当前位置:首页 期刊杂志

气流粉碎对玉米淀粉结构及理化性质的影响

时间:2024-05-24

王立东,肖志刚



气流粉碎对玉米淀粉结构及理化性质的影响

王立东1,2,肖志刚2※

(1. 黑龙江八一农垦大学国家杂粮工程技术研究中心,大庆163319; 2. 东北农业大学食品学院,哈尔滨150030)

为研究气流粉碎对玉米淀粉结构及理化性质的影响,该文以普通玉米淀粉为原料,通过流化床气流粉碎处理,采用扫描电子显微镜、偏光显微镜、粒度分析仪、X-射线衍射仪、红外光谱仪、差示扫描量热仪、快速黏度分析仪等分析手段研究经微细化处理前后玉米淀粉颗粒形貌、晶体结构、热力学特性、糊化特性、溶解度和膨胀度、冻融稳定性、持水能力等结构及性质的变化。结果表明,微细化处理后,淀粉颗粒形变的不规则,粒径明显减小,中位径(D50)由14.37m减小到5.25m,偏光十字减少,相对结晶度由33.43%降低至15.46%,淀粉颗粒结晶结构被破坏,由多晶态向无定形态转变,粉碎过程淀粉无新的基团产生;热焓值、糊化温度均降低,热糊稳定性好;溶解度、膨胀度均升高,持水能力增加,冻融稳定性好,产生较好的热糊稳定性和冷糊力学稳定性,该研究为玉米淀粉的深度加工与应用提供了理论依据及技术支撑。

微观结构;物理性质;化学性质;气流粉碎;玉米淀粉

0 引 言

淀粉是由直链淀粉和支链淀粉组成的一种颗粒状多晶聚合物,颗粒内存在结晶和非晶结构。受制于其多晶体系结构,天然淀粉存在不溶于冷水,成膜性、吸附性、抗酸碱能力及抗机械破坏能力差等缺陷,不适用于现代新技术、新工艺、新产品的开发应用[1-4]。近年来,随着粉体微细化技术的快速发展,淀粉微细化处理的研究受到了普遍关注,通常采用物理手段改善淀粉颗粒的结构和性能[5]。

当前国内外相关研究大多集中于机械球磨处理对玉米淀粉[6-7]、马铃薯淀粉[8]、大米淀粉[9]、木薯淀粉[10-11]、绿豆淀粉[12-13]等性质的影响研究,淀粉经过超微粉碎处理后其结构和多孔性发生了显著变化,颗粒的形貌、粒度和均匀度均发生改变,晶体结构和淀粉链长发生改变,导致诸如溶解度、膨胀度、分散性、热力学性质、糊化性质和黏度性质等发生改变。而利用气流粉碎技术进行对淀粉微细化的研究则相对较少,气流粉碎技术是指固体颗粒在高速气流机械力的作用下,通过摩擦、碰撞、冲击作用,使颗粒粉碎,从而改变颗粒的结构和物化性能[14-15]。气流粉碎技术作为微细化处理的有效有段,已被广泛应用于精细化工、精细陶瓷、食品、生物医药、纳米材料等行业[16]。因此,本研究以普通玉米淀粉为原料,利用流化床气流粉碎设备进行处理,得到颗粒较小的微细化玉米淀粉,并对其微观结构和理化性质进行分析,从而确定气流粉碎微细化处理对玉米淀粉性质的影响,为拓展淀粉资源的理论研究及深度开发利用提供理论与实践指导。

1 材料与方法

1.1 材料与试剂

普通玉米淀粉原料由黑龙江龙凤玉米开发有限公司提供,食品级,水分13.5%,细度(100目分样筛透过率)99.1%;其他分析纯试剂为天津市天大化学试剂厂和沈阳化学试剂厂生产。

