当前位置:首页 期刊杂志

配合饲料替代活饵对鳜生长性能、消化功能及小肽转运载体基因表达的影响

时间:2024-05-25

曾萌冬 徐俊 宋银都 赵金良

摘要:【目的】比較投喂活饵鱼和配合饲料对鳜(Siniperca chuatsi)生长性能、消化功能及肠道PepT1基因表达的影响,明确其摄食配合饲料后的消化、吸收生理变化,为提高鳜对配合饲料的利用效果提供理论依据。【方法】挑选驯化鳜鱼苗(初始平均体质量5.92±1.41 g)和未驯化鳜鱼苗(初始平均体质量6.06±1.73 g)各300尾,分别使用配合饲料或活饵鱼喂养30 d,饲养结束后测定分析其生长性能、肌肉成分、消化道结构、消化酶活性及小肽转运载体(PepT1)基因表达情况。【结果】配合饲料组鳜的终末平均体质量、总摄食量、尾摄食量、饵料系数、日增重量、日增重率、特定生长率、蛋白质效率、存活率及肥满度均极显著低于活饵鱼组鳜(P<0.01,下同),脏体比和肝体比显著高于活饵鱼组鳜(P<0.05,下同)。以配合饲料替代活饵鱼投喂鳜,对其肌肉成分有明显影响,具体表现为鳜肌肉水分含量极显著低于活饵鱼组鳜,粗蛋白含量显著高于活饵鱼组鳜。在消化酶活性方面,配合饲料组鳜的幽门盲囊胰蛋白酶活性极显著低于活饵鱼组鳜,幽门盲囊脂肪酶活性显著低于活饵鱼组鳜,但肝脏和肠道中的消化酶活性无显著差异(P>0.05,下同);配合饲料组鳜的肝细胞排列松散,肝细胞间有脂肪堆积,胃、肠道肌层及胃黏膜下层厚度极显著小于活饵鱼组鳜,肠道单个褶皱绒毛层杯状细胞数极显著多于活饵鱼组鳜,幽门盲囊褶皱间距极显著大于活饵鱼组鳜。PepT1基因在鳜肠道中的相对表达量表现为前肠>中肠>后肠,且在前肠表现为配合饲料组鳜极显著低于活饵鱼组鳜,在中肠和后肠则表现为差异不显著。【结论】鳜对配合饲料的摄食量和利用率均低于活饵鱼,消化道组织结构及其消化酶活性也因摄食配合饲料发生适应性变化。投喂配合饲料显著影响鳜的消化吸收功能和生长性能,因此,还需针对其摄食和代谢特性进一步改良配合饲料的营养组分或优化鳜的配合饲料驯化技术。

关键词: 鳜;配合饲料;活饵鱼;生长性能;消化功能;小肽转运载体

中图分类号: S965.127                     文献标志码: A 文章编号:2095-1191(2021)01-0228-10

Abstract:【Objective】To compare the differences in growth performance, digestive function and expression of PepT1 gene in intestine of Siniperca chuatsi fed by live bait and compound feed,and clarify the physiological changes of digestion and absorption after feeding compound feed,and provide theoretical basis for improving the utilization effect of compound feed for S. chuatsi. 【Method】A total of 300 individuals with feeding domestication(average initial weight of 5.92±1.41 g)and 300 individuals without feeding domestication(average initial weight of 6.06±1.73 g) were selected and fed with compound dietand live bait fish for 30 d respectively. The growth performance, muscle composition, structure of digestive tract, digestive enzyme activity and small peptide transporter(PepT1) gene expression were determined and analyzed after feeding. 【Result】The final mean body weight, total food intake, average individual feed intake, feed coefficient, daily gain, daily gain, special growth rate, protein efficiency, survival rate and  fatness of the compound feed group were extremely significantly lower than thoseof the live bait group(P<0.01, the same below), while the organ-body weight ratio and liver-body weight ratio were significantly higher than thoseof the live bait group (P<0.05, the same below). The muscle composition of live bait fish was obviously affected by feeding compound feed instead of live bait. The moisture content of muscle was extremely significantly lower than that of the live bait group, and the crude protein content of muscle was significantly higher than that of the live bait group, when compound feed replacedlive bait to feed. In terms of digestive enzyme,activity of trypsin in the pyloriccaecum in the feed group were extremely significantly lower than that in the live bait group,and that of lipase were significantly lower than that in the live bait group, but there was no significant difference in digestive enzyme activity of liver and intestine(P>0.05, the same below). Loose liver cells were observed in compound feed group, the fat accumulation among liver cells was detected, the thickness of stomach, intestinal muscle layer and gastric submucosa in the compound feed group was extremely significantly lower than those in the live bait group. The number of goblet cell in single villuswas extremely significantly more than that in live bait group,and the fold spacing of pyloric caecum was extremely significantly higher than that in the live bait group. The relative expression level of gene PepT1 in the intestine of each group was foregout>midgut>hindgut, and the expression level in foregut of compound feed group was extremely significantly lower than that in the live bait group, but there was no significantly difference in the midgut and hindgut. 【Conclusion】Feed intake and utilization of compound feed are lower than those of live bait fish, and the structure of the digestive tract, digestive enzymes activity also change adaptively due to the compound feed, and it significantly affects the function of digestion and absorption and growth performance. Thus,it is necessary to further improve the nutritional components of feedor optimize the domestication technology of S. chuatsi according to its feeding and metabolic characteristics.

