型;粒径分布;土壤

0 引 言

土壤饱和导水率是土壤水力学重要参数之一,反映土壤入渗和排水的性质[1],也是了解非饱和土壤中水分和物质运移的必要参数[2]。通常可借助土壤粒径分布来估算土壤导水率[3-4],并进一步获得土壤含水量[5-6]。土地利用类型、土壤性质和生物过程等因素都会导致土壤导水率的空间变异性增大[7-11],进而影响土壤剖面的水分入渗及再分布[12]。土壤剖面排水是治理环境问题中需要重点考虑的因素之一,对建立生态[13-15]和水文模型也至关重要。

土壤剖面排水过程可用Richards方程进行描述,研究表明,土壤剖面排水的最初始阶段以重力作用占优的自由排水为主,它呈现单位梯度变化趋势[16]。在非饱和多孔介质中,Richards方程的非线性特性使其求解,特别是在涉及随机流时,其处理过程变得更加复杂[17-18]。可通过一阶偏微分方程简化Richards方程,使其具有简单且精度高的优点[19]。随机分析法已广泛应用于深层土壤异质水力参数对溶质运移的研究[17,20]。前人研究了2种土壤在水力特性相同而初始饱和含水量不同情况下土壤含水量在水平方向的重新分布[4],也分析了质地对土壤水分入渗和再分布的显著作用[6]。关于土壤导水率的异质性对土壤含水量以及其剖面排水影响的研究较少。因此,本研究采用一种随机模型[17,20-21],结合运动波[22]和微扰展开逼近法[21,23]研究单位梯度的排水过程,并用瞬态随机量化分析土壤导水率和Brooks-Corey模型参数[24]的不确定性对排水的影响,以期为土壤复垦提供指导依据。

1 基本理论

1.1 均质土壤剖面含水量分布模型

在非饱和土壤中,当重力作用优于毛管作用时,一维Richards方程可写为[19]

式中为体积含水量,cm3/cm3;为时间,h;为土壤剖面深度,cm;为土壤导水率,cm/d。

当土壤剖面为0<<0(0代表饱和含水层和非饱和含水层的分界面位置),初始状态为饱和时,式(1)对应的初始条件为

式中θθ分别表示饱和含水量和残余含水量,cm3/cm3;为土壤剖面深度,cm。

式(1)和(2)中初始值称特征值,在数学和工程领域也有大量研究[22]。一般通过常微分方程的解获得式(2)的特征值[20,22]。

通过以下步骤获得式(3)的解[19]:首先对()进行微分,得到d/d;其次把d/d设为/获得一个等式;最后对第2步进行求解,确定(,),获得(,)表达式的具体步骤见文献[20]。为获到(,)的解,须已知()。一般用van Genuchten模型[25]、Brooks-Core模型[24]和Gardner-Russo模型[26-27]描述()与的函数关系。van Genuchten模型和Brooks-Core模型优于简化的Gardner-Russo模型,Brooks-Core模型比van Genuchten模型更易于分析。在某些情况下van Genuchten模型和Brooks-Core模型的参数可以相互转化[28],因此,本文采用Brooks-Core模型。

(4)

式中K表示饱和导水率,cm/d;表示模型参数。

Brooks-Core模型中参数与常用参数(描述土壤孔径分布的土壤特性参数)的关系[27]为

根据上述3步算法,获得土壤含水量的分布。

(6)

1.2 异质土壤剖面含水量分布模型

本文只研究垂向分层明显的土壤水力学特性的变化[29]。利用式(6)讨论土壤水力学特性的空间变异性,需应用1种方法分析土壤分层对排水的影响。若、θθ为常数,那么θθ的变异性小于[12]。试验中参数K和服从对数正态分布[23,30],因此,令=ln()和=ln(K)。考虑到其空间变异性和估算的不准确性,和为随机变量,由期望值和随机函数组成,分别为

假设和的变异性较小[12],则

式中2和2为和的方差。

将式(7)代入式(6),获得

假设和变化很小,用泰勒展开法展开式(9)右边分母项,可得

将式(10)代入(9),得到

(11)

定义1、2、3和4分别为

那么,式(11)可以改写为

(13)