1.2 仪器与设备

主要仪器:LHL型流化床式气流粉碎机,山东潍坊正远粉体工程设备有限公司。

S-3400N扫描电子显微镜,日本HITACHI公司;X'Pert PRO X-射线衍射仪,荷兰帕纳科公司;Bettersize 2000激光粒度分布仪,丹东市百特仪器有限公司;Nicolet 6700红外光谱仪,美国Thermo Fisher Scientific 公司;RVA4500快速黏度分析仪,瑞典Perten公司;DSC1型差示扫描量热仪,瑞士梅特勒-托利多仪器有限公司;AR2140型分析天平,瑞士梅特勒-托利多仪器有限公司。

1.3 试验方法

1.3.1 气流粉碎微细化玉米淀粉的制备

称取普通玉米淀粉300 g,开启分级机变频器,设定变频器频率为50 Hz,启动引风机,启动供气开关,设定空气压力为0.8 MPa,启动进料变频机,控制进料速度为180 r/min,气流粉碎90 min,在收集器中收集样品,密封保存备用。

1.3.2 淀粉颗粒形态与粒度分析

采用扫描电子显微镜(scanning electron microscope,SEM)进行淀粉颗粒形态表征,参照王立东等[12]的方法,加速电压为10 kV;淀粉偏光十字采用偏光显微镜(polarizing microscope, PM),以甘油为分散剂,配制1%淀粉乳进行观察;淀粉粒度分布采用激光粒度分布仪(laser particle analyzer, LPA),以去离子水作为分散溶剂测定。

1.3.3 X-射线衍射分析

测试条件参照王立东等[12]和刘天一等[17]的方法:衍射角2,4°~37°;步长,0. 02°;扫描速度,8 °/min;靶型,Cu;管压、管流,40 kV、30 mA。淀粉相对结晶度(relative crystallinity,RC)的计算参照Nara等[18]的方法,使用MDI Jade软件进行分析计算,取3次拟合结果平均值。

1.3.4 红外光谱分析

红外光谱(fourier transform infrared,FTIR)测定方法和条件参照Fang等[19]和刘天一等[20]的方法,波长的扫描范围为400~4 000 cm-1。

1.3.5 热特性分析

热特性分析(differential scanning calorimetry,DSC)方法和条件参照Huang等[21]的方法,相变参数分别用起始温度(0)、峰值温度(t)、最终温度(t)表示,加热范围为30~150 ℃,扫描速率10 ℃/min.

1.3.6 糊化特性分析

糊化特性(rapid viscosity analyzier,RVA)测定参照Yao等[22]和王立东等[13]的方法,采用Std1升温程序,谱图特征峰值分别用峰值黏度(ν)、谷值黏度(ν)、最终黏度(ν)表示,其中谷值黏度代表热糊黏度,最终黏度代表冷糊黏度,衰减度(ν=νν)和回生值(ν=νν)表示,黏滞值单位用cP表示。

1.3.7 微细化淀粉特性研究

以未处理玉米淀粉为参照,进行气流粉碎玉米淀粉溶解度、膨胀度的测定,按照文献[23]提供的方法进行;持水能力测定,按照文献[24]提供的方法进行;冻融稳定性测定,按照文献[25]提供的方法进行。

1.3.8 数据处理

采用Graphpad Prism 6.0软件进行数据处理,测定重复次数=3。

2 结果与分析

2.1 淀粉颗粒形态与粒度分布

气流粉碎前后淀粉颗粒形貌变化如图1所示。由图1可见,原玉米淀粉的颗粒呈多角形或圆形,表面光滑,结构紧密。淀粉颗粒在机械力的作用下,表面破裂,发生变形,部分被撞击成细小颗粒,部分被撞击出凹洞,颗粒呈不规则形状,整体粒形变小。

偏光十字是天然淀粉颗粒在偏光显微镜下呈现的双折射特性,当天然淀粉颗粒晶体结构受到破坏,由有序结构向无序结构转变时,偏光十字就会消失[26]。从图2可见,原玉米淀粉颗粒偏光十字效果较好,而气流粉碎制备的微细化玉米淀粉由于受到气流机械力的作用,表面破裂,粒度明显减小或呈现孔洞,发生一定的变形,偏光十字明显减少,说明气流粉碎能够导致淀粉颗粒非晶化过程的发生。