Key words: Siniperca chuatsi; compound feed; live bait fish; growth performance; digestive function; small peptide transporter

Foundation item: Construction Project of National Modern Agricultural Industry Technology System(CARS-46);Key Research and Development Project of Anhui(1804a0720137)

0 引言

【研究意义】与草食性鱼类不同,肉食性鱼类需摄食高蛋白、高脂肪饵料才能快速生长,其肠道虽短,但存在特有的胃和幽门盲囊,以利于饵料贮存及辅助消化(Santinha et al.,1996;韓庆等,2002;Chou et al.,2003)。消化酶活性是衡量肉食性鱼类消化能力的重要指标之一(Fernández et al.,2001),肉食性鱼类的蛋白酶和脂肪酶等活性均高于其他类型鱼类,且受饵料组成和消化道结构的显著影响(吴婷婷和朱晓鸣,1994)。目前,已有较多关于肉食性鱼对饵料消化利用的基础性研究,包括消化道结构、消化酶活性及生长性能等,为各种重要经济肉食性鱼类的人工养殖提供了科学依据。鳜(Siniperca chuatsi)是我国传统淡水名贵经济鱼类,由于其特殊食性,饵料鱼供给成为制约人工养殖增产的主要限制因子。自20世纪80年代以来,我国学者开始研究鳜的摄食机理和配合饲料驯化技术,并取得一定进展(梁旭方,1995;吴遵霖等,2002;陈苏维,2019),但主要针对同等条件下不同配合饲料的养殖效果。因此,探究配合饲料替代活饵鱼对鳜幼鱼生长速度、饲料利用及消化吸收能力的影响,对开展鳜配合饲料规模化养殖具重要指导意义。【前人研究进展】在掌握鳜驯饲技术条件下,吴遵霖等(1996)、王贵英等(2005)分别测得配合饲料的蛋白适宜含量为44.7%~45.8%和44.3%~48.4%。王贵英等(2003)研究表明,配合饲料脂肪水平为7%~12%时,鳜的特殊生长率和蛋白质效率最高。Li等(2017)分别使用活饵鱼和人工饲料喂养杂交鳜(S. chuatsi ♀× S. scherzeri ♂),结果发现人工饲料虽然可维持鳜的基本生长,但其增重率、特殊生长率及消化道蛋白酶活性均显著低于活饵鱼投喂。班赛男等(2020)研究表明,翘嘴鳜经驯化后可摄食配合饲料,且不影响其生长性能;翘嘴鳜摄食配合饲料后,其肌肉氨基酸未发生显著变化,但不饱和脂肪酸含量显著升高。此外,投喂人工饲料对肉食性鱼类的消化道形态结构及消化酶活性均有明显影响(郑银桦等,2015)。赵盼月等(2017)分别使用活饵鱼和配合饲料喂养龙胆石斑鱼(Epinephelus lanceolatus),结果发现活饵鱼组的生长性能最佳,且肠皱襞高度显著高于饲料组,说明消化道结构健康状况对鱼类营养物质消化吸收影响较大。欧红霞(2018)研究表明,饲料组大口黑鲈(Micropterus salmoides)肠道整体黏膜厚度、绒毛高度及隐窝深度均显著低于活饵鱼组。蛋白作为构成鱼体主要物质和能量的来源,在胃和幽门盲囊中被消化为氨基酸和小肽,继而被小肠吸收(乐国伟等,1996;胡梦红等,2007)。在小肽转运蛋白家族中,PepT1是低亲和力/高容量的小肽转运载体,具有耗能低而不易饱和的特点(黎航航等,2011;朱宇旌等,2012)。鱼类摄食蛋白的可利用性与体重增加直接相关,而PepT1的转运活性直接影响蛋白吸收能力,对鱼体生长产生促进或制约效果(Wang et al.,2017)。PepT1转运活性还受鱼体营养状态的影响。大西洋鳕(Gadus morhua)在摄食混合小肽或游离氨基酸饲料后,PepT1随肠腔蛋白源含量的上升而不断富集,以保持肠道最大效率地吸收蛋白(Bakke et al.,2010)。【本研究切入点】随着鳜配合饲料驯养技术的完善,有关投喂不同饵料对鳜生长性能及营养需求影响的研究已有较多报道(王贵英等,2003;Li et al.,2017;班赛男等,2020),但目前针对鳜幼鱼转食后在配合饲料利用、消化和吸收上发生的差异与生长速率的关系尚未得到深入研究。【拟解决的关键问题】比较投喂活饵鱼和配合饲料对鳜生长性能、消化道结构、消化酶活性及肠道PepT1基因表达的影响,明确摄食配合饲料后的消化、吸收生理变化,为提高鳜对配合饲料的利用效果提供理论依据。

