当前位置:首页 期刊杂志

窄间隙激光焊研究现状及发展趋势

时间:2024-06-05

骆传万 冯杰才 沈裕航 刘树磊 姜梦 魏连峰

摘要: 针对钛合金、镍基高温合金、高强钢、不锈钢及铝合金等材料的窄间隙激光焊进行了介绍。在窄间隙激光焊焊接过程中,焊接工艺参数(如激光功率、焊接速度及送丝速度等)会影响焊缝的微观组织和力学性能,坡口尺寸影响焊缝侧壁熔合性;若焊接过程控制不当,常规的窄间隙激光焊仍有可能出现焊缝侧壁未熔合、气孔等问题。激光-电弧复合焊、激光热丝焊、超窄间隙激光焊、摆动激光焊、真空激光焊和电磁辅助激光焊等新方法应运而生,解决了窄间隙激光焊中存在的焊接缺陷,同时进一步拓宽了窄间隙激光焊的应用领域。在焊接前对熔池流动行为、匙孔稳定性、温度场等进行模拟和分析,不仅可以揭示激光焊接复杂的物理过程及连接机理,还可用来优化焊接工艺,得到材料的有效连接。

关键词: 窄间隙焊接; 激光焊; 工艺; 组织; 力学性能

中图分类号: TG 456.7

Research status and development trend of narrow gap laser welding

Luo Chuanwan1, Feng Jiecai1, Shen Yuhang1, Liu Shulei1, Jiang Meng2, Wei Lianfeng3

(1.Shanghai University, Shanghai 200444, China; 2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; 3.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, Sichuan, China)

Abstract: Narrow gap laser welding of titanium alloy, nickel base superalloy, high strength steel, stainless steel and aluminum alloy was introduced. In the process of narrow gap laser welding, welding parameters such as laser power, welding speed and wire feeding speed, would affect microstructure and mechanical properties of weld, and groove size would affect side wall fusion of weld. If the welding process was not properly controlled, the conventional narrow gap laser welding might still cause problems such as side wall incomplete fusion of weld wall and porosity. New methods such as laser-arc hybrid welding, laser hot wire welding, ultra-narrow gap laser welding, swing laser welding, vacuum laser welding and electromagnetic assisted laser welding emerged at the right moment, which solved welding defects in narrow gap laser welding, and further broadened application field of narrow gap laser welding. Simulating and analyzing flow behavior of molten pool, keyhole stability and temperature field before welding could not only reveal complex physical processes and connection mechanisms of laser welding, but also be used to optimize welding process and obtain effective material connections.

Key words:  narrow gap welding; laser welding; technology; microstructure; mechanical properties

基金項目: 先进焊接与连接国家重点实验室开放课题研究基金资助(AWJ-22M02)

0 前言焊接是航空航天、船舶、核电和轨道交通等行业大型构件制造的关键技术[1]。钛合金、镍基高温合金、高强钢和铝合金等常用材料传统的焊接方法主要有熔化极电弧焊、埋弧焊和钨极氩弧焊(TIG)等,但仍存在焊接效率低、热影响区宽、工件变形严重、能耗大和劳动强度大等问题[2-3],急需开发先进的焊接技术。电子束焊接虽然可以实现高速焊,但是需要抽真空,且不易实现大型复杂构件的焊接,极大的限制了该技术的推广应用。近年来,激光焊因具有焊接速度快、热输入小、焊材消耗低和易于自动化等优点,已成为一种重要的高效高质连接技术[4-9]。与传统电弧焊相比,窄间隙激光焊在焊接变形、焊材消耗[10-11]和焊接效率[12-13]等方面更胜一筹,而且,磁场辅助激光焊、摆动激光焊和双光束激光焊等新型激光焊方法进一步拓宽窄间隙激光焊的应用领域。

1 不同材料的窄间隙激光焊

航空航天、船舶和轨道交通等行业常用的材料有钛合金、镍基高温合金、高强钢、不锈钢和铝合金等,国内外研究机构对上述材料的激光焊接可行性、焊缝组织及力学性能等方面开展了大量的研究,取得了丰硕的研究成果。