微细化玉米淀粉的中位径(50)和颗粒分布情况见图3。由图3可知,原玉米淀粉的粒径分布曲线突出显示一尖峰,说明其粒径分布较窄,粒度比较集中,主要分布在10~20m范围内,中位径50为14.37m;而微细化玉米淀粉的粒径分布曲线峰宽变宽,颗粒向更小粒度均匀分布,主要分布在1~10m范围内,含量达79.34%,中位径减小到5.25m。这是因为经过气流机械碰撞后,在冲击力、摩擦力和碰撞力作用下使淀粉颗粒发生脆性断裂,产生一定的形变,导致粒径减小,粒度向更小范围集中。这与扫描电镜观察颗粒形貌变化现象一致。

a. 原玉米淀粉

a. Raw maize starch

b. 微细化玉米淀粉

b. Micronized maize starch

注:10、50、90分别表示粒度分布曲线中累计分布为10%、50%、90%时的最大颗粒的平均粒径。

Note:10,50,90 shows the mean grain size with the largest particles of cumulative distribution in particle size distribution curve at 10%, 50%, 90%.

图3 原玉米淀粉和微细化玉米淀粉的粒度分布曲线

Fig.3 Size distribution curve of raw maize starch and micronized maize starch

2.2 X-射线衍射分析

微细化处理前后玉米淀粉的XRD曲线如图4所示。由图可以看出,原玉米淀粉在衍射角2为15°、17°、18°和23°时出现较强的衍射峰特征,为典型的A型结构,相对结晶度为33.43%,具有一定的刚度。经过处理得到的微细化玉米淀粉的衍射图谱仍为A型结构,但吸收峰的强度明显减弱,相对结晶度由33.43%降低至15.46%。说明气流粉碎处理对玉米淀粉的晶型特征没有明显影响,但使得淀粉的结晶度显著降低,非晶区增加。

2.3 红外光谱分析

红外光谱可表征淀粉颗粒的分子特征,通过图谱可检测是否有新的基团生成[12]。由图5可以看出,当玉米淀粉颗粒经过气流超微粉碎处理后,没有新的特征吸收峰出现,说明气流粉碎处理没有产生新的基团。图5中在3 422 cm-1处为O-H缔合氢键后的伸缩振动峰,2 930 cm-1处为C-H键伸缩振动峰,淀粉经过微细化处理后,两峰的峰宽变窄,强度增大,说明淀粉分子中的氢键由复杂向单一转化[20]。1 648 cm-1处为H2O的特征峰,无明显变化。1 082 cm-1处为淀粉结构中C-O-H振动吸收峰,992 cm-1处为淀粉结构C-O-C中C-O的振动吸收峰,且强度减弱,在1 082~992 cm-1之间出现明显特征峰强度增大,刘天一等[20]认为1 047和1 018 cm-1处C-O-H弯曲振动是淀粉中有序结构和无序结构特征峰,图中吸收峰强度的变化,说明淀粉结构发生改变。经过分析表明,微细化处理后淀粉中无新的基团产生,部分吸收峰强度的变化说明了淀粉已由有序向无序结构转变。

2.4 热特性分析

从图6中DSC曲线可以看出,原玉米淀粉存在一个明显的吸收峰,该吸收峰的热焓值为22.55 J/g,糊化起始温度为63.61 ℃,糊化峰值温度为68.37 ℃,糊化终止温度为76.02 ℃。而微细化玉米淀粉吸收峰明显减弱,热焓值为14.29 J/g,糊化起始温度为59.88 ℃,糊化峰值温度为67.95 ℃,糊化终止温度为79.92 ℃。相比较可以得出,经过微细化处理后,玉米淀粉的热焓值、各峰值温度均存在降低现象,气流粉碎微细化处理对玉米淀粉的热力学性质产生了一定的影响。玉米淀粉颗粒由无定型区和结晶区连结,在发生水合/溶胀的同时伴随晶体结构的变化,微细化处理后玉米淀粉热焓值和糊化温度的下降,说明淀粉颗粒内部分子链有序排列程度下降,淀粉颗粒已由结晶态向无定形态转变[13,27]。