1 材料与方法

1. 1 试验材料

供试鳜鱼苗购自浙江省湖州市南浔菱湖沈程程家庭农场,在上海海洋大学新场鱼类试验站暂养2 d。配合饲料组鳜按活饵(5 d)→活饵加死饵(4 d)→死饵加冰鲜饵(4 d)→冰鲜饵加软颗粒饲料(3 d)→软颗粒饲料(1 d)的方式进行食性驯化,共驯食17 d。鳜专用饲料(粉状料)购自浙江益祥生物科技有限公司;活饵鱼为鲫鱼苗(全长2 cm),购自上海市松江水产良种场;死饵鱼为当场处死的鲫鱼苗;冰鲜饵为试验站将鲫鱼成鱼切块制成。配合饲料组投喂前0.5 h,按7∶3的比例取粉状料和水使用制粒机混匀并挤压成粒(粒径0.3 cm×0.7 cm)。各处理组每天上午6:30和下午17:30分别饱食投喂2次。试验周期30 d。配合饲料和活饵鱼的主要营养组分见表1。

1. 2 饲养管理

在室内循环水池中挂置1.0 m×1.0 m×1.5 m网箱,设为配合饲料组和活饵鱼组,每组3个网箱。每个网箱均投放100尾鳜鱼苗,配合饲料组鳜鱼苗的初始平均体质量为5.92±1.41 g,活饵鱼组鳜鱼苗的初始平均体质量为6.06±1.73 g。试验期间,水温保持在(27.0±0.5)℃,溶解氧含量>7.0 mg/L,氨氮含量<0.2 mg/L,亚硝酸盐含量<0.1 mg/L,pH 7.50±0.50,透明度达100.0 cm。

1. 3 生长性能测定

饲养结束后禁食24 h,统计各网箱鳜的摄食量(配合饲料组为日投饲量减剩余量,活饵鱼组为日投饵量),并随机挑取30尾测定其全长和体质量。同时取配合饲料组和活饵鱼组各35尾,采用MS-222麻醉液(400 mg/L)进行麻醉,然后活体解剖,取内脏和肝脏称重,并测量肠道全长。

增重率(WG,%)=(Wt–Wo)/Wo×100

特定生长率(SGR,%/d)=(lnWt–lnWo)/t×100

蛋白质效率(PER,%)=(Wt–Wo)/(Wf×Wp)×100

肥满度(CF,g/cm3)=Wt/L3×100

脏体比(VSI,%)=Wv/W×100

肝体比(HSI,%)=Wh/W×100

肠体比(RGL,%)=LG/L×100

式中:t为饲养天数(d),Wp为配合饲料的粗蛋白含量(%),Wf為总摄食量(g),Wo为初始平均体质量(g),Wt为终末均体质量(g),Wv为内脏重(g),Wh为肝脏重(g),W为体质量(g),L为体长(cm),LG为肠长(cm)。

1. 4 体成分分析

每组单独取10尾鳜的背肌进行体成分分析,粗蛋白含量采用凯氏定氮仪(Kjeltec 2200,丹麦FOSS公司)进行测定,粗脂肪含量采用甲醇—氯仿法进行测定,灰分含量采用马弗炉(纳博热N7/H/P300)550 ℃灼烧法进行测定,水分含量采用105 ℃恒温烘干法进行测定。

1. 5 石蜡切片制作

每组单独取5尾鳜的肝脏、胃、前肠和幽门盲囊,剔除脂肪等黏附物,以Bouin?s固定液固定12 h,再用70%乙醇反复浸洗至无色。使用常规石蜡切片法,切片厚6 μm,经HE和AB-PAS染色,置于Nikon80i荧光显微电镜下进行观察拍照。

1. 6 消化酶活性测定

每组单独取10尾鳜的肝脏、胃、肠道和幽门盲囊,以冷冻PBS(pH 7.4)洗净消化道内容物,吸水纸吸干水分。取50.0 mg左右的样本,加入9倍量的冷冻PBS,在冰浴中充分匀浆,匀浆液4 ℃下3000 r/min离心15 min,取上清液用于测定胃蛋白酶、胰蛋白酶、胰淀粉酶和脂肪酶活性。消化酶活性采用上海酶联生物科技有公司的试剂盒进行测定,于酶标仪(Synergy H1,美国BioTek公司)450 nm下分别测定各样本的吸光值,并通过标准曲线计算样品中各消化酶活性。