钛合金因具有较高的比强度、优异的耐腐蚀性和良好的加工成形等特点[14],广泛应用于航天航空、核潜艇等领域[15-16],但钛合金的焊缝组织及力学性能对焊接热输入非常敏感,大的热输入会使组织恶化,降低焊缝的力学性能。Fang等学者[17]通过控制激光功率大小来控制焊接时的热输入大小,研究了10 mm厚TC4钛合金激光焊接头组织及性能,研究表明:增加焊接热输入,焊缝中心等轴区的宽度会增大,其晶粒的平均尺寸也变大,但焊缝熔合区硬度却降低了。此外,Liu等学者[18]采用试验和模拟相结合的方法,开展了TC4钛合金窄间隙激光多道焊接研究,该研究指出,焊缝区柱状晶体的生长方向与最高温度梯度的方向一致。同时,焊缝重熔区经历了多次热循环,是导致该区域组织晶粒粗大的主要原因。同时,Fang等学者[19]则研究了Ar,He保护气体对20 mm厚TC4钛合金窄间隙激光焊组织及性能的影响,发现:Ar作为保护气体时,形成的热影响区比He气的宽,这主要是因为Ar比He的电离能低,形成了更多的等离子体,在焊缝表面以热传导的形式对焊缝加热,导致了其热影响区较宽;同时,与Ar相比,采用He作为保护气体,得到的α′马氏体显微结构更加细小,焊缝硬度更加均匀,且其硬度值略高,如图1[19]和图2[19]所示。Gui等学者[20]指出:激光焊的冷却速率较快,是钛合金焊缝热影响区宽度较窄的主要原因;当焊接速度为1.6 mm/min、激光功率为2~3 kW时,焊缝气孔率最低。

镍基高温合金具有良好的耐高温腐蚀性、热稳定性和抗蠕变性等[21-23],广泛应用于燃气轮机锅炉管、燃烧室、超高温反应堆(VHTR)等器件[24]。Keler等学者[25]采用窄间隙激光多道焊(Laser-multi-pass-narrow-gap-welding, Laser-MPNG)焊接了72.5 mm厚的鎳基高温合金,如图3[25]所示,研究发现:与窄间隙TIG(图6a)相比,Laser-MPNG(图3b)不仅焊材消耗量减少了2倍,而且焊接速度提高了5倍。Thejasree等学者[26]研究焊接热输入对Inconel 625镍基合金焊缝的影响,发现:随着激光功率的增大,焊缝熔深也增大,如图4[26]所示;同时,采用数值模拟的方法,获得的显微组织、力学性能和热循环等模拟结果与实际试验所获得的结果非常接近,这表明:数值模拟可以有效的指导焊接试验,对深入了解焊接的相关物理过程有较大的意义。Sun等学者[27]研究了焊接坡口对12 mm厚Inconel 617镍基高温合金激光焊接特性的影响,研究表明:相比于U形坡口,V形坡口容易产生未熔合、气孔等缺陷;对于U形坡口,熔融金属的润湿性更好,有助于获得形成良好的焊缝;该研究还发现:由于激光焊缝出现碳化物沉淀强化现象,焊缝的硬度、抗拉强度和冲击韧性都高于母材,与电弧焊[28]相比,采用Laser-MPNG,焊接效率更高,焊材消耗更少。高强钢一直被广泛应用于船舶、核电、大型钢铁建筑等行业,高效高质焊接技术是相关产品制造过程的关键技术。Wu等学者[29]对35 mm厚的CLF-1钢进行Laser-MPNG,研究表明:经过焊后热处理(PWHT)后,焊缝侧壁完全熔合,没有发现未熔合、气孔及裂纹等缺陷,但PWHT会降低晶界强度,容易产生裂纹。此外,Guo等学者[30]采用激光填丝焊焊接8 mm厚的S60高强度钢,研究表明:传统的TIG会使焊接接头产生较高的残余应力和变形。同时,Guo等学者[31]提出:采用单道自熔焊焊接S960和S700高强钢时,采用2G焊接位置更有利于解决1G焊接位置出现的未熔合及焊缝下凹等缺陷;同时,该研究还发现:采用超窄间隙激光多道焊不仅能够得到无裂纹、气孔及未熔合等缺陷的焊缝,如图5b[31]所示,相比于单道自熔焊,避免了对于高功率激光器的要求,但多层激光焊接过程中的快速冷却,使得焊缝的熔合区和热影响区出现了马氏体组织,降低了焊接接头的韧性。随后,Ning等学者[32]指出:与传统的TIG相比,采用Laser-MPNG焊接D406超强度钢,焊缝组织更加均匀,抗拉强度更高。