用指数函数(e≈1++2/2+…)的泰勒展开对式(9)进行整体平均,式(11)可进一步写成

式(9)进行整体平均最终得到

(15)

式中σ是与的协方差。

此公式能估算土壤含水量,通过体积含水量与深度函数的积分,获得某一深度瞬态土壤蓄水量(,)。

将*()=(,)/(,=0)定义为土壤相对蓄水量。

1.3 基于土壤粒径分布估算土壤导水率

准确获得导水率与含水量的函数关系十分必要;而直接测量水力学特性的方法费时[31]、成本高、结果差异大且适用范围小[32]。通过土壤粒径分布(particle size distribution,PSD)可以估算大范围()~关系,是估算()的一种有效方法[32]。本文采用日本堀场激光散射粒度分布分析仪(LA-950, Horiba Instruments Inc., 2008)测定PSD,其测量范围1.1×10-5~3.0 mm,分成93个粒级。将PSD分为部分,第级粒径质量分数用累计百分比与相应的连续粒径大小的差值除以100来表示。基于PSD的样品导水率(θ)与对应含水量θ间的关系[2]为

式中为试验粒径分布数据所获得的经验参数;为有效孔隙度,满足=S·[1–(ρ/ρ)],为饱和含水量与总孔隙度的比),ρ为样品的颗粒密度,g/cm3;ρ为样品容重,g/cm3;R为第级粒径的平均半径;为指数,与直径为4的均匀圆管相等;为自然状态下土壤的孔隙比;n为分式中的等效球粒子数,α是Arya等[2]定义的标度系数。

(18)

式中N是假想球形颗粒半径R的标度系数。由式(18)计算(),通过Brooks-Corey模型获得参数和K及其变量。用瞬态随机量化分析导水率不确定性的影响,比较理论与田间排水试验结果。

2 田间试验

为验证随机分析结果和式(15)的解,在加拿大艾伯塔省麦克默里堡北边设置2个试验点,进行田间水分入渗和排水试验,试验点分别为试验点A(57°05'57''N、111°38'54'' W)和试验点B(56°56'36''N、111°31'57'' W)。研究区域位于艾伯塔北方混交林生态区内,为湿润大陆性气候区的边缘,冬季寒冷且持续时间长;夏天温暖且持续时间短。试验点A的生物量明显低于试验点B。

于2006年9月用土钻进行取样,试验点A和试验点B的垂直采样间隔分别为2和5 cm,取样深度1 m。风干,除去植物根系和其他碎片,过筛(2 mm),进行土壤粒径分析。土壤颗粒粒径分级标准采用美国制:粉粒(0.002 mm<≤0.05 mm),极细砂粒(0.05 mm<≤0.1 mm),细砂粒(0.1 mm<≤0.25 mm),中砂粒(0.25 mm<≤0.5 mm),粗砂粒(0.5 mm<≤2 mm)(为土壤颗粒的直径)。如图1所示,随深度变化土壤粒径分布发生变化。又根据前人研究[32-33],试验点A为均质土壤,试验点B为异质土壤,2个试验点的土壤质地都比较粗,养分低。采用双环入渗仪[34](由2个金属环组成,内径60 cm,外径120 cm)监测2个试验点的入渗和排水,并用土壤水分传感器(EnviroSCAN, Sentek Pty Ltd., South Australia)测定,测量深度为0.1~1.5 m。

3 结果与分析

3.1 土壤导水率异质性对排水的影响

取样行为易使土体结构受到破坏,导致土壤水力学参数的测量精度降低。因此,本文中的饱和导水率与饱和含水量均无实测值。以一维为例,用运动波和微扰展开法说明异质性的影响。假设初始为饱和状态,A和B点θ相等,即θA=θB=θ=0.05 cm3/cm3。无蒸发的情况下,用沙子均匀地填充高为100 cm的土柱,能够自由排水。通过试验点的粒径分布数据获取Brooks-Corey模型中土壤水力学特性参数,A和B试验点θ分别为0.483和0.415 cm3/cm3,<>分别为3和4.09;K分别为937和3 049 cm/d。

