当前位置:首页 期刊杂志

超高压增大食品物料的导热系数

时间:2024-05-24

孙 伟,李建平,郑小伟,朱松明,于 勇



超高压增大食品物料的导热系数

孙 伟,李建平※,郑小伟,朱松明,于 勇

(浙江大学生物系统工程与食品科学学院,杭州 310058)

食品物料在超高压下的导热系数是研究超高压加工过程中传热与温度变化的必要参数,但有关超高压下食品物料的导热系数数据和测量方法还十分缺乏。该文基于线热源法设计了适用于超高压力环境下食品物料导热系数的测量探针和聚甲醛样品容器,利用1.5%琼脂凝胶对热探针在25℃不同压力下(0.1~400 MPa)进行标定试验,结果表明测量值与纯水导热系数的参考值非常接近且呈良好的线性相关关系(2=0.9997),据此得到探针的标定系数为0.9944。在25 ℃测量了蛋清、蛋黄、火腿肠和奶油在0.1~400 MPa压力下的导热系数值。结果发现:在25 ℃条件下,超高压下食品物料的导热系数较常压下均有一定程度的增大(最大达到28%),且有随压力增大而增大的趋势;一定压力条件下,食品物料的导热系数随着含水量的增大而增大。建立了25 ℃条件食品物料在一定压力范围内(0.1~400 MPa)导热系数预测的经验公式,对研究的几种食品物料拟合得到的方程回归系数在0.91以上。

导热系数;食品加工;超高压;探针法;线热源

0 引 言

超高压加工(Ultra high pressure processing,UHPP)是一项发展极为迅速的食品加工新技术,指在常温或低温条件下利用100~1 000 MPa压力处理食品物料,以达到杀菌[1-3]、钝酶[4-5]和改善食品理化特性[6-7]的目的。在对食品物料进行超高压加工时会产生压缩升温(compression heating)效应,压缩升温值在2.4~12.8 ℃/100 MPa(取决于食品成分、压力以及初始温度)[8-11]。在超高压处理过程中,由于腔体、物料以及传压介质具有不同的压缩升温特性,高压容腔内部的温度差及其传热的变化不可避免。这一压缩过程中建立起来的温度梯度会引起超高压作用的非均匀性(如对微生物、酶的钝化)[12]。

数学模拟是研究复杂系统的传热与温度变化的一种有效手段,已有不少学者做过超高压系统的传热模拟研究[13-16]。但由于缺乏物料在超高压下的热特性数据,模拟研究受到很大的限制。物料的导热系数是研究传热与温度变化的必要参数,但是物料在超高压下的导热系数是随着压力的变化而变化的,有关超高压下食品物料导热系数的数据还十分缺乏。目前国际上只有少数几个实验室能进行这方面的测试研究,如比利时的Leuven大学[17]、美国的Ohio州立大学[18-19]、加拿大的McGill大学[20-21]。国内还未见到这方面研究的报道,多为综述[22-23],其原因是缺乏适用于超高压条件下的测试技术[24]。

本文在经过改造后加装温度检测和通电装置的超高压设备的基础上,利用自行设计的热探针和聚甲醛传压容器对超高压下食品物料的导热系数进行测试,研究食品物料的导热系数随压力变化的规律。

1 材料与方法

1.1 探针法原理

探针法测量物料的导热系数是基于线热源瞬态传热模型,通过对插入无限大均匀样品中的探针输入一恒定功率的热量,测量一段时间内探针的温度变化。被测样品的导热系数可由下式求得[25-27]

式中为导热系数值,W/(m·℃),为输入热量的功率,W/m,和0为分别为测量结束的时间和测量开始的时间,s,和0为分别为测量结束和测量开始时的探针温度,℃,为检测到的探针内温度对时间的自然对数的线性回归系数。