对于不锈钢焊接,激光焊比传统电弧焊有更多的优势,焊接变形更小。Shi等学者[33]采用窄间隙激光填丝焊和窄间隙TIG对20 mm厚奥氏体不锈钢进行焊接,研究表明:激光填丝焊获得的焊接变形更小。Ragavendran等学者[34]研究了激光焊、激光-TIG复合焊、激光-MIG复合焊对316L(N)不锈钢的焊缝组织及力学性能的影响,发现:复合焊焊缝的二次枝晶间距较大,主要是复合焊的冷却速率比激光焊的小、热输入较大所致。由于热输入的影响,TIG和MIG焊缝体积也比激光焊的大,顶部和底部的焊缝宽度也更宽;同时,MIG焊缝硬度也高于TIG和激光焊焊缝,其强度、延展性和韧性更好。Yang等学者[35]发现采用超窄间隙激光焊焊接100 mm厚304不锈钢时,对坡口侧壁和底部同时加热,可以获得良好的焊缝成形。

近年来,汽车、轨道交通、航天航空等行业越来越关注铝合金等轻量化材料[36-39]。Zhang等学者[40]采用窄间隙激光多道焊对20 mm厚的7A52高强度铝合金进行焊接,研究表明:对焊缝进行焊后热处理,促使焊缝金属的沉淀相急剧增加,使得焊缝显微硬度略有增加。Zhang等学者[41]还指出,采用单一的U形或I形坡口,都有利于焊缝侧壁的熔合。而且,采用铝镁合金焊丝填充焊缝,可提高焊接接头的抗拉强度、屈服强度和断后伸长率。Suckow等学者[42]对AA7075铝合金激光焊接头进行焊后热处理,焊缝显微组织表明:沿晶界处形成富Mg-Al-Cu相和富Mg-Zn相,是AA7075接头力学性能显著提高的原因之一。

综上所述,对于钛合金、镍基高温合金、高强钢、不锈钢及铝合金等材料,窄间隙激光焊方法比传统电弧焊方法更有优势。在窄间隙激光焊焊接过程中,焊接工艺参数(如激光功率、焊接速度及送丝速度等)会影响焊缝的微观组织和力学性能,坡口尺寸影响焊缝侧壁熔合性;若焊接过程控制不当,常规的窄间隙激光焊仍有可能出现焊缝侧壁未熔合、气孔等问题。

2 窄间隙激光焊新方法

近年来,研究人员提出了激光-电弧复合焊、激光热丝焊、超窄间隙激光焊、摆动激光焊、真空激光焊和电磁辅助激光焊等新方法,不仅能够解决窄间隙激光焊存在的问题,同时进一步拓宽窄间隙激光焊的应用领域。

Li等学者[43]采用激光自熔焊、激光填丝焊和激光-电弧复合焊3种焊接方法组合的形式焊接30 mm厚的Q235钢板,研究表明:激光复合焊焊缝无明显的气孔,表面无焊瘤,如图6[43]所示,在焊缝顶部,坡口间隙最大的地方,侧壁也没有未熔合的缺陷,但是在焊缝的根部存在未熔合,主要是由于较窄的侧壁吸收了更多的激光能量,而导致到达焊接坡口底部的能量减少;激光自熔焊焊缝的热影响区最小,而后续焊道,依次采用激光填丝焊和激光-电弧复合焊,由于经历了多次热循环,热影响区较宽。Zhang等学者[44]采用窄间隙激光-电弧复合焊对厚40 mm的低碳钢进行焊接,焊缝无明显的气孔、未熔合等等缺陷;焊缝根部针状铁素体含量最低,力学性能相对较低,但是其抗拉强度和冲击吸收能量仍分别比母材高49%和60%。

Kaplan等学者[45]采用窄间隙激光填热丝焊对7 mm厚的钢板进行焊接,研究表明:采用填充热丝,不仅可以减少激光功率的消耗,还能促进熔融金属的润湿性,提高填充效率及质量。然而,若加热焊丝的电压过高,容易形成电弧或造成熔滴脱落。Wei等学者[46]也发现:通过电流等方式对焊丝进行预热,可减少激光功率,提高了焊接间隙公差,并获得了更大的熔深。此外,Liu等学者[47]也指出:与传统激光填冷丝焊相比,激光填热丝焊可减少热输入,有利于抑制未熔合、气孔和裂纹等缺陷的形成。