考虑一维异质土壤试验点B的垂直排水,用2描述导水率异质性对排水的影响。图2描述2个不同时段(12 min和1 d)水分随土壤深度(即距土表距离)的变化(其中空心圆为均质土壤)。当2趋近于0时,可用式(15)计算,也可单独用式(6)计算;当曲线2=0.001与曲线2=0重合,即2接近于0时,式(15)复杂解可简化为式(6)。在某特定土壤深度下,2值越大,越大,即土壤异质性对排水过程有减缓作用。

在实际应用中,随着时间的变化,一定深度的土壤含水量对植物根系生长十分重要。植物生长发育好才能维持生态系统的可持续性发展。图3表示在2种异质性(2)导水率的情况下,相对蓄水量随排水时间的变化;当2/<>为0~0.5时,排水过程减缓,表明土壤水力学特征的空间异质性较大,其蓄水能力增强。此外,异质土壤(s=3 049 cm/d和2/<>=0.5)与均质土壤(s=1 691.56 cm/d和2/<>=0)的蓄水量相等。假设和相关性为0,即σ= 0,变量的方差增加对减缓排水过程影响很大。

3.2 Brooks-Core模型参数不确定对排水的影响

σ=0和2为定值,检验(用2描述即ln不确定性)对排水的影响。图4表明当2不同时,土壤相对蓄水量随时间的变化(实线代表均质土壤2=0)。2值越大,则水分移动速度越慢,相对蓄水量越大。比较均质条件与其他5种异质条件(图2和图3)得出以下结论:与2相比较,的波动对排水影响小,尤其是一开始就排水的情况;随着时间的变化,均质土壤水力传导参数的曲线之间的差异增加;当≈4.8 h,差异减少,随后又增加;当>9.6 h,异质性曲线之间的差异明显(图4);2/<>比值越大,土壤蓄水能力越强,在较长一段时间内这种趋势都会受到限制。

3.3和的协方差对排水的影响

当2和2为常数时,考虑协方差(σ)对土壤蓄水量的影响。分析4组异质土壤水力学传导参数与均质之间的差异(图5)。4种异质土壤的蓄水量的曲线差异比较小,表明在排水过程中,σ的影响小于2或2的影响。随着时间变化,异质土壤水力学传导参数对应的曲线之间的差异增加,当≈2.4 h时差异变小,随后这种差异又随时间的增加而增加。在很长一段时间内,σ值越大,土壤蓄水能力也就越强。

3.4 土壤有效导水率seff和2之间的相关性

图3表明异质土壤(K=3 049 cm/d和2=0.5)的蓄水量与均质土壤(K=1 691.56 cm/d和σ=0)的相同。土壤有效导水率Keff与异质性之间的关系值得深入研究。通过式(15)和式(6)对排水强度与时间的曲线进行拟合,获得Keff。同时,用软件Mathematica非线性拟合得到Keff。与σ2相比较,2σ对排水的影响较小,图6中2σ均设为0,结果表明,土壤导水率的异质性越大,则Keff越小,和图3的结果一致,即异质性对排水具有减缓的作用,导致土壤的蓄水能力增加。

3.5 验 证

为证明重力占优的入渗理论和微扰展开法的适用性与准确性,在2个试验点进行排水试验,比较实测值与理论预测值。从图7a可看出,若Brooks-Corey模型的参数s和为非随机,当>12 h,试验点A和试验点B的蓄水能力基本一致。考虑异质性,当>4.8 h,试验点B的蓄水能力大于试验点A(图7b)。图8为试验点A和试验点B土壤粒径分布平均值,可以看出试验点A的土壤粒径分布范围比试验点B小,说明试验点B的孔隙度结构异质性更为显著,土壤粒径分布决定随机变量s和的平均值和方差,试验点A和试验点B的2/<>分别是0.11和0.58。试验点B的2/<>较大,排水能力差,土壤的蓄水能力增加,与之前的理论预测相一致(图3)。通过田间排水试验也可证明试验点B的排水能力小于试验点A(图7c)。通过增加土壤结构或土壤粒径分布的异质性,能提高土壤的蓄水能力,对维护稳定生态系统的土壤复垦十分有用。