1.2 热探针和样品容器的设计

热探针和样品容器的结构如图1所示。探针管使用不锈钢毛细管(长72 mm,外径1.2 mm,壁厚0.1 mm)制作。探针的长度与外径比例较大(60∶1),使得其轴向传热很小,可以忽略不计[28]。加热丝采用康铜丝(直径0.076 mm,TFCC-003,美国Omega Stamford公司)制作,因为康铜的电阻率较大(48.9Ω·cm,20 ℃)而电阻的温度系数较小(0.1×10-4℃-1,0~100 ℃),可以保证试验过程中加热丝的电阻恒定,从而保证加热丝的功率恒定。加热丝对折后装入整个探针内,上端露出3~5 mm的引线用于外接导线,加热丝表面涂有聚四氟乙烯绝缘层以防止短路。探针温度通过K型热电偶(美国Omega Stamford公司)测量,因为在试验所测温度范围内,超高压力不会影响K型热电偶的读数[29-30],测温点(即热电偶探头)布置在探针管内表面的中间位置。探针的下端通过焊接密封,以避免在高压下样品进入探针内,探针的上端无需密封,使得传压介质水能进入探针,可以防止探针在高压下被压缩变形[17]。

试验采用自制的聚甲醛(导热系数较低,满足试验对于保温效果的要求,同时具有良好的机械性能,在高压下不易变形)套筒(内径60 mm,外径80 mm,高度200 mm)作为样品容器。套筒顶端密封盖与套筒通过螺纹连接,可以打开装填样品,密封盖中间开有通孔便于热探针的安装。底部可滑动活塞起到传压作用,活塞两侧面积相等,可以实现等压传递,保证了在超高压下,容器内样品所受压力与高压容腔的压力相等。在试验过程中,每次超高压处理前后都检查活塞的位置,结果发现处理前后活塞的位置没有发生变动,说明容器在超高压下的密封效果良好。

1.3 超高压试验装置

试验采用的超高压处理设备(HPP/600 MPa/5 L)由包头科发高压科技有限责任公司提供,并通过改造在高压容腔中加装温度检测单元和通电装置。如图2所示。设备的最大工作压力为600 MPa,有效处理容积为5 L(内径120 mm),有效工作温度为5~80 ℃,传压介质为纯净水。该设备的增压速率约为160 MPa/min,卸压时间小于5 s。传压介质容器(水箱)中安装有温度传感器和电加热棒,高压容腔外的保温夹层中安装有温度传感器和电加热带,传压介质水的温度和高压容腔的温度控制可以通过仪器设置中的水箱温度和容腔温度设定来实现。

高压容腔的下堵头处开有小孔,热电偶线和导线得以穿入容腔内部,导线外部连接直流稳压电源(DC 36V-3A,台湾LAOA公司)。试验过程中系统的压力、探针内热电偶的温度以及通过加热丝的电流利用Agilent 34970A型数据采集仪(美国Agilent公司)在计算机上记录(每秒1次)。

1.4 热探针的标定

用探针法测量物料在超高压下的导热系数必须考虑到实际模型与理论模型之间存在一定的差异。差异产生的主要原因有:探针具有一定的直径和热容量,实际上存在轴向导热;探针与被测物质之间存在接触热阻,当然高压可以使探针与被测试样的间隙消除,在一定程度上减小了接触热阻;实际测试中无法保证被测试样为无限大的边界条件;高压对导线以及加热丝电阻的影响;以及当试样为流体时,加热时会发生对流传热。实际测试中超高压系统压力的波动也会对试验结果产生一定影响。因此,有必要用已知导热系数的标准样品对探针进行标定。

试验中选用1.5%(质量分数)琼脂凝胶(琼脂水溶液)作为标定的标准样品,因为低浓度琼脂凝胶的导热系数与纯水的导热系数(可通过NIST/ASME数据库查询[31])非常接近,而它的凝胶化结构可以避免测试中对流传热的发生[17,20]。将琼脂粉(国药集团化学试剂有限公司)和蒸馏水按1.5%(质量分数)比例在烧杯中混合,在磁力搅拌器上使混合液在接近沸点的温度下完全溶解,冷却至70 ℃时,倒入样品容器中,将容器上端盖子拧紧。随后将其于4 ℃冰箱中放置一夜形成凝胶状态。

在(25±1) ℃条件分别测量琼脂凝胶在不同压力下(0.1、50、100、150、200、250、300、350和400 MPa)的导热系数。高压下样品会因绝热压缩升温产生温度的变化,试验过程中先将样品冷却至一定温度,利用高压产生的绝热压缩升温使得样品达到所需初始温度(25±1) ℃,稳定一段时间后打开稳压电源的开关,对探针进行加热,加热时间>2 min。传压介质和高压容腔的温度设置为25 ℃。

