当前位置:首页 期刊杂志

浅谈利用函数定义域对学生思维品质的培养

时间:2024-06-03

秦永

函数定义域在高中数学教学中看起来简单,但在解题过程中如果对之有所忽视,往往会使解题思路走向歧途,有劳而无功。通过多年高中数学教学发现,利用定义域对函数的作用,加强对学生的思维品质进行相应的训练和提高,对培养学生思维品质是很有好处的。

一、利用函数关系式与定义域,培养思维严密性

在数学教学中往往会出现求解函数的关系式,遇到这样问题时如果忽视了所求函数关系式的定义域,将会使求解函数出现错误的结论。

例1:用长14.8m的钢条来制作一个长方体容器的框架,若所制容器底面一边长为x,且比另一底边小0.5m,求容积V关于边长x的函数关系式。

解:设容器高为h,则4(x+0.5+x+h)=14.8,所以h=3.2-2x

V=x(0.5+x)(3.2-2x)=-2x■+2.2x■+1.6x

本题解答到这里并没有结束,从题目中我们不难发现函数关系式还缺少自变量x的取值范围。此时如果引导学生注意解题思路的严密性,强调函数三要素,学生将会有所发现:

因为边长x和x+0.5以及高h均大于0,所以由:

x>0x+0.5>03.2-2x>0得:0

学生思维一旦缺乏严密性,就很容易忽视函数自变量定义域,所以在用函数方法解决实际问题时,务必注意函数自变量的取值范围对实际问题的影响,对学生加强必要引导和训练。

二、利用函数最值与定义域,培养思维灵活性

数学函数求最值的问题充分体现函数定义域的重要性。如果忽视定义域,将会导致最值的错误。

例2:已知函数f(x)=■,x≥1

(1)当a=■时,求f(x)的最小值。

(2)若对任意x≥1,f(x)>0恒成立,求实数a的取值范围。

分析:此题第(1)问,学生会产生三种思路:①利用单调性的定义证明f(x)的单调性再求最值;②利用导数判断函数的单调性再求最值;③利用均值不等式求最值。而前两种方法都较为繁琐,所以学生很容易偏向第三种解法。

错解:(1)a=■时,f(x)=■=x+■+2≥2■+2=2+■,当且仅当x=■时,即x=±■时,f(x)■=2+■

剖析:尽管学生想到了均值不等式这样简洁的方法,但是忽视了均值不等式的应用条件和函数的定义域。因为±■ 1,+∞,所以“=”取不到,故此解法错误。

(2)在(1)的教训下,学生在解答这一小题时开始注意到“x≥1”这个条件,于是作如下解答:

由f(x)>0恒成立且x≥1可得x■+2x+a>0恒成立,由二次函数的知识可知,只需要令△<0,即4-4a<0,所以a>1。

或者作如下解:

若x■+2x+a>0恒成立,则a>-x■-2x恒成立,则只需要令a大于-x■-2x的最大值即可。又-x■-2x=-(x+1)■-1≤-1,所以a>-1。

但是这两个答案都是错的,都是没能把定义域考虑完全,尽管在开始的变形与转化中已经注意到这个问题,但是随着解题的深入,在思维定势的影响下,定义域又忘了。

正解:思路一,∵x≥1,若f(x)=■>0恒成立,则只需要x■+2x+a>0恒成立,∵二次函数g(x)=x■+2x+a在[1,+∞)上递增,若在x≥1时,g(x)恒大于0,则只需要g(1)>0。∴3+a>0,即a>-3。

思路二,由x■+2x+a>0恒成立可得a>-x■-2x恒成立,设g(x)=-x■-2x,其中,x≥1,则只需要a>g(x)■=g(1)=-3,所以a>-3。

由此我们可以发现,学生在解题过程中的思维严密性和灵活性不是短期内就能养成的,这时,教师应当提醒学生注意自变量的取值范围,这样就可以打破学生的思维定势,提高其灵活性。

三、利用函数值域与定义域的关系,培养思维批判性

在数学函数中当定义域和对应法则确定下来,函数的值也将会随之而确定。因此,我们在解答函数值域的问题时,要高度重视函数定义域的问题。

例3:已知函数f(x)=sinxcosx-sinx-cosx,求f(x)的值域。

错解:设sinx+cosx=t,则sinxcosx=■,所以,f(x)=g(t)=■t■-t-■=(t-1)■-1≥-1,故f(x)的值域为[―1,+∞)。

剖析:换元后sinx+cosx=t=■sin(x+■)∴-■≤t≤■

∴g(t)■=g(-■)=■+■,g(t)■=g(1)=-1

∴f(x)的值域是[-1,■+■]。

自变量的取值范围对函数值域非常重要,因此,教师要能够严格要求学生对做完的习题进行检验,发现和修订错误,从而培养学生良好的学习习惯,提高学生思维的批判性和严谨性。

四、利用函数单调性与定义域,培养思维深刻性

在解答函数习题时,千万不能忽略函数的单调性,应强调在给定的定义域区间上函数自变量增加时,函数值随之增减的情况,讨论函数单调性在给定的定义域区间上的变化情况。

例4:指出函数f(x)=■的单调区间。

解:先求定义域:∵log■(x■―2x)≠0,∴x■―2x≠1

又∵x■―2x>0,所以函数定义域为:

(-∞,1-■)∪(1-■,0)∪(2,1+■)∪(1+■,+∞)

设u= x■-2x,则u在(-∞,1-■)和(1-■,0)上递减,在(2,1+■)和(1+■,+∞)上递增。根据复合函数单调性的判断方法,可知f(x)的单调减区间是(-∞,1-■)和(1-■,0);单调增区间是(2,1+■)和(1+■,+∞)。

如果学生对函数单调性的概念不清楚,理解不深刻,在习题训练时,只会死套公式;由于思维缺乏深刻性,对于解题方法的实质以及所用到的知识点都不能够深刻领会,在答题时,也一定不会考虑到函数在定义域内的单调性。所以,教学时,教师应重视学生的反思过程,反思解题过程和方法,反思解题所用到的知识点,以此达到检查遗漏,补缺补差,避免再犯的目的。

综上所述,函数定义域对求解函数关系式、最值(值域)、单调性、奇偶性等数学问题是非常重要,如果在教学中把与定义域有关的问题集中起来加强对学生进行强化训练,可以培养学生良好的思维习惯、思维品质,同时还有利学生创造性思维的培养。

【责编 张景贤】

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!