1. 7 PepT1基因定量表达分析

参照刘知行等(2014)对鳜PepT1基因进行分子特征研究的PepT1引物对,并根据GenBank已公布的鳜β-actin基因cDNA序列,采用Primer 5.0进行引物(表2)设计,并委托上海金唯智生物科技有限公司合成。每组单独取10尾鳜,冷冻去离子水洗净肠道内容物后分为前肠、中肠和后肠。参照组织RNA提取试剂盒(TaKaRa)说明提取总RNA,去除基因组DNA杂质,并反转录合成cDNA,采用1.0%琼脂糖凝胶电泳检测其完整性。实时荧光定量PCR反应体系20.0 μL:TB Green Premix Ex TaqⅡ10.0 μL,正、反引物各0.8 μL,cDNA模板1.6 μL,ddH2O 6.8 μL。扩增程序:95 ℃预变性3 min;95 ℃ 3 s,60 ℃ 25 s,进行40个循环。然后采用2-ΔΔCt法换算目的基因的相对表达量。

1. 8 统计分析

试验数据采用SPSS 21.0进行统计分析,并通过t检验比较配合饲料组与活饵鱼组各指标间的差异。

2 结果与分析

2. 1 配合饲料替代活饵鱼对鳜摄食及生长性能的影响

由表3可看出,配合饲料组鳜的终末平均体质量、总摄食量、尾摄食量、饵料系数、日增重量、日增重率、特定生长率、蛋白质效率、存活率及肥满度均极显著低于活饵鱼组鳜(P<0.01,下同),脏体比和肝体比显著高于活饵鱼组鳜(P<0.05,下同)。可见,投喂配合饲料对鳜的摄食及生长性能有明显影响,其生长速率和饵料利用能力显著低于活饵鱼组鳜,即活饵鱼对促进鳜生长具有明显优势。

2. 2 配合饲料替代活饵鱼对鳜肌肉成分的影响

由表4可看出,以配合饲料替代活饵鱼投喂鳜,对其肌肉成分有明显影响,具体表现为:配合饲料组鳜肌肉水分含量极显著低于活饵鱼组鳜,粗蛋白含量显著高于活饵鱼组鳜,而粗脂肪和粗灰分含量与活饵鱼组鳜间无显著差异(P>0.05,下同)。

2. 3 配合饲料替代活饵鱼对鳜消化酶活性的影响

由表5可知,无论是投喂配合饲料还是投喂活饵鱼,鳜胃蛋白酶及肠道和肝脏中的胰蛋白酶活性均无显著差异,且鳜肠道、肝脏及幽门盲囊中的胰淀粉酶活性也无显著差异。配合饲料组鳜幽门盲囊胰蛋白酶活性极显著低于活饵鱼组鳜,幽门盲囊脂肪酶活性显著低于活饵鱼组鳜,但这2种消化酶在肝脏和肠道中的活性无显著差异。不同处理组的鳜消化酶活性以幽门盲囊胰蛋白酶和脂肪酶活性的差异最明显,说明配合饲料对鳜不同部位的消化酶活性具一定影响,消化酶活性降低则导致鱼体对配合饲料的消化能力减弱。

2. 4 配合饲料替代活饵鱼对鳜肝脏及消化道组织结构的影响

由图1可看出,配合饲料组鳜的肝细胞排列松散,肝细胞间有脂肪堆积;活饵鱼组鳜的肝细胞排列致密,肝细胞间有少量脂肪分布。配合饲料组鳜和活饵鱼组鳜的胃组织结构无明显差异,但配合饲料组鳜的胃肌层厚度(347.65±22.16 μm)和黏膜下层厚度(217.21±22.47 μm)极显著小于活饵鱼组鳜(分别为422.54±46.07和284.25±39.29 μm)。配合饲料组鳜的肠道肌层厚度(52.37±13.11 μm)极显著小于活饵鱼组鳜(69.06±11.64 μm),肠道单个褶皱绒毛层杯状细胞数(85.00±10.89个)则极显著多于活饵鱼组鳜(67.29±9.70个)。配合饲料组鳜的幽门盲囊肌层厚度(22.42±2.85 μm)极显著小于活饵鱼组鳜(28.02±3.63 μm),而褶皱间距(29.81±6.7 μm)显著大于活饵鱼组鳜(17.82±4.23 μm)。

3. 3 配合饲料替代活饵鱼对鳜肠道PepT1基因表达的影响

PepT1在鱼类肠道蛋白吸收过程中发挥重要作用。Terova等(2009)、Ostaszewska等(2010)研究发现,PepT1基因在欧洲黑鲈(Dicentrarchus labrax)和虹鳟(Oncorhynchus mykiss)肠道中的空间分布相似,均以在前肠的表达水平最高;刘知行等(2014)对鳜胚后不同发育阶段的肠道PepT1基因表达进行检测分析,结果显示PepT1基因在前肠和中肠的相对表达量显著高于后肠。本研究通过检测PepT1基因在肠道中的相对表达量以评价鳜对蛋白的吸收能力,结果显示,无论是投喂配合饲料还是投喂活饵鱼,PepT1基因在鳜肠道中的相对表达量均表现为前肠>中肠>后肠,且在前肠表现为配合饲料组鳜极显著低于活饵鱼组鳜,在中肠和后肠则无显著差异。此外,经胃和幽门盲囊消化后的内容物流入前肠,因具较高的蛋白酶活性和小肽底物浓度,而促使近肠端的PepT1基因表达量增加,与Sangaletti等(2009)的研究结果相似,即PepT1基因在大口黑鲈小肠前段大量表达。由此可见,鳜前肠和中肠的小肽吸收能力较强。