图3是试验过程中的一个实例。图3a为将琼脂凝胶加压至350 MPa时测量其导热系数过程中的探针温度和压力曲线。琼脂凝胶在加压前的温度为17.5 ℃,加压阶段,其温度随着压力的增大而升高。当压力达到设定的350 MPa时,温度升高至24.8 ℃,保持30 s,发现压力和温度都没有发生变化。30 s后开始打开稳压电源,加热丝中通过恒定的直流电流(=0.188 A)时,探针内的温度呈现对数曲线上升,2 min内温度升高了约4 ℃。作出加热2 min时间内探针温度随加热时间的自然对数的变化曲线如图3b所示,线性拟合良好(2=0.998)。

1.5 食品物料导热系数的测量

用于测试的食品物料蛋清、蛋黄、火腿肠和奶油购于当地沃尔玛超市,它们的组成成分如表1所示。在(25±1) ℃条件分别测量样品物料在不同压力下(同标定试验)的导热系数。不同物料在超高压下的绝热压缩升温值不同,故物料在加压前的温度不同。测量方法同热探针的标定试验。

表1 食品物料的组成成分

测量过程中探针内加热丝的加热功率是一个重要因素。如果加热功率太大,测量过程中温度的变化会波及物料的边缘地带,无法保证被测样品为无限大的边界条件;加热功率太小,探针温升较小,温度测量的误差会增大,测量结果误差较大。经过预试验确定加热丝功率范围在6.7~13.3 W/m是合适的,高压对导线和加热丝的电阻影响很小,可以忽略不计。

1.6 数据统计与分析

所有试验至少重复3次,以“平均值±标准差”形式表示,试验数据采用Excel 2010和Origin 8.0 进行统计与分析。

2 结果与分析

2.1 热探针标定结果

琼脂凝胶在不同压力的导热系数测量值如图4a所示,测量值与NIST/ASME数据库给出的参考值比较接近。热探针在不同压力下的标定系数用公式(2)求得

f=k/(2)

式中为标定系数,k为琼脂凝胶导热系数的测量值,W/(m·℃),为琼脂凝胶导热系数的参考值,W/(m·℃)。探针标定系数随压力的变化如图4b示,从图4b中可以看出,标定系数随压力的变化总体上在1.0左右,压力对标定系数几乎没有影响。将标定系数与压力值作线性回归分析,回归分析的结果如下

1.018−1.3×10-4(2=0.162,=30) (3)

式中为压力,MPa。2值较小,表明标定系数与压力的相关性较低。

琼脂凝胶在25 ℃不同压力(0.1~400 MPa)条件下的导热系数的测量值关于参考值的线性回归分析结果如图5所示。从图5中可以看出测量值与参考值之间呈较好的线性相关(2=0.9997)。从线性回归分析得到的标定系数值为0.9944,此标定系数将用于食品导热系数试验测量结果的标定。

2.2 食品物料在超高压下的导热系数

试验中不同压力下食品物料的导热系数测量结果(标定后)如图6所示(其中水的导热系数为参考值)。从中可以看出食品的导热系数随着压力的变化而变化,超高压下所测食品的导热系数较常压下均有一定的增大,增大率最大达到28%(火腿肠,400 MPa)。常压下关于食品的导热系数已有不少研究,其值与食品物料的组分(主要是含水量)有关[32]。Sweat曾提出根据食品物料的组成成分来估算其导热系数的方法,公式如下[33]

=0.58m+0.155m+0.25m+0.16m+0.135m (4)

式中mmmmm分别为食品物料中水分、蛋白质、碳水化合物、脂肪和灰分的质量分数,%。由表1中食品的组成成分数据计算得到试验中几种食品物料在常压下的导热系数依次为:蛋清0.53 W/(m·℃),蛋黄0.40 W/(m·℃),火腿肠0.43 W/(m·℃),奶油0.41 W/(m·℃)。与本试验测量结果比较,蛋黄、火腿肠和奶油的测量值(依次为0.43,0.45和0.49 W/(m·℃))与估算值之间较为接近,而蛋清的测量值(达到0.65 W/(m·℃))显著大于估算值,也大于常压下纯水的导热系数。根据Sweat的经验公式,食品的导热系数不会高于纯水的导热系数。试验中测量的蛋清的导热系数却高于纯水的导热系数,这可能是因为蛋清的流动性较大,试验过程中除了有热传导,还存在一定的对流传热,加快了传热速率,表现出测量的导热系数值偏大。