Li等学者[48]的研究表明:采用窄間隙摆动激光焊焊接铝合金,在较低的激光热输入下,合适的激光束摆动参数,可以获得良好的焊缝成形;而采用常规窄间隙激光焊时,需要增加离焦量,以获得大激光光斑,将导致热输入增加,可能会恶化焊缝组织;当激光束摆动振幅为2.0 mm、频率为150 Hz时,得到较宽、较浅的焊缝形态,而且更有利于避免侧壁未熔合现象。同时,Wu等学者[49]、Fetzer等学者[50]、Hagenlocher等学者[51]及Wang等学者[52]的研究表明:与常规激光焊相比,摆动激光焊可以有效调节激光能量的分布,抑制气孔缺陷;激光束搅拌熔池,可以细化焊缝晶粒,提高焊接接头的强韧性。

采用激光一次性焊透厚板材料,虽然易于实现,但是焊接飞溅较大,焊缝容易形成气孔和裂纹等缺陷[53]。Guo等学者[54]采用超窄间隙激光多道焊对6 mm厚S960高强度钢板进行焊接,研究表明:超窄间隙激光焊能节省更多的焊材;当激光功率为2 kW、焊接速度为0.6m/min、送丝速率为3.3m/min时,成功获得了无明显气孔和未熔合的焊缝,将优化的参数略作调整后焊接8 mm厚S960和13 mm厚S700钢,拉伸断裂位置均位于母材。Elmesalamy等学者[55]采用超窄间隙激光焊焊接20 mm厚的不锈钢,研究了激光功率、焊接速度和送丝速率等工艺参数对焊缝的熔合性和表面氧化的影响规律,发现:提高激光功率和焊接速度可以提高焊缝熔合性;当焊接速度增加而激光功率降低时,焊缝表面层金属光泽,无氧化现象,原因是热量输入减少,焊缝表面温度降低,有效抑制了氧化反应。

对于激光焊,激光功率与焊缝熔深一般呈正比关系,但是功率越大,越容易产生飞溅、气孔及变形等问题[56]。同时,在大气压力下,大功率激光焊接的光致等离子体密度较大,会吸收部分激光束能量,影响了材料对激光束能量的吸收,且焊缝表面容易氧化,很难获得成形良好的焊缝。Gao等学者[57]和Jiang等学者[58]的研究表明:与传统激光焊相比,在亚大气压环境或真空条件下,可以极大的提高激光束的穿透能力,焊缝熔深更大。Luo等学者[59]及Li等学者[60]指出:在亚大气压条件下,焊缝的气孔、裂纹等缺陷受到了明显的抑制,焊缝质量有所提高。Wang等学者[56]采用低真空激光焊接新技术连接130 mm厚5A06铝合金,研究表明:焊缝无明显气孔和未熔合缺陷;焊缝的抗拉强度达到母材的95%以上。

对于铝合金的焊接,常规激光焊获得的焊缝成形较差,焊缝表面通常会有凹陷,背面余高较大。Qi等学者[61]在激光焊中,引入辅助电磁场,以产生一个向上的稳定的电磁力,可以有效降低熔池塌陷现象,焊缝成形良好。Xu等学者[62]也采用电磁场辅助激光焊焊接10 mm厚A5083铝合金,研究表明:当磁感应强度为80 mT、频率为400 Hz时,可以有效抑制焊缝根部焊瘤的形成;外加振荡的电磁场对熔池具有一定的搅拌作用,可以细化晶粒,有效降低焊缝的开裂敏感性。此外,一些学者采用双束激光焊[63]、双脉冲激光焊[64]等方法,也可以有效降低铝合金焊缝裂纹问题。

Nsstrm等学者[65]采用斜向上窄间隙激光多道焊焊接15 mm厚钢板(图7b[65]),与传统水平窄间隙激光多道焊(图7a[65])相比,水平焊接的焊缝表面成形均匀,但在焊缝边缘有一些凹陷,在焊接缝中心有一些焊接凸起(图8a[65]);而斜向上窄间隙激光多道焊焊缝的中间出现周期性的凹陷(图8b[65])。2种方式得到的焊缝孔隙率均小于0.3%,但是采用斜向上窄间隙多层焊新方法的工艺鲁棒性更好。