4 结论

鳜对配合饲料的摄食量和利用率均低于活饵鱼,消化道组织结构及其消化酶活性也因配合饲料发生适应性变化。投喂配合饲料显著影响鳜的消化吸收功能和生长性能,因此,还需针对其摄食和代谢特性进一步改良配合饲料的营养组分或优化鳜的配合饲料驯化技术。

参考文献:

班赛男,朱传忠,杨新冬,陈伟军,李栋,夏冬梅,杨生灿,陈晶,孙云章,易敢峰. 2020. 摄食不同饵料对翘嘴鳜生长、体成分和消化酶活性的影响[J]. 淡水渔业,50(1):93-100. [Ban S N,Zhu C Z,Yang X D,Chen W J,Li D,Xia D M,Yang S C,Chen J,Sun Y Z,Yi G F. 2020. Effect of different diet on the growth performance,body composition and digestive enzymes active of mandarin fish(Siniperca chuatisi)[J]. Fishwater Fisheries,50(1):93-100.]

陳苏维. 2019. 汉江上游翘嘴鳜年龄鉴定及其生长性能和血液生理生化指标的分析[J]. 河南农业科学,48(3):137-144. [Chen S W. 2019. Analysis of age,growth and blood physiological and biochemical indexes of mandarin fish(Siniperca chuatsi) in upper stream of Hanjiang River[J]. Journal of Henan Agricultural Sciences,48(3):137-144.]

丛林梅,王蔚芳,高淳仁,黄滨,雷霁霖,王桂芹. 2016. 配合饲料和冰鲜太平洋玉筋鱼对珍珠龙胆石斑鱼幼鱼生长、抗氧化和脂质代谢的影响[J]. 水产学报,40(9):1398-1407. [Cong L M,Wang W F,Gao C R,Huang B,Lei J L,Wang G Q. 2016. Effects of compound diet and fresh frozen Ammodytes persontus on growth,antioxidant ability and lipid metabolism of hybrid grouper(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) juvenile[J]. Journal of Fisheries of China,40(9):1398-1407.]

公绪鹏,李宝山,张利民,张燕,王际英. 2018. 饲料蛋白质和能量含量对云纹龙胆石斑鱼幼鱼生长、体组成及消化酶活力的影响[J]. 渔业科学进展,39(2):85-95. [Gong X P,Li B S,Zhang L M,Zhang Y,Wang J Y. 2018. Effects of dietary protein and energy levels on growth,body composition and digestive enzymes activities of juvenile hybrid grouper,Epinephelus lanceolatus ♂×E. Moara ♀[J]. Progress in Fishery Sciences,39(2):85-95.]

韩庆,罗玉双,夏维福,王文彬. 2002. 不同饲料蛋白源对黄颡鱼生长的影响[J]. 上海水产大学学报,11(3):259-263. [Han Q,Luo Y S,Xia W F,Wang W B. 2002. Effects of different protein levels and animal protein percentage on Pelteobagrus fulvidraco[J]. Journal of Shanghai Fisheries University,11(3):259-263.]

韩庆炜,梁萌青,姚宏波,常青,吴立新. 2011. 鲈鱼对7种饲料原料的表观消化率及其对肝脏、肠道组织结构的影响[J]. 渔业科学进展,32(1):32-39. [Han Q W,Liang M Q,Yao H B,Chang Q,Wu L X. 2011. Effects of seven feed ingredients on growth performance,and liver and intestine histology of Lateolabrax japonicas[J]. Progress in Fishery Sciences,32(1):32-39.]

胡梦红,王有基,熊邦喜. 2007. 小肽的吸收机制及其对鱼类的营养生理学效应[J]. 长江大学学报(自科版),4(1):39-44. [Hu M H,Wang Y J,Xiong B X. 2007. The absorption mechanism of small peptides and its nutritional and physiological effects on fish[J]. Journal of Yangtze University (Natural Science Edition),4(1):39-44.]

黄爱霞,陈建明,沈斌乾,姜建湖,孙丽慧. 2019. 摄食不同饲料对大口黑鲈全鱼及肌肉营养组成的影响[J]. 科技通报,35(2):42-45. [Huang A X,Chen J M,Shen B Q,Jiang J H,Sun L H. 2019. Comparison analysis of body composition,body profile index and muscle nutritive value of largemouth bass fed with different diets[J]. Bulletin of Science And Techenology,35(2):42-45.]

江岚,黎玥,申晓东,韩碧泽,李建光. 2001. 鳜鱼摄食感觉机制及饵料投喂技术[J]. 淡水渔业,31(6):37-39. [Jiang L,Li Y,Shen X D,Han B Z,Li J G. 2001. Sensation mechanism of mandarin fish ingestion and feeding technique[J]. Fishwater Fisheries,31(6):37-39.]