4 结论与讨论

假设在一个单位梯度下,基于入渗理论和微扰展开法,本文采用Brooks-Corey模型及饱和导水率(K)和的随机波动研究在一维情况下,异质性土壤瞬态排水的过程。研究表明变量ln(K)的方差增大对排水过程具有减缓作用,且有较小的有效导水率Keff;异质土壤(K= 3 049 cm/d和2=0.5)与均质土壤(K=1 691.56 cm/d和2=0)的蓄水量相等,假设2个变量(和)之间的相关性为0,导水率的方差增加对减缓排水过程影响很大。土壤导水率的异质性越大,土壤蓄水能力越强。参数()和导水率的协方差变化对排水影响不大。理论分析结果与试验观测一致,研究结果表明土壤的异质性能提高蓄水能力。

本研究中涉及的公式和算法较复杂且验证的土壤样品的数量较少。因此,公式和算法的简化或改进,该模型的普适性验证是下一步的研究内容。

[1] 郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J]. 水土保持学报,2004,18(3):53-56.

Zheng Jiyong, Shao Ming’an, Zhang Xingchang. Spatial variation of surface soil’s bulk density and saturated hydraulic conductivity on slope in Loess Region[J]. Journal of Soil and Water Conservation, 2004, 18(3): 53-56. (in Chinese with English abstract)

[2] Arya L M, Leij F J, Shouse P J, et al. Relationship between the hydraulic conductivity function and the particle-size distribution [J]. Soil Sci Soc Am J, 1999, 63(5): 1063-1070.

[3] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Sci Soc Am J, 1980, 44(5):892-898.

[4] Zhuang L, Hassanizadeh S M, van Genuchten M T, et al. Modeling of horizontal water redistribution in an unsaturated soil[J/OL]. Vadose Zone Journal, 2016, 15(3):1-11. doi:10.2136/vzj2015.08.0109

[5] Mohammadi M H, Meskini-Vishkaee F. Predicting soil moisture characteristic curves from continuous particle-size distribution data[J]. Pedosphere, 2013, 23(1): 70-80.

[6] 肖庆礼,黄明斌,邵明安,等. 黑河中游绿洲不同质地土壤水分的入渗与再分布[J]. 农业工程学报,2014,30(2):124-131.

Xiao Qingli, Huang Mingbin, Shao Ming’an, et al. Infiltration and drainage processes of different textural soil moisture in middle reaches of Heihe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 124-131. (in Chinese with English abstract)

[7] 郭丽俊,李毅,李敏,等. 壤土土壤水力特性空间变异的多重分形分析[J]. 农业机械学报,2011,42(9):50-58.

Guo Lijun, Li Yi, Li Min, et al. Ultifractal study on spatial variability of soil hydraulic properties of lou soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 50-58. (in Chinese with English abstract)

[8] Wang Yunqiang, Shao Ming’an, Liu Zhipeng, et al. Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China[J]. Journal of Hydrology, 2013, 487(22): 13-23.

[9] 姚淑霞,赵传成,张铜会. 科尔沁不同沙地土壤饱和导水率比较研究[J]. 土壤学报,2013,50(3):45-53.

Yao Shuxia, Zhao Chuancheng, Zhang Tonghui. A comparison of soil saturated hydraulic conductivity in different Horqin sand land[J]. Acta Pedologica Sinica, 2013, 50(3): 45-53. (in Chinese with English abstract)

[10] Jirku V, Kodesova R, Nikodem A, et al. Temporal variability of structure and hydraulic properties of topsoil of three soil types[J]. Geoderma, 2013, 204(4): 43-58.

[11] 付同刚,陈洪松,王克林.喀斯特小流域土壤饱和导水率垂直分布特征[J]. 土壤学报,2015,52(3):538-546.

Fu Tonggang, Chen Hongsong, Wang Kelin. Vertical distribution of soil saturated hydraulic conductivity in a small Karst catchment[J]. Acta Pedologica Sinica, 2015, 52(3): 538-546. (in Chinese with English abstract)

[12] 刘春利,胡伟,贾宏福,等. 黄土高原水蚀风蚀交错区坡地土壤剖面饱和导水率空间异质性[J]. 生态学报,2012,32(4):1211-1219.

Liu Chunli, Hu Wei, Jia Hongfu, et al. Spatial heterogeneity of soil saturated hydraulic conductivity on a slope of the wind-water erosion crisscross region on the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(4): 1211-1219. (in Chinese with English abstract)

[13] Seyfried M S, Schwinning S, Walvoord M A, et al. Ecohydrological control of deep drainage in arid and semiarid regions[J]. Ecology, 2005, 86(2): 277-287.