随着压力的增加,食品的导热系数总体上呈增大的趋势,这与Denys等[17],Zhu等[21]测试得到的趋势一致。食品的导热系数的大小主要受其含水量的影响,水是大多数食品物料的最主要成分,目前在超高压下水的物理属性是已知的,其导热系数随着压力的增大而增大[31],因而食品物料的导热系数也表现出类似的趋势。压力在300 MPa以下时,蛋清的导热系数随着压力的增大而增大,但300 MPa以后,继续增加压力,其导热系数反而显著降低。这可能是由于300 MPa以上高压处理蛋清时使得其中的蛋白质发生了一定程度的凝结[34]。杨昆等[35]经过测量发现完全凝固后的蛋清导热系数较凝固前平均上升了6.60%。发生凝结之后的蛋清的导热系数应该增大,但应该考虑到蛋白质发生凝结以后,蛋清就失去了流动性,测量过程中因局部温度升高导致的对流传热的影响大大降低,因此表现出蛋清导热系数的测量值下降。从公式(4)中可以看出,常压下食品的导热系数值随着食品的含水量的增大而增大,而高压下这样的规律依然存在,导热系数总体上满足关系:蛋清>火腿肠>奶油>蛋黄。

食品在超高压下的导热系数的测量过程较为复杂,加之目前中国超高压设备的高压处理仓在出产时并未安装有温度检测设备,使得测量难度加大。建立合适的数学模型将有助于合理预测食品物料在不同压力下的导热系数。为了得到试验中几种食品物料的导热系数关于压力的函数关系,测试数据用来拟合以下经验公式

=(5)

对于蛋清、蛋黄、火腿肠和奶油在温度为25 ℃,压力在0.1~400 MPa范围内,公式(5)被展开到四阶形式

>=0+1+22+33+44(6)

拟合得到的参数结果如表2所示,回归系数均在0.91以上,说明上述经验公式能较好地拟合这些物料的导热系数随压力(0.1~400 MPa,温度为25 ℃)的变化情况。

表2 超高压下食品物料导热系数预测经验公式的参数

3 结 论

1)在现有超高压设备上改造加装了温度检测和通电装置,将导热系数测量探针接入超高压腔体中用于食品物料在超高压力条件下导热系数的测量,测量系统在超高压力环境下能稳定工作。

2)利用1.5%琼脂凝胶对设计的导热系数测量探针在不同压力下进行了标定试验,结果表明测量值与参考值之间非常接近且呈高度线性相关关系,探针的标定系数为0.9944。

3)测量了多种食品物料在不同压力条件下的导热系数,常压下的测量值与估算值之间较为接近,高压下食品物料的导热系数较常压均有一定程度的增大。随着压力的增大,食品物料的导热系数总体上呈增大的趋势。食品的含水量对其导热系数影响较大,一般来说,含水量越高的食品导热系数越大,高压条件下也是如此。

4)建立了25 ℃条件食品物料在一定压力范围内(0.1~400 MPa)导热系数预测的经验公式,对研究的几种食品物料拟合效果良好。

[1] 刘野,赵晓燕,胡小松,等.超高压对鲜榨西瓜汁杀菌效果和风味的影响[J]. 农业工程学报,2011,27(7):370-376.

Liu Ye, Zhao Xiaoyan, Hu Xiaosong, et al. Effect of high hydrostatic pressure on microorganism and flavor of fresh water melon juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 370-376. (in Chinese with English abstract)

[2] 胡菲菲,朱瑞,杨楠,等.胡萝卜汁中大肠杆菌脉冲式超高压杀菌动力学研究[J]. 农业机械学报,2014,45(1):178-183,190.

Hu Feifei, Zhu Rui, Yang Nan, et al. Pulse mode high-pressure destruction kinetics of Ein carrot juice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 178-183, 190. (in Chinese with English abstract)

[3] Georget E, Sevenich R, Reineke K, et al. Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review[J]. Innovative Food Science and Emerging Technology, 2015, 27: 1-14.