综上所述,新型的激光焊方法一定程度上可以规避常规窄间隙焊中存在的侧壁未熔合、气孔等问题,极大的拓宽了窄间隙激光焊的应用领域。

3 窄间隙激光焊发展趋势

近年來,窄间隙激光焊向着多能量场复合的方向发展。窄间隙激光填热丝焊、电磁辅助激光焊和超窄间隙激光焊等新方法在一定程度上解决了窄间隙激光焊侧壁未熔合、气孔等缺陷,同时也拓宽了激光焊的应用领域。因此,随着多能量场激光复合焊技术的不断发展,窄间隙激光焊将有望在厚板焊接领域发挥更重要的作用。同时,相关研究也指出:在激光焊焊接过程中,激光光束作用在焊件表面上的温度变化、焊件的应力应变变化、熔池的流动行为和匙孔的稳定性,很大程度上决定了焊缝的质量。因此,采用数值模拟对激光焊焊接过程中的温度场、应力应变场和熔池流动进行分析,一定程度上能够预测实际焊缝的成形情况,为实际激光焊焊接工艺参数的选择提供理论指导和参考,更好的发挥出窄间隙激光焊的优势。

4 结束语

激光焊因具有焊接速度快、热输入小和易于自动化等优点,受到了众多研究机构的关注,取得了较多的研究成果,为该技术的推广应用提供了理论基础和技术支撑。侧壁未熔合、气孔和根部裂纹是窄间隙激光焊常见的焊接缺陷,若在焊接前对激光焊焊接过程进行数值模拟,通过对整个过程的熔池流动行为、匙孔稳定性行为、温度场等进行分析,进而来优化工艺,也可揭示激光焊接复杂的物理过程及其连接机理,实现钛合金、镍基高温合金、高强钢、不锈钢和铝合金等材料的有效连接。同时,随着电磁场辅助激光焊、摆动激光焊和真空激光焊等多能量场复合窄间隙激光焊的不断发展,窄间隙激光焊将有望在厚板焊接领域发挥更重要的作用。

参考文献

[1] You D Y, Gao X D, Katayama S. Review of laser welding monitoring [J]. Science and Technology of Welding and Joining, 2014, 19(3): 181-201.

[2] Wang Jianfeng, Sun Qingjie, Feng Jicai, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 413-420.

[3] Chen Jicheng, Wei Yanhong, Zhan Xiaohong, et al. Weld profile microstructure and mechanical property of laser-welded butt joints of 5A06 Al alloy with static magnetic field support[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 1677- 1686.

[4] Zhang Mingjun, Chen Shun, Zhang Yingzhe, et al. Mechanisms for improvement of weld appearance in autogenous fiber laser welding of thick stainless steels[J]. Metals, 2018, 8(8): 625.

[5] Ya Wei, Pathiraj B, Yu Xinghua. From statistical analysis to process optimization during cladding using a Nd:YAG laser[J]. China Welding, 2022, 31(4): 7-22.

[6] Mei Lifang, Yan Dongbing, Chen Genyu, et al. Comparative study on CO2 laser overlap welding and resistance spot welding for automotive body in white[J]. Materials and Design, 2015, 78: 107-117.

[7] Wang Lei, Xu Xuezong Wang Kehong, et al. Effect of shielding gas and defocusing on porosity during laser beam welding of 7A52 alloy[J]. China Welding, 2020, 29(3): 20-25.

[8] Sofia D, Barletta D,Poletto M. Laser sintering process of ceramic powders: the effect of particle size on the mechanical properties of sintered layers[J]. Additive Manufacturing, 2018, 23: 215-224.

[9] Hou Jijun, Dong Junhui, Bai Xueyu, et al. Weld shape and microstructure of TC4 laser welding with activating flux of Na2SiF6[J]. China Welding, 2020, 29(4): 19-24.

[10] Guo Wei , DongShiyun, Guo Wei, et al. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel[J]. Materials Science and Engineering: A, 2015, 625: 65-80.

[11] Yu Y C, Yang S L, Yin Y, et al. Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2125-2131.

[12] Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37-47.

[13] Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 113: 49-59.

[14] 杜勇, 李峰, 夏希瑋, 等. TC4钛合金窄间隙激光填绞股焊丝焊接接头组织及性能[J]. 焊接, 2022(12): 1-5.

[15] 冯靖, 吕雪岩, 周晓锋, 等. 热连轧高强钛合金厚壁管道的TIG工艺及组织和性能[J]. 焊接, 2022(1): 8-13.