[14] Sponseller R A, Fisher S G. The influence of drainage networks on patterns of soil respiration in a desert catchment[J]. Ecology, 2008, 89(4): 1089-1100.

[15] Galagedara L W, Parkin G W, Redman J D, et al. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage[J]. J Hydro, 2005, 301(Suppl 1): 182-197.

[16] Warrick A W. Soil Water Dynamics[M]. Oxford: Oxford University Press, 2003.

[17] Zhang Dongxiao. Nonstationary stochastic analysis of transient unsaturated flow in randomly heterogeneous media[J]. Water Resour Res, 1999, 35(4): 1127-1141.

[18] Tartakovsky A M, Garcianaranjo L, Tartakovsky D M.Transient flow in a heterogeneous vadose zone with uncertain parameters[J]. Vadose Zone Journal, 2004, 3(3): 154-163.

[19] Sisson J B, Ferguson A H, van Genuchten M Th. Simple method for predicting drainage from field plots[J]. Soil Sci Soc Am J, 1980, 44(6): 1147-1152.

[20] Rubin Y, Or D. Stochastic modeling of unsaturated flow in heterogeneous soils with water uptake by plant roots: The parallel columns model[J]. Water Resour Res, 1993, 29(3): 619-631.

[21] Dagan G. Solute transport in heterogeneous porous formations[J]. J Fluid Mech, 1984, 145: 151-177.

[22] Aris R, Amundson N R. Mathematical methods in chemical engineering[M]//First-Order Partial Differential Equations with Applications. Englewood, USA: Englewood Cliffs Prentice-Hall Inc, 1973.

[23] Russo D. Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation[J]. Water Resour Res, 1993, 29(2): 383-397.

[24] Brooks R H, Corey A T. Hydraulic properties of porous media[M]//Hydrol Papers 3. Colorado Fort Collins: Colorado State University, 1964.

[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am J, 1980, 44(5): 892-898.

[26] Gardner W R. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table[J]. Soil Sci, 1958, 85(4): 228-232.

[27] Russo D. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties[J]. Water Resour Res, 1988, 24(3): 453-459.

[28] Morel Seytoux H J, Meyer P D, Nachabe M, et al. Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics preserving the effective capillary drive[J]. Water Resour Res, 1996, 32(5): 1251-1258.

[29] Yeh T C J. One-dimensional steady state infiltration in heterogeneous soils[J]. Water Resour Res, 1989, 25(10): 2149-2158.

[30] Kosugi K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resour Res,1994, 30(4): 891-901.

[31] 徐绍辉,刘建立. 土壤水力性质确定方法研究进展[J]. 水科学进展,2003,14(4):494-501.

Xu Shaohui, Liu Jianli. Advance in approaches for determining unsaturated soil hydraulic properties[J]. Advances in Water Science, 2003, 14(4): 494-501. (in Chinese with English abstract)

[32] 李晓鹏,刘建立,张佳宝,等. 华北冲积平原壤质潮土的土壤粒径分形空间尺度分析[J]. 农业工程学报,2014,30(4):118-124.

Li Xiaopeng, Liu Jianli, Zhang Jiabao, et al. Analysis of fractal magnitude of soil particles in loamy Chao soils in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 118-124. (in Chinese with English abstract)

[33] 王金满,张萌,白中科,等. 黄土区露天煤矿排土场重构土壤颗粒组成的多重分形特征[J]. 农业工程学报, 2014, 30(4): 230-238.

Wang Jinman, Zhang Meng, Bai Zhongke, et al. Multi-fractal characteristics of reconstructed soil particle in opencast coal mine dump in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 230-238. (in Chinese with English abstract)

[34] 雷廷武,张婧,王伟,等. 土壤环式入渗仪测量效果分析[J]. 农业机械学报,2013,44(12):99-104.

Lei Tingwu, Zhang Jing, Wang Wei, et al. Assessment on soil infiltration rates measured by ring infiltrometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 99-104. (in Chinese with English abstract)

[35] Wolfram S. The Mathematica Book[M]//3rd ed. Champaign: Wolfram Media, 1996.