[4] 苏光明,朱松明,胡菲菲,等.超高压对酱曲多酚氧化酶激活和钝化动力学研究[J]. 农业机械学报,2015,46(10):257-265.

Su Guangming, Zhu Songming, Hu Feifei, et al. Kinetics of polyphenoloxidase activation and inactivation in soybean paste by ultra-high pressure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 257-265. (in Chinese with English abstract)

[5] 邓倩琳,刘书成,刘蒙娜,等.超高压联合高密度CO2处理钝化对虾多酚氧化酶[J]. 农业工程学报,2016,32(14):265-271.

Deng Qianlin, Liu Shucheng, Liu Mengna, et al. Inactivation of polyphenol oxidase fromtreated by ultra high pressure combined dense phase carbon dioside[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 265-271. (in Chinese with English abstract)

[6] Yu Y, Lin Y, Zhan Y, et al. Effect of high pressure processing on the stability of anthocyanin, ascorbic acid and color of Chinese bayberry juice during storage[J]. Journal of Food Engineering, 2013, 119(3): 701-706.

[7] 王玮,葛毅强,王永涛,等.超高压处理保持猪背最长肌冷藏期间肉色稳定性[J]. 农业工程学报,2014,30(10);248-253.

Wang Wei, Ge Yiqiang, Wang Yongtao, et al. High pressure treatment to maintain color stability of porcinemuscle during refrigeration storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 248-253. (in Chinese with English abstract)

[8] Rasanayagam V, Balasubramaniam V M, Ting E, et al. Compression heating of selected fatty food materials during high-pressure processing[J]. Journal of Food Science, 2003, 68(1): 254-259.

[9] Patazca E, Koutchma T, Balasubramaniam V M. Quasi-adiabatic temperature increase during high pressure processing of selected foods[J]. Journal of Food Engineering, 2007, 80(1): 199-205.

[10] 王标诗,李汴生,曾庆孝,等.超高静压下食品压致升温规律的研究[J]. 农业工程学报,2009,25(2):246-250.

Wang Biaoshi, Li Biansheng, Zeng Qingxiao, et al. Compression heating characteristics of foods during ultra high hydrostatic pressure processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 246-250. (in Chinese with English abstract)

[11] 孙伟,李建平,都基睿,等.超高压加工过程食品物料绝热压缩升温特性研究[J]. 农业机械学报,2016,47(3):200-206.

Sun Wei, Li Jianping, Du Jirui, et al. Adiabatic compression heating characteristics of selected food materials during high pressure processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 200-206. (in Chinese and English)

[12] 叶久东,李汴生,阮征,等.食品超高压处理过程中传热模型和相转变的研究进展[J]. 食品研究与开发,2006,27(3):142-145.

Ye Jiudong, Li Biansheng, Ruan Zheng, et al. The advances of research on heat transfer modeling and phase transitions in ultrahigh pressure food processing[J]. Food Research and Development, 2006, 27(3): 142-145. (in Chinese with English abstract)

[13] Denys S, Ludikhuyze L R, Van Loey A M, et al. Modeling conductive heat transfer and process uniformity during high-pressure processing of foods[J]. Biotechnology Progress, 2000, 16(1): 92-101.

[14] Ousegui A, Zhu S, Ramaswamy H S, et al. Modeling of a high pressure calorimeter: application to the measurement of the latent heat of a model food (tylose)[J]. Journal of Thermal Analysis and Calorimetry, 2006, 86(1): 243-248.

[15] Chen C R, Zhu S, Ramaswamy H S, et al. Computer simulation of high pressure cooling of pork[J]. Journal of Food Engineering, 2007, 79(2): 401-409.

[16] Juliano P, Konerzer K, Fryer P, et al. C. botulinum inactivation kinetics implemented in a computational model of a high pressure sterilization process[J]. Biotechnology Progress, 2009, 25(1): 163-175.

[17] Denys S, Hendrickx M E. Measurement of the thermal conductivity of foods at high pressure[J]. Journal of Food Science, 1999, 64(4): 709-713.