2.5 糊化特性分析

原玉米淀粉与微细化玉米淀粉的RVA曲线如图7所示。由图可以看出,原玉米淀粉与微细化玉米淀粉的ν值分别为5 216、1 823 mPa·s,ν值分别为2 636、1 324 mPa·s,ν值分别为4 626、2 676 mPa·s,各黏度值均明显降低,主要是由于淀粉经过微细化处理后,淀粉颗粒受到破坏,淀粉结晶度低,形成淀粉糊的流动阻力下降,因此各特征黏度值均下降。原玉米淀粉的衰减值ν为微细化玉米淀粉的5.17倍,回生值ν为微细化玉米淀粉的1.47倍,微细化玉米淀粉的热糊稳定性优于原玉米淀粉,与刘天一等[17]通过球磨处理玉米淀粉得到的现象一致,且此种淀粉不易老化、回生,提高了淀粉颗粒的冷糊稳定性。气流超微粉碎处理后,使得玉米淀粉具有更好的黏度稳定性,更适于应用到高黏度的体系中。

2.6 溶解度和膨胀度

图8为原玉米淀粉和微细化玉米淀粉的溶解度和膨胀度的变化。

由图8可以看出,随着温度的逐渐升高,淀粉颗粒的溶解度和膨胀度均逐渐增大,且在同一温度条件下,微细化玉米淀粉优于原淀粉,说明气流粉碎处理能够提高淀粉的溶解度和膨胀度。其原因是随着温度的逐渐升高,淀粉晶体结构受到破坏,游离水更易渗透到淀粉分子内部,提高其溶解度和膨胀度[17,28]。同时,由于气流粉碎机械力的作用,淀粉颗粒形貌发生很大变化,粒度明显减小,导致比表面积增大,孔隙率增多,因此微细化玉米淀粉的溶解度和膨胀度高于原淀粉[29]。

2.7 持水能力和冻融稳定性

图9为原玉米淀粉和微细化玉米淀粉的持水能力和冻融稳定性的变化。从图9可以看出,在持水能力方面,气流粉碎微细化玉米淀粉持水能力优于原淀粉,为原淀粉的3.7倍,这可能是微细化处理破坏淀粉的晶体结构,水分子更易渗透到淀粉颗粒内部与氢键结合,使得淀粉持水能力提高。在冻融稳定性方面,冻融稳定性与淀粉的析水率负相关[30]。从图中析水率的变化可以看出,气流粉碎微细化玉米淀粉析水率低于原淀粉,即微细化玉米淀粉冻融稳定性由于原淀粉,说明经过气流粉碎处理后,淀粉具有更好的冻融稳定性。

3 结 论

1)气流超微粉碎制备微细化玉米淀粉,由光滑的颗粒被粉碎成形状不规则的细小颗粒,淀粉颗粒偏光十字减少,粒度及中位径减小,中位径(D50)减小到5.25m,淀粉颗粒的结晶结构受到破坏,相对结晶度由33.43%降低至15.46%,粉碎过程无新的基团产生。

2)玉米淀粉经过微细化处理,其热特性和糊化特性发生改变,表现为热焓值和糊化黏度值显著降低,具有较好的热糊稳定性和冷糊稳定性,使得玉米淀粉更适于应用到高黏度的体系中。

3)玉米淀粉经过微细化处理,溶解度和膨胀度均较原玉米淀粉大,解决淀粉不易溶解的难题;其持水能力明显增加,为原玉米淀粉的3.7倍;微细化玉米淀粉具有更好的冻融稳定性,不易凝沉。

[1] Yan H, Gu Z B. Morphology of modified starches prepared by different methods[J]. Food Research International, 2010, 43(3): 767-772.