[16] 肖珺, 雷一鼎, 陈树君, 等. 基于多点柔性支撑的钛合金激光焊接变形控制[J]. 焊接学报, 2022, 43(8): 8-12.

[17] Fang Naiwen, Guo Erjun, Huang Ruisheng, et al. Effect of welding heat input on microstructure and properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire[J]. Materials Research Express, 2021, 8(1): 016511.

[18] Liu Jinzhao, Zhan Xiaohong, Gao Zhuanni, et al. Microstructure and stress distribution of TC4 titanium alloy joint using laser-multi-pass-narrow-gap welding[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(11-12): 3725-3735.

[19] Fang Naiwen, Guo Erjun, Xu Kai, et al. Effect of shielding gas on microstructures and mechanical properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire[J]. Advances in Materials Science and Engineering, 2021, 2021: 9582421.

[20] Gui Zhenzhen, Min Guoqing, Liu Dejian, et al. Double-sided laser welding of dissimilar titanium alloys with linear variable thickness[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9-12): 1597-1606.

[21] Zhang Yu, Jing Hongyang, Xu Lianyong, et al. Microstructure and mechanical performance of welded joint between a novel heat-esistant steel and Inconel 617 weld metal[J]. Materials Characterization, 2018, 139: 279-292.

[22] 种润, 郭绍庆, 张文扬, 等. GH4169合金激光增材制造过程热-力发展数值模拟[J]. 焊接, 2021(3): 13-21.

[23] 滕彬, 武鹏博, 李晓光, 等. GH3128合金激光焊接头组织与性能[J]. 焊接学报, 2022, 43(7): 82-87.

[24] 王珏, 董建新, 张麦仓, 等. 700 ℃以上超超临界电站锅炉过热器管材用典型镍基合金的平衡析出相规律[J]. 北京科技大学学报, 2012, 34(7): 799-807.

[25] Keler B, Brenner B,Dittrich D, et al. Laser-multi-pass-narrow-gap-welding of nickel superalloy—alloy 617OCC[J]. Journal of Laser Application, 2019, 31(2): 022412.

[26] Thejasree P, Manikandan N, Binoj J S. Numerical simulation and experimental investigation on laser beam welding of Inconel 625[J]. Materials Today: Proceedings, 2021, 39: 268-273.

[27] Sun Junhao, Ren Wenjie, Nie Pulin, et al. Study on the weldability, microstructure and mechanical properties of thick Inconel 617 plate using narrow gap laser welding method[J]. Materials and Design, 2019, 175: 107823.

[28] Fink C,Zinke M. Welding of nickel-based alloy 617 using modified dip arc processes[J]. Welding in the World, 2013, 57(3): 323-333.

[29] Wu Shikai, Zhang Jianchao, Yang Jiaoxi, et al. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm[J]. Journal of Nuclear Materials, 2018, 503: 66-74.

[30] Guo Wei, Li Lin, Dong Shiyun, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel[J]. Optics and Lasers in Engineering, 2017, 91: 1-15.

[31] Guo Wei, Li Lin, Crowther D, et al. Laser welding of high strength steels (S960 and S700) with medium thickness[J]. Journal of Laser Applications, 2016, 28(2): 002425.

[32] Ning Jie, Zhang LinJie, Yang Jiannan, et al. Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel[J]. Journal of Materials Processing Technology, 2019, 270: 168-181.

[33] Shi Hao, Zhang Ke, Xu Zhengyi, et al. Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4): 279-291.

[34] Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates[J]. Materials and Manufacturing Processes, 2020, 35(8): 922-934.

[35] Yang Wuxiong, Xin Jijun, Fang Chao, et al. Microstructure and mechanical properties of ultra-narrow gap laser weld joint of 100 mm-thick SUS304 steel plates[J]. Journal of Materials Processing Technology, 2019, 265: 130-137.

[36] Tan Caiwang, Yang Jia, Zhao Xiaoye, et al. Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint[J]. Journal of Alloys and Compounds, 2018, 764: 186-201.

[37] Zhou L, Li G H, Zhang R X, et al. Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint[J]. Journal of Alloys and Compounds, 2019, 775: 372-382.

[38] Geng Huihui, Xia Zehua, Zhang Xu, et al. Microstructures and mechanical properties of the welded AA5182/HC340LA joint by magnetic pulse welding[J]. Materials Charactization, 2018, 138: 229-237.