Transient stochastic analysis on influence ofhydraulic heterogeneity ondrainage in soils

Diao Wanying1, Liu Gang1※, Si Bingcheng2

(1.100193; 2.712100)

Water draining and redistribution from soil profiles is important for both ecologicaland hydrological modeling. In reality, the vertical hydraulic conductivity is highly variable because of the heterogeneity of soil. Therefore, the objectives of this study were 1) to conduct the stochastic analysis of a one-dimensional transient drainage problem under a unit gradient assumption; 2) to quantify the influence of uncertainty of the hydraulic conductivity using the perturbation method and kinematic wave model; and 3) to verify the stochastic analysis and the analytical solution. Field experiments were carried out at 2 experimental sites (site A: 57°05'57'' N, 111°38'54'' W and site B: 56°56'36'' N, 111°31'57'' W) in the north of Fort McMurray, northeastern Alberta, Canada. A double-ring infiltrometer consisted of 2 metal rings with the inner ring diameter of 60 cm and the outer ring diameter of 120 cm was used to measure soil infiltration and drainage. In addition, soil water content was determined by EnviroSCAN probe (EnviroSCAN, Sentek Pty Ltd., South Australia). The parameters in Brooks-Corey model for homogeneous soil (site A) and heterogeneous soil (site B) were obtained from the particle size distribution (PSD) data. The results showed that the saturated water content (θ) of site A and site Bwere 0.483and 0.415 cm3/cm3, respectively. The PSD indexexpected value of site A and site Bwere 3 and 4.09, respectively. The saturated hydraulic conductivityof site A and site Bwere937 and 3 049 cm/d, respectively. The water draining process was slowly decreased when the variance of hydraulic conductivity was increased from 0 to 0.5. There was the same relative water storage when the saturated hydraulic conductivity of site A and site Bwere1 691.56 and 3 049 cm/d, respectively; and the variance of hydraulic conductivity were 0 and 0.5, respectively. The relative water storage difference among heterogeneous soil was remarkable when the time was more than 9.6 hours, and the trend was that at long time limit, the larger the soil water storage capacity should be. The draining of water was sensitive to the variance of hydraulic conductivity, but it was less sensitive to the fluctuation of PSD index, as well as to the covariance of hydraulic conductivity and PSD index. The larger the heterogeneity of soil hydraulic conductivity was, the smaller the effective saturated hydraulic conductivity was. The introduction of heterogeneities would slow down the draining and increase the water storage ability. Taking the heterogeneous characteristic into account, the site B had larger water storage capacity than the site A when time was more than 4.8 hours. However, the 2 sites had nearly the same water storage ability after 12 hours, when no stochastic characteristic in parameters of Brooks-Corey model was considered, such as soil hydraulic conductivity and PSD index. Two field experiments were in agreement with the theoretical predictions. The ratio of the variance and the expected value operator of hydraulic conductivity were 0.11 and 0.58 for site A and site B, respectively. The heterogeneous site B would hinder the draining of water and increase the water storage ability, which was also coincident with the theoretical prediction. The variance of hydraulic conductivity would cause the slowing down of the drainage process and thus result in a smaller effective saturated hydraulic conductivityIn conclusion, we could improve the water storage ability of soil by introducing heterogeneity in soil structure or particle size distribution. The analytical result agreed with the experimental observation, which hinted that making soil heterogeneous would be better for improving the water storage ability. This study is useful for soil reclamation whose objective is to produce a long-term self-sustaining ecosystem with high field capacity.

heterogeneity; drainage; hydraulic conductivity; kinematic wave; Brooks-Corey model; particle size distribution; soils

10.11975/j.issn.1002-6819.2016.24.014

S152.7

A

1002-6819(2016)-24-0107-07

2016-03-09 修订时间:2016-08-10

国家重点研发计划项目资助(2016YFD0800102);国家自然科学基金资助项目(41371231)

刁万英,女,新疆博乐人,博士生,主要从事土壤含水量测量方法的研究。北京 中国农业大学土壤与水科学系,100193。Email:diaowanying@126.com

刘刚,男,山东威海人,教授,博士生导师,主要从事土壤物理热特性和土壤含水量测量方法的研究。北京 中国农业大学土壤与水科学系,100193。Email:liug@cau.edu.cn

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!