[2] Zhang Y, Zeng H L, Wang Y, et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food Chemistry, 2014, 155(19): 311-318.

[3] Liu P L, Zhang Q, Shen Q, et al. Effect of high hydrostatic pressure on modified noncrystalline granular starch of starches with different granular type and amylase content[J]. LWT-Food Science and Technology, 2012, 47(2): 450-458.

[4] Cai J, Cai C, Man J, et al. Crystalline and structural properties of acid-modified lotus rhizome C-type starch[J]. Carbohydrate Polymers, 2014, 102(1): 799-807.

[5] 蔡艳华,马冬梅,彭汝芳,等. 超音速气流粉碎技术应用研究新进展[J]. 化工进展,2008,27(5):671-674,714.

Cai Yanhua, Ma Dongmei, Peng Rufang, et al. New research progress of supersonic speed airflow grinding technology[J]. Chemical Industry and Engineering Progress, 2008, 27(5): 671-674, 714. (in Chinses with English abstract)

[6] Liu T Y, Ma Y, Yu S F, et al. The effect of ball-milling treatment on structure and porosity of maize starch granule[J]. Innovative Food & Emerging Technologies, 2011, 12(4): 586-593.

[7] 吴俊,文庆珍. 微细化玉米淀粉粒度效应及其流变学行为研究[J]. 高分子材料科学与工程,2007,23(6):148-151.

Wu Jun, Wen Qingzhen. Study on the granularity effect of micronized starch and its rheological property[J]. Polymer Materials Science & Engineering, 2007, 23(6): 148-151. (in Chinses with English abstract)

[8] Kim Y J, Suzuki T, Hagiwara T, et al. Enthalpy relaxation and glass to rubber transition of amorphous potato starch formed by ball-milling[J]. Carbohydrate Polymers, 2001, 46(3): 1-6.

[9] Zhang Zhengmao, Zhao Siming, Xiong Shanbai. Morphology and physicochemical properties of mechanically activated rice starch[J]. Carbohydrate Polymers, 2010, 79(4): 341-348.

[10] Martinz B F, Lopez S M, SanMartin M E, et al. Effects of high energy milling on some functional properties of Jicama starch and Cassava starch[J]. Journal of Food Engineering, 2007, 78(4): 1212-1220.

[11] 徐中岳,罗志刚,何小维. 湿法超微粉碎对木薯淀粉理化性质的影响[J]. 中国粉体技术,2009,15(6):26-29.

Xu Zhongyue, Luo Zhigang, He Xiaowei. Effects of wet micro-comminuting on properties of cassava stcrch[J]. China Powder Science and Technology, 2009, 15(6): 26-29. (in Chinses with English abstract)

[12] 王立东,刘婷婷,寇芳,等. 球磨研磨对绿豆淀粉颗粒结构及性质的影响[J]. 中国食品添加剂,2016,149(7):167-172.

Wang Lidong, Liu Tingting, Kou Fang, et al. Effect of ball milling on granule structure and physicochemical property of mung bean Starch[J]. China Food Additives, 2016, 149(7): 167-172. (in Chinses with English abstract)

[13] 王立东,刘婷婷,张丽达,等. 机械活化处理对绿豆淀粉颗粒结构及性质的影响[J]. 中国酿造,2016,35(8):137-141.

Wang Lidong, Liu Tingting, Zhang Lida, et al. Effect of mechanical activation treatment on physicochemical properties of mung bean starch[J]. China Brewing, 2016, 35(8): 137-141. (in Chinses with English abstract)

[14] Boldyrev V V. Mechanical activation of solid and its application to technology. Journal de Chimie Physique, 1986, 83(11/12): 821-829.

[15] 郜俊,单玉海,张建民,等. 流化床式气流粉碎机粉碎硅酸钙试验研究[J]. 中国非金属矿工业导刊,2014,110(3):21-23.