黎航航,陈立祥,苏建明. 2011. 鱼类小肽转运载体PepT1研究进展[J]. 中国饲料,(10):26-29. [Li H H,Chen L X,Su J M. 2011. Progress on the peptide transporter PepT1 of fishes[J]. China Feed,(10):26-29.]

李傳阳,Thammaratsuntorn Jeerawat,查丹琳,赵金良,钱叶周,吴超,钱德. 2016. 3种鳜鱼消化道结构与胃中泌酸胃酶细胞分布比较[J]. 水产科学,35(4):340-345. [Li C Y,Thammaratsuntorn J,Zha D L,Zhao J L,Qian Y Z,Wu C,Qian D. 2016. Comparison of digestive tract structure and distribution of gastric oxynticopeptic cells among three mandarin fish Siniperca species[J]. Fisheries Scien-ces,35(4):340-345.]

李燕,史建华,施顺昌,李住. 2014. 不同饲料对杂交鳜生长、成活率及体成分影响的比较[J]. 水产科技情报,41(3):127-130. [Li Y,Shi J H,Shi S C,Li Z. 2014. Comparison of the effects of different feeds on the growth,survi-val rate and body composition of hybrid mandarin fish (Siniperca chuatsi ♀×S. scherzeri ♂)[J]. Fisheries Science & Technology Information,41(3):127-130.]

梁旭方. 1995. 鳜鱼摄食的感觉原理[J]. 动物学杂志,30(1):56. [Liang X F. 1995. The sensory principle of the ingestion of Siniperca chuatsi[J]. Chinese Journal of Zoology,30(1):56.]

刘立鹤,黄绮雯,胡先勤,胡奇伟,何广文,谭斌,李彪. 2009. 不同商品饲料对鮰生长、体色及肝脏组织结构的影响[J]. 淡水渔业,39(3):57-63. [Liu L H,Huang Q W,Hu X Q,Hu Q W,He G W,Tan B,Li B. 2009. Effects of different commercial feeds on growth,body color and live tissue structure of channel catfish (Ictalurus punctatus)[J]. Fishwater Fisheries,39(3):57-63.]

刘知行,张健东,刘小燕,李虹辉,王开卓,陈琳,褚武英,张建社. 2014. 鳜小肽转运载体PepT1基因分子特征及其表达研究[J]. 水生生物学报,38(3):160-166. [Liu Z X,Zhang J D,Liu X Y,Li H H,Wang K Z,Chen L,Chu W Y,Zhang J S. 2014. Molecular characterization and expression research of oligopeptide transporter PepT1 in Siniperca chuatsi[J]. Acta Hydrobiologica Sinica,38(3):160-166.]

马燕梅,梅景良,林树根. 2004. 鳜胃肠道和肝脏主要消化酶活性的研究[J]. 江西农业大学学报,26(4):584-588. [Ma Y M,Mei J L,Lin S G. 2004. Studies on the main digestive enzyme activities in stomach intestine and liver of Siniperca chautsi[J]. Acta Agriculturae Universitatis Jiangxiensis,26(4):584-588.]

牟明明,蒋余,罗强,陈拥军,罗莉,林仕梅. 2018. 配合饲料和冰鲜鲢对大口黑鲈生长、血浆生化指标、抗氧化能力和组织学的影响[J]. 水产学报,42(9):1408-1416. [Mou M M,Jiang Y,Luo Q,Chen Y J,Luo l,Lin S M. 2018. Effects of formulated diet and fresh frozen Hypophthalmichthys molitrix on growth, plasma biochemical index and antioxidant ability and histology of Micropterus salmoides[J]. Journal of Fisheries of China,42(9):1408-1416.]

欧红霞. 2018. 不同饲料对大口黑鲈消化酶及肠道形态结构的影响[D]. 上海:上海海洋大学. [Ou H X. 2018. Effects of different feed on digestive tract index and amylase activity of Micropterus salmoides[D]. Shanghai:Shanghai Ocean University.]

钱国英. 1998. 不同驯食方式对鳜鱼胃肠道消化酶活性的影响[J]. 浙江农业大学学报,24(2):207-210. [Qian G Y. 1998. Change of digestive enzyme activities in intestinal canal of domesticated mandarin fish[J]. Journal of Zhe-jiang Agricultural University,24(2):207-210.]

庆宁,吕凤义,陈曼娜,郑文彪. 2003. 不同pH条件下鳜鱼消化道蛋白酶活性研究[J]. 华南师范大学学报(自然科学版),(4):89-92. [Qing N,Lü F Y,Chen M N,Zheng W B. 2003. Study on protease activities in digestive tube of Siniperca chuatsi at diferent pH[J]. Journal of South China Normal University(Natural Science Edition),(4):89-92.]

宋鹏,曹申平,唐建洲,彭亮,罗文婕,熊鼎,邓岳松,贺喜,刘臻. 2019. 饲料中发酵芝麻粕替代菜粕对草鱼生长性能、肠道形态和微生物及小肽转运相关基因表达的影响[J]. 水生生物学报,43(6):1147-1154. [Song P,Cao S P,Tang J Z,Peng L,Luo W J,Xiong D,Deng Y S,He X,Liu Z. 2019. Effects of dietary rapeseed meal on the growth performance,intestinal morphology and microflora of grass carp(Ctenopharyngodon idellus)[J]. Acta Hydrobiologica Sinica,43(6):1147-1154.]

