当前位置:首页 期刊杂志

初中几何课堂教学中的思维培养分析

时间:2024-06-02

杨忠益

摘 要:本文以初中几何基本图形变式教学为例,以促进学生学习方式改善为目的,就其实施的基本思路、原则和实践三个方面展开思考。

关键词:初中数学;学习方式;改善;变式教学;几何;基本图形

一、基本原则

初中几何基本图形变式教学的实施思路明确的基础上,为促进学生学习方式的改善,提升学生的学习能力,我们还要切实坚持以下几点原则:

一是以教材为载体,注重教材本体原则的坚持。因为教材中融合了新课改理念,通过对教材中常见基本图形的总结,通过变式教学,能对教材内容进行再次组合和有效的拓展延伸。所以需要教师加强对教材的挖掘,引导学生要学会积极参透教材。

二是以学生为主体,注重学生主体原则的坚持。新课改理念倡导我们始终将学生作为学习的主体,为促进学生主体作用的发挥,在变式教学过程中,让学生从对基本图形的发现和分析开始,应用几何基本图形促进复杂结合图形变式问题的解决和处理,这样学生就能在这一过程中更好地获得解题经验,提高学生解题的成就感,强化学生对几何图形的学习兴趣,优化学生的学习方式,促进学生数学核心素养的培养。

三是整个变式教学的实施需要做到循序渐进,有的放矢的进行变式教学,这样才能更好地促进学生的图形分析与识别能力的提升。

二、实践思考

(一)以基本图形变式教学为载体,达到明确几何定理的目的

在这一环节中,主要是为促进学生对基本几何定理的掌握。所以变式教学的实施,要有助于学生对几何定理的理解和认知。其中,变式教学是核心。比如在学习有关“两点之间线段最短”的有关路径问题的几何定理的学习,在变式教学实施过程中,首先已知直线AB的同侧有点M和点N,要求学生借助直尺、圆规在这条直线上作出点P,确保MP+NP的值最小。这样的题型中,主要是要求学生掌握找到其中一点的对称点,再结合“两点之间线段最短”的原理,将所找到的对称点和另一点连接起来,同时与直线有交点就达到解决问题的目的。这就是在坚持教材本体的原则上,以教材例题为基础展开的变式,但是为促进学生对几何定理的明确,我们可以再将其相应的融入三角形和四边形的教学之中。比如等腰三角形ABC的底边BC的长是4,面积是16,其中一条腰(AC)的垂直平分线与AC的E和AB的F点相交,当D是边BC的中点时,M是EF的上一动点时,那么三角形CDM的最小值是多少?(详见图1)。这一案例就是在上一案例的基础上进行变式教学,因为已知CD的长度,所以需要计算CM+DM的最小值。在推断过程中,均是采用一样的推断思路,即以“两点之间线段最短”的原理來指导,有助于学生对几何定理的明确。在促进学生识图解题能力提升的同时促进学生思维水平的锻炼,从而更好地改善学生的学习方式。

(二)以基本图形变式教学为载体,达到巩固数学定理的目的

为促进学生对所学数学定理的巩固,也可以采取基本图形的变式教学来实施。比如学生在学习了等腰三角形的三线合一的性质之后,为更好地加强对其的巩固,可以要求学生采取“筑底高”辅助线来实施变式教学。例如,在等腰三角形DEF中,DE=DF=5,EF=6,且DH⊥EF,求EG=?具体详见图2。由于该三角形属于等腰三角形,根据等腰三角形三线合一的性质,将底边的高线做出来,所以求EG的长度,需要在底边作出高线DH,由于,DE=DF=5,EF=6,那么EF=2HF,所以HF=3,那么在等腰三角形DHF中,DF=5,DH=3,DH2=DF2-HF2,DF=4,再利用等积法,EG×DF=DH×HF,进而求出EG。在这样的解答过程中,始终是以基本图形为线索,结合题意对已知条件进行分析,对问题的解决思路进行猜测和联想,最后再进行推论与证实。因此,在变式题讲解过程中,需要在遵循上述原则的基础上,紧密结合三线合一的性质,将其应用于复杂图形之后,能更好地找到问题的突破口。

(三)以基本图形变式教学为载体,达到深化数学定理的目的

数学定理的深化,是在上述的基础上,对学生所学的定理,采取变式教学的方式,促进实际问题的解决,达到学以致用的目的。但是基本图形变式教学同样发挥了十分重要的作用。例如在学习了直角三角形勾股定理之后,虽然不同的图形,但是每个图形的面积关系均是以勾股定理为基础,利用直角三角形的两条边作出两个图形面积相同的或与直角三角形斜边所作的相同的图形面积相等,因此,这一推论是一个基本图形,通过图形的变化和演变之后,达到深化数学定理的目的。

三、结语

初中几何基本图形变式教学的实施,旨在促进学生几何思维能力的提升,让学生在变式教学中学会举一反三,从而更好地促进学生学习方式的改进和完善。因此,教师需要切实注重基本图形作用的发挥,并在此基础上拓展变式习题,达到基本图形变式教学的效果。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!