Gao Jun, Shan Yuhai, Zhang Jianmin, et al. Research of grinding calcium silicate experimental through fluidized bed jet mill[J]. China Non-Metallic Mining Industry Herald, 2014, 110(3): 21-23. (in Chinses with English abstract)

[16] 罗文,蔡艳华,郝海涛,等. 超微气流粉碎技术的应用研究[J]. 重庆文理学院学报,2013,32(3):34-38.

Luo Wen, Cai Yanhua, Hao Haitao, et al. Research for application of superfine jet milling technology[J]. Journal of Chongqing University of Arts and Sciences, 2013, 32(3): 34-38. (in Chinses with English abstract)

[17] 刘天一,马莺,李德海,等. 非晶化玉米淀粉的理化性质[J]. 哈尔滨工业大学学报,2010,42(4):602-607.

Liu Tianyi, Ma Ying, Li Dehai, et al. Physicochemical properties of non-crystalline maize starch[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 602-607. (in Chinses with English abstract)

[18] Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch[J]. Starch, 1983, 35(12): 407-410.

[19] Fang J M, Fowler P A, Tomkinson J, et al. The Preparation and Characterisation of a Series of Chemically Modified Potato Starches[J]. Carbohydrate Polymers, 2002, 47(3): 245-252.

[20] 刘天一,马莺,陈历水,等. 非晶化玉米淀粉的制备及其结构表征[J]. 哈尔滨工业大学学报,2010,42(2):286-291.

Liu Tianyi, Ma Ying, Chen Lishui, et al. Preparation and structural characterization of non-crystalline maize starch[J]. Journal of Harbin Institute of Technology, 2010, 42(2): 286-291. (in Chinses with English abstract)

[21] Huang Z Q, Lu J P, Li X H, et al. Effect of mechanical activation on physico-chemical properties and structure of cassava starch[J]. Carbohyd Polym, 2007, 68(1): 128-135.

[22] Yao N, Paez A V, White P J. Structure and function of starch and resistant starch corn with different doses of mutant amylase-extender and floury-1 alleles[J]. J Agr Food Chem, 2009, 57(5): 2040-2048.

[23] Clement A O, Vasudeva S. Physico-chemical properties of the flours and starches of two cowpea varieties ((L.) Walp)[J]. Innovative Food Science&Emerging Technologies, 2008, 9(1): 92-100.

[24] Singh N, Singh S K, Kaur M. Characterization of starches separated from Indian chickpea cultivars[J]. Journal of Food Engineering, 2004, 63(4): 441-449.

[25] Kaur M, Singh N, Sandhu K S, et al. Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of Some Indian Mango Cultivars (L.)[J]. Food Chemistry, 2004, 85(1): 131-140.

[26] 刘天一. 笼状绿豆淀粉的制备及结构与性能研究[D]. 哈尔滨:哈尔滨工业大学,2014.

Liu Tianyi. Preparation of Clathrate Maize Starch and Its Structures and Properties[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinses with English abstract)

[27] 张本山,徐立宏,高大维. 用差示扫描量热法研究高交联非糊化淀粉的物态性质[J]. 食品科学,2002,23(5):91-93.

Zhang Benshan, Xu Lihong, Gao Dawei.Using differential scanning calorimetry study high crosslinking of state properties of gelatinized starch [J]. Food Science, 2002, 23(5): 91-93. (in Chinses with English abstract)

[28] Santlago M C, Bello-Preza L A,Tecante A. Swelling- solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch[J]. Carbohydrate Polymers, 2004, 56(1): 65-75.

[29] Brox T, Weickert J. Level set segmentation with multiple regions[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3213-3218.

[30] 黄祖强,童张法,胡华宇,等. 机械活化对木薯淀粉冻融稳定性的影响[J]. 食品工业科技,2006(3):58-60.