[39] 范霽康, 倪程, 徐鸿林, 等. 3003铝合金激光焊接组织和力学性能[J]. 焊接, 2021(3): 22-25.

[40] Zhang Zhihui, Dong Shiyun, Wang Yujiang, et al. Microstructure characteristics of thick aluminum alloy plate joints welded by fiber laser[J]. Materials and Design, 2015, 84: 173-177.

[41] Zhang Z H, Dong S Y, Wang Y J, et al. Study on microstructures and mechanical properties of super narrow gap joints of thick and high strength aluminum alloy plates welded by fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 99-109.

[42] Suckow T, Vlkers S, cal E B, et al. Effect of shortened post weld heat treatment on the laser welded AA7075 alloy[J]. Metals, 2022, 12(3): 393.

[43] Li Ruoyang, Wang Tianjiao, Wang Chunming, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics and Laser Technology, 2014, 64: 172-183.

[44] Zhang Chen, Li Geng, Gao Ming, et al. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel[J]. Materials, 2017, 10(2): 106.

[45] Kaplan A F H, Kim K H, Bang H S, et al. Narrow gap laser welding by multilayer hot wire addition[J]. Journal of Laser Application, 2016, 28 (2): 022410.

[46] Wei Haiying, Zhang Yi, Tan Lipeng, et al. Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption[J]. Journal of Cleaner Production, 2015, 87: 255-262.

[47] Liu Wei, Liu Shuang, Ma Junjie, et al. Real-time monitoring of the laser hot-wire welding process[J]. Optics and Laser Technology, 2014, 57: 66-76.

[48] Li Junzhao. Liu Yibo, Zhen Zuyang, et al. Analysis and improvement of laser wire filling welding process stability with beam wobble[J]. Optics and Laser Technology, 2021, 134: 106594.

[49] Wu Q, Xiao R S, Zou J L, et al. Weld formation mechanism during fiber laser welding of aluminum alloys with focus rotation and vertical oscillation[J]. Journal of Manufacturing Processes, 2018, 36: 149-154.

[50] Fetzer F, Martin S, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of Al-Mg-Si[J]. Optics and Lasers in Engineering, 2018, 108: 68-77.

[51] Hagenlocher C, Sommer M, Fetzer F, et al. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum[J]. Materials and Design, 2018, 160: 1178-1185.

[52] Wang Lei, Gao Ming, Zhang Chen, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials and Design, 2016, 108: 707-717.

[53] Guo Wei, Liu Qiang, Francis J A, et al. Comparison of laser welds in thick section S700 high strength steel manufactured in flat (1G) and horizontal (2G) positions[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1): 197-200.

[54] Guo Wei, Crowther D, Francis J A, et al. Process-parameter interactions in ultra-narrow gap laser welding of high strength steels[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2547-2566.

[55] Elmesalamy A S, Li L, Francis J A, et al. Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1-4): 1-17.

[56] Wang Jiming, Peng Genchen, Li Liqun, et al. 30 kW-level laser welding characteristics of 5A06 aluminum alloy thick plate under sub-atmospheric pressure[J]. Optics and Laser Technology, 2019, 119: 105668.

[57] Gao Ming,Kawahito Y, Kajii S. Observation and understanding in laser welding of pure titanium at sub-atmospheric pressure[J]. Optics Express, 2017, 25(12): 13539.

[58] Jiang Meng, Tao Wang, Wang Shuliang, et al. Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding[J]. Vacuum, 2017, 138: 70-79.

[59] Luo Yan, Tang Xinhua, Lu Fenggui, et al. Effect of sub-atmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219-224.

[60] Li Liqun, Peng Genchen, Wang Jiming, et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminum alloys under sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2019, 133: 812-826.

[61] Qi Yi, Chen Genyu. Root defects in full penetration laser welding of thick plates using steady electromagnetic force[J]. Journal of Materials Processing Technology, 2018, 260: 97-103.

[62] Xu Lidong, Tang Xinhua, Zhang Ruolin, et al. Weld bead characteristics for full-penetration laser welding of aluminum alloy under electromagnetic field support[J]. Journal of Materials Processing Technology, 2021, 288: 116896.

[63] Coniglio N, Patry M. Measuring laser weldability of aluminum alloys using controlled restraint weldability test[J]. Science and Technology