[18] Ramaswany R, Balasubramaniam V M, Sastry S K. Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa[J]. Journal of Food Engineering, 2007, 83(3): 444-451.

[19] Nguyen L T, Balasubramaniam V M, Sastry S K. Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure[J]. International Journal of Food Properties, 2012, 15(1/2): 169-187.

[20] Zhu S, Ramaswamy H S, Marcotte M, et al. Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method[J]. Journal of Food Science, 2007, 72(2): 49-56.

[21] Zhu S, Marcotte M, Ramaswamy H, et al. Evaluation and comparison of thermal conductivity of food materials at high pressure[J]. Food and Bioproducts Processing, 2008, 86(C3): 147-153.

[22] 王标诗,李汴生,黄娟,等.超高静压对食品热力学特性的影响[J]. 食品工业科技,2007,28(9):209-212.

[23] 王标诗,曾庆孝,李汴生,等. 食品超高静压处理中热效应问题的研究进展[J]. 农业工程学报,2007,23(6):285-290.

Wang Biaoshi, Zeng Qingxiao, Li Biansheng, et al. Research advances in thermal effect in high hydrostatic pressure (HHP) processing of food[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 285-290. (in Chinese with English abstract)

[24] 张晓,王永涛,李仁杰,等.我国食品超高压技术的研究进展[J]. 中国食品学报,2015,15(5):157-165.

Zhang Xiao, Wang Yongtao, Li Renjie, et al. Advances of high hydrostatic pressure for food processing in China[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(5): 157-165. (in Chinese with English abstract)

[25] 黄国纲,周国燕,李彩侠,等.探针法测量低温下食品导热系数研究[J]. 制冷学报,2006,27(4):23-25.

Huang Guogang, Zhou Guoyan, Li Caixia, et al. Study on probe to measure thermal conductivity of food materials at low temperature[J]. Journal of Refrigeration, 2006, 27(4): 23-25. (in Chinese with English abstract)

[26] 张敏,赵惠忠,谢晶,等.苹果导热系数影响因素的实验研究[J]. 农业工程学报,2006,22(3):162-165.

Zhang Min, Zhao Huizhong, Xie Jing, et al. Experimental study on influence factors of thermal conductivities of apple juice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(3): 162-165. (in Chinese with English abstract)

[27] 陆森,任图生,杨泱,等.多针热脉冲技术测定土壤热导率误差分析[J]. 农业工程学报,2010,26(6):20-25.

Lu Sen, Ren Tusheng, Yang Yang, et al. Error analysis of multi-needle heat pulse probe for soil thermal conductivity measurement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 20-25. (in Chinese with English abstract)

[28] Murakami E G, Sweat V E, Sastry S K, et al. Recommended design parameters for thermal conductivity probes for non-frozen food materials[J]. Journal of Food Engineering, 1996, 27(2): 109-123.

[29] Bundy F P. Effect of pressure on emf of thermocouples[J]. Journal of Applied Physics, 1961, 32(3): 483-488.

[30] Balasubramaniam V M, Ting E Y, Stewart C M, et al. Recommended laboratory practices for conducting high-pressure microbial inactivation experiments[J]. Innovative Food Science & Emerging Technologies, 2004, 5(3): 299-306.

[31] Harvey A H, Lemmon E W. NIST standard reference database 10: NIST/ASTM steam properties (version 3.0)[S]. Applied Chemicals and Division National Institute of Standards and Technology, U.S. Department of Commerce, 2013.

[32] 彭海柱,王刚,陶乐仁,等.热线法测量食品热导率的实验研究[J]. 食品科学,2001,22(1):27-30.

[33] 华泽钊,李云飞,刘宝林.食品冷冻冷藏原理与设备[M]. 北京:机械工业出版社,1999.

[34] Lee D U, Heinz V, Knorr D. Evaluation of processing criteria for the high pressure treatment of liquid whole egg: rheological study[J]. LWT-Food Science and Technology, 1999, 32(5): 299-304.

[35] 杨昆,刘伟,杨金国.热凝固对生物组织热物性影响的实验研究[J]. 工程热物理学报,2004,25(2):314-316.