Huang Zuqiang, Tong Zhangfa, Hu Huayu, et al. The influence of mechanical activation of cassava starch freeze-thaw stability[J]. Science and Technology of Food Industry, 2006(3): 58-60. (in Chinses with English abstract)

Effect of jet-milling on structure and physicochemical properties of maize starch

Wang Lidong1,2, Xiao Zhigang2※

(1.163319,; 2.150030,)

Jet-milling is one of the effective techniques that can alter structure and properties of starch. In this research, the effect of modification in terms of molecular structure and its physicochemical properties of maize starch was studied by scanning electron microscopy (SEM), laser particle size analyzer (LPA), X-ray diffractometry (XRD), fourier transform infrared (FTIR), differential scanning calorimetry (DSC), rapid visco analyzer (RVA). The properties of starch solubility, swelling power, water binding capacity, freeze-thaw stability, were also studied. The results show that the shape of maize starch granule changed from native polyhedron to anomalistic state through the jet-milling superfine grinding processing. The starch granules were crashed into tiny particles and even part of them fracted. The distribution of starch granules became more concentrated. The distribution of raw maize granules concentrated from 10m to 20m before the milling, whose median diameter was 14.37m. The distribution of micronized maize granules concentrated from 1m to 10m, and the median diameter decreased to 5.25m. Meanwhile, the polarization cross of micronized maize starch graule reduced gradually. Through the jet-milling superfine grinding processing, the feature of peak diffraction in the diffractogram gradually weakened, including the widened half peak width and decreased peak intensity. The micronized starch showed A-type pattern, which displayed the diffraction peak on diffraction angle 2at 15°, 17°, 18° and 23°. The crystal structure was destroyed and the crystallinity decreased from polycrystalline to amorphous state while jet-milling, with relative crystallinity decreasing from 33.43 % to 15.46 %. Through the jet-milling superfine grinding processing, the feature of infrared spectroscopy showed no new characteristic absorption peaks. Vibration band narrowed down and strengthened at 3 422and 2 930 cm-1, while weakened at 1 082 cm-1and 992 cm-1. Meanwhile, the enthalpy and peak temperature changed after the milling. The pasting temperature of micronized maize starch decreased, including initial temperature, peak temperature and final temperature. Enthalpy also decreased from 22.25 to 14.29 J/g. All that made the significant influence of thermodynamic property of micronized starch. The viscosity of micronized maize starch also decreased, including peak viscosity, final viscosity, breakdown viscosity and set back viscosity. Degree of decay and retrogradation value of micronized maize starch were below 2.5 times and 1.47 times respectively for the native maize starch. The solubility and the swelling power of the samples showed a significant increase at the same measuring temperature, and the solubility and swelling power also increased with increasing temperature at the same superfine milling time. Furthermore, the water binding capacity and freeze-thaw stability of the micronized starch changed for the better than the untreated. The results shows that the jet-milling can change microstructure, physical and chemical properties of maize starch. The effect of jet-milling of maize starch exhibited a better both hot stability and cool stability of paste. It is not a simple physical modification method for starch to be processed by superfine grinding with jet-milling. It is a homeostasis process that changes the complex energy conversion and starch properties. This study provides a theoretical basis and technical support for improving deep exploitation and utilization of maize starch, respectively.

microstructure; physical properties; chemical properties; jet-milling; maize starch

10.11975/j.issn.1002-6819.2016.24.037

TS235

A

1002-6819(2016)-24-0276-06

2016-07-12

2016-10-18

国家星火计划项目 (2015GA670008);黑龙江省科技厅科技特派员项目(GC15B503);大庆市指导性科技计划项目(S2dfy-2015-53)

王立东,男,黑龙江兰西人,博士生,助理研究员,主要从事淀粉资源的深度开发与利用和谷物方便食品研究与开发。大庆 黑龙江八一农垦大学国家杂粮工程技术研究中心,163319。Email:wanglidong-521@163.com

肖志刚,男,教授,博士生导师,主要从事农产品加工及贮藏工程技术研究。哈尔滨 东北农业大学食品学院,150030。 Email:zhigangx@sina.com

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!