孙翰昌. 2009. 不同饵料对鳜生长性能及消化酶活性的影响[J]. 中国饲料,(24):32-35. [Sun H C. 2009. Effects of different daits on the growth performance and digestive enzyme activity of Siniperca chuatsi[J]. China Feed,(24):32-35.]

孙丽华,陈浩如,黄洪辉,黄良民. 2009. 摄食水平对几种重要海水养殖鱼类生长和氮收支的影响[J]. 水产学报,33(3):470-478. [Sun L H,Chen H R,Huang H H,Huang L M. 2009. Effects of ration on growth and nitrogen budgets of several important marine cultured fishes[J]. Journal of Fisheries of China,33(3):470-478.]

王貴英,曾可为,高银爱,李清,夏儒龙. 2005. 鳜配合饲料的最适蛋白质含量[J]. 水生生物学报,29(2):189-192. [Wang G Y,Zeng K W,Gao Y A,Li Q,Xia R L. 2005. The optimum dietary protein level for Siniperca chuatsi[J]. Acta Hydrobiologica Sinica,29(2):189-192.]

王贵英,曾可为,郑翠华,李清. 2003. 饲料脂肪水平对鳜鱼生长的影响研究[J]. 淡水渔业,33(2):11-12. [Wang G Y,Zeng K W,Zheng C H,Li Q. 2003. Effect of dietary li-pid levels on growth performance of Siniperca chuatsi[J]. Fishwater Fisheries,33(2):11-12.]

吴婷婷,朱晓鸣. 1994. 鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究[J]. 中国水产科学,1(2):10-17. [Wu T T,Zhu X M. 1994. Studies on the activity of digestive enzymes in mandarin fish,black carp,grass carp,common carp,crucian carp and silver carp[J]. Jouranl of Fishery Sciences of China,1(2):10-17.]

吴遵霖,李蓓,吴凡,赵建利,王世国. 2002. 鳜鱼驯饲集约式网箱养殖技术[J]. 淡水渔业,32(4):55-56. [Wu Z L,Li B,Wu F,Zhao J L,Wang S G. 2002. Intensive cage culture technology of domestication of Siniperca chuatsi [J]. Fishwater Fisheries,32(4):55-56.]

吴遵霖,李蓓,李桂云,何顺清,张亮,左晟旻. 1996. 鳜鱼配合饲料驯饲与养殖研究[J]. 淡水渔业,26(1):16-19. [Wu Z L,Li B,Li G Y,He S Q,Zhang L,Zuo S M. 1996. Domestication and culture with compound feed of Siniperca chuatsi[J]. Fishwater Fisheries,26(1):16-19.]

徐革锋,陈侠君,杜佳,牟振波. 2009. 鱼类消化系统的结构、功能及消化酶的分布与特性[J]. 水产学杂志,22(4):49-55. [Xu G F,Chen X J,Du J,Mou Z B. 2009. Fish digestive system:Its structure,function and the distributions and characteristics of digestive enzymes[J]. Chinese Journal Fisheries,22(4):49-55.]

原居林,郭建林,刘梅,顾志敏. 2017. 不同饲料类型和放养密度对乌鳢生长特性及营养品质的影响[J]. 大连海洋大学学报,32(5):534-543. [Yuan J L,Guo J L,Liu M,Gu Z M. 2017. Comparison of growth performances and nutritional quality of muscle in snakehead Channa argus fed different diets at different stocking densities[J]. Journal of Dalian Ocean University,32(5):534-543.]

乐国伟,施用晖,杨凤. 1996. 肽在动物蛋白质营养中的作用──小肽在动物氨基酸吸收中的作用[J]. 四川农业大学学报,14(S1):19-26. [Yue G W,Shi Y H,Yang F. 1996. The role of small peptides in the intestinal absorption of amino acids[J]. Journal of Sichuan Agricultural University,14(S1):19-26.]

张海涛,王安利,李国立,孙翠慈. 2004. 营养素对鱼类脂肪肝病变的影响[J]. 海洋通报,23(1):82-89. [Zhang H T,Wang A L,Li G L,Sun C C. 2004. Effect of nutrient on the fatty liver disease of fish[J]. Marine Science Bulletin,23(1):82-89.]

张丽,许国焕,郭慧青,江永明,王珺,董小林. 2011. 摄食不同饵料对加州鲈生长性能及体成分的影响[J]. 淡水渔业,41(6):60-63. [Zhang L,Xu G H,Guo H Q,Jiang Y M,Wang J,Dong X L. 2011. Effect of different feeding stuff on growth performance and body biochemical composition of Micropterus salmoides[J]. Fishwater Fishe-ries,41(6):60-63.]