Yang Kun, Liu Wei, Yang Jinguo. An experiment study for effects of thermal coagulation on the thermal properties of biological tissue[J]. Journal of Engineering Thermophysics, 2004, 25(2): 314-316. (in Chinese with English abstract)

Ultra high pressure increasing thermal conductivity of food materials

Sun Wei, Li Jianping※, Zheng Xiaowei, Zhu Songming, Yu Yong

(310058)

During high pressure processing, the adiabatic compression increase of food materials would cause non-uniform temperature distribution and heat transfer, which would also influence the inactivation of bacteria, spore, enzyme and the quality of foods. Thermal conductivity of food materials at high pressure is a very important parameter for understanding heat transfer and temperature variation during high pressure processing. Available data and measuring method of thermal conductivity of food materials under high pressure are still scarce. In this study, a thermal conductivity probe developed based on the line heat source theory was installed in a high pressure chamber to measure thermal conductivity of food materials under high pressure. The thermal conductivity probe was calibrated using 1.5% agar gel whose thermal conductivity was very close to that of pure water but the convective effect during the measurement was eliminated due to the gel network at pressure from 0.1 to 400 MPa with a pressure increment of 50 MPa. The results of calibration experiment indicated that thermal conductivity values of 1.5% agar gel measured under different pressures using the thermal conductivity probe were very close to that of reference data of pure water. Calibration factors defined as the ratio of measured and reference values of the thermal conductivity of 1.5% agar gel were found almost no effect by pressure. A general calibration coefficient value of 0.9944 (square was 0.9997, observation number was 30) was obtained by linear regression analysis (zero intercept) of measured thermal conductivity values of 1.5% agar gel against reference values of pure water. The coefficient value was used for the correction of all experimental results in the following. Thermal conductivities of egg white, egg yolk, ham sausages and cream were measured at pressure from 0.1 to 400 MPa with a pressure increment of 50 MPa. The results demonstrated that the thermal conductivities of these selected food materials at high pressure conditions were higher (up to 28%) than that of the sample at the atmospheric pressure conditions and had a tendency to increase with increasing pressure. Results at atmospheric pressure in this study were compared to estimate values using empirical equation based on water content. The measured thermal conductivities of egg yolk (0.43 W/(m·℃)), ham sausages (0.45 W/(m·℃)) and cream (0.49 W/(m·℃)) were very close to the estimated values (egg yolk 0.40 W/(m·℃), ham sausages 0.43 W/(m·℃), cream 0.41 W/(m·℃)) , while the measured value of egg white (0.65 W/(m·℃)) was significantly higher than that of the estimated value (0.53 W/(m·℃)) as well as that of pure water. The reason probably was that the flowability of egg white caused the generation of convective heat transfer. Measured thermal conductivities of egg white decreased at pressure higher than 300 MPa which was different from other three materials. The reason probably was that the pressure processing more than 300 MPa induced coagulation of egg white resulting in decrease of flowability as well as convective heat transfer. The water content of food materials had a significant effect on thermal conductivity. In general, the higher the water content, the higher the thermal conductivity. This rule was also confirmed at high pressure as the thermal conductivity from highest to lowest in order being egg white (83.1% water) > ham sausages (63.5%) > cream (57.5%) > egg yolk (50.7%). An empirical equation was established for prediction of the thermal conductivity of food materials at high pressure. The fourth-order polynomial was used to fit the thermal conductivity values of egg white, egg yolk, ham sausages and cream at pressure range from 0.1 to 400 MPa with temperature of 25 ℃. The regression coefficients of these equations were all above 0.91. This study could provide basic scientific datas for high pressure processing of food materials.

thermal conductivity; food processing; ultra high pressure; thermal conductivity probe; line heat source

10.11975/j.issn.1002-6819.2016.24.039

TS201.1

A

1002-6819(2016)-24-0291-06

2016-07-04

2016-11-20

国家自然科学基金资助项目(31171779)

孙 伟,男,安徽池州人,博士生,研究方向:农产品超高压加工技术与装备。杭州 浙江大学生物系统工程与食品科学学院,310058。Email:wsun@zju.edu.cn

李建平,男,浙江杭州人,教授,博士,博士生导师,研究方向:农产品加工技术与装备,设施农业装备。杭州 浙江大学生物系统工程与食品科学学院,310058。Email:jpli@zju.edu.cn

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!