赵盼月,陈学豪,翟少伟,杨欢,李惠. 2017. 不同形态饲料对珍珠龙胆石斑鱼肠道消化酶活性和组织形态的影响[J]. 饲料广角,(5):42-44. [Zhao P Y,Chen X H,Zhai S W,Yang H,Li H. 2017. Effect of different diets on digestive enzyme activity and tissue morphology of intestine of hybrid grouper(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂)[J]. Feed China,(5):42-44.]

趙月月,赵健蓉,胡佐灿,杨洋,詹素平,刘小红,王志坚. 2018. 不同饵料对稀有鮈鲫仔稚鱼生长、消化道及消化酶的影响[J]. 水生生物学报,42(1):114-122. [Zhao Y Y,Zhao J R,Hu Z C,Yang Y,Zhan S P,Liu X H,Wang Z J. 2018. The effects of different baits on the growth and activities of the digestive tract and enzyme of the larvae and juvenile Gobiocypris rarus[J]. Acta Hydrobiologica Sinica,42(1):114-122.]

郑银桦,彭聪,吴秀峰,韩芳,薛敏,王嘉,胡亮. 2015. 酵母酶解物对大口黑鲈生长性能、脂类代谢及肠道组织结构的影响[J]. 动物营养学报,27(5):1605-1612. [Zheng Y H,Peng C,Wu X F,Han F,Xue M,Wang J,Hu L. 2015. Effects of hydrolyzed yeast on growth performance,li-pids metabolism and intestinal structure of largemouth bass(Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition,27(5):1605-1612.]

朱晓鸣,解绶启,崔奕波. 2000. 摄食水平对异育银鲫生长及能量收支的影响[J]. 海洋与湖沼,31(5):471-479. [Zhu X M,Xie S Q,Cui Y B. 2000. Effect of ration level on growth and energy budget of the gibel carp,Carassius auratus gibelio[J]. Oceanologia et Limnologia Sinica,31(5):471-479]

朱宇旌,王秉玉,张勇,李欣蔚,邵彩梅. 2012. 小肽转运载体1的生物学特性及其功能[J]. 动物营养学报,24(10):1847-1853. [Zhu Y J,Wang B Y,Zhang Y,Li X W,Shao C M. 2012. Peptide transporter 1:Biological characteristics and functions[J]. Chinese Journal of Animal Nutrition,24(10):1847-1853.]

Bakke S,Jordala A E O,Gómez Requeni P,Verri T,Kousoulaki K,Aksnes A,R?nnestad I. 2010. Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod(Gadus morhua)[J]. Comparative Bioche-mistry and Physiology. Part B:Biochemistry & Molecular Biology,156(1):48-55.

Chou R L,Su M S,Chen H Y. 2003. Optimal dietary protein and lipid levels for juvenile cobia(Rachycentron canadum)[J]. Aquaculture,193(1-2):81-89.

Fernández I,Moyano F J,Díaz M,Martinez T. 2001. Characterization of α-amylase activity in five species of Mediterranean sparid fishes(Sparidae,Teleostei)[J]. Journal of Experimental Marine Biology and Ecology,262(1):1-12.

Fu S J,Xie X J,Cao Z D. 2005. Effect of dietary composition on specific dynamic action in southern catfish Silurus meridionalis Chen[J]. Aquaculture Research,36(14):1384-1390.

Kolkovski S. 2001. Digestive enzymes in fish larvae and juveniles—Implications and applications to formulated diets[J]. Aquaculture,200(1-2):181-201.

Li Y,Li J Z,Lu J T,Li Z,Shi S C,Liu Z J. 2017. Effects of live and artificial feeds onthe growth,digestion,immunity and intestinal microflora of mandarinfish hybrid (Siniperca chuatsi ♀×Siniperca scherzeri ♂)[J]. Aquaculture Research,48(8):4479-4485.

Ostaszewska T,Kamaszewski M,Grochowski P,Dabrowski K,Verri T,Aksakal E,Szatkowska L,Nowak Z,Dobosz S. 2010. The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout(Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology. Part A:Molecular & Integrative Phy-siology,155(1):107-114.

Sangaletti R,Terova G,Peres A,Bossi E,Corà S,Saroglia M. 2009. Functional expression of the oligopeptide transpor-ter PepT1 from the sea bass(Dicentrarchus labrax)[J]. Pflugers Archiv:European Journal of Physiology,459(1):47-54.

Santinha P J M,Gomes E F S,Coimbra J O. 1996. Effects of protein level of the diet on digestibility and growth of gilthead sea bream,Sparus auratus L.[J]. Aquacult Nutrition,2(2):81-87.

Terova G,Corá S,Verri T,Rimoldi S,Bernardini G,Saroglia M. 2009. Impact of feed availability on PepT1 mRNA expression levels in seabass(Dicentrarchus labrax)[J]. Aquaculture,294(3-4):288-299.

Wang J L,Yan X,Lu R H,Meng X L, Nie G X. 2017. Peptide transporter 1(PepT1) in fish:A review[J]. Aquaculture and Fisheries,2(5):193-206.

(責任编辑 兰宗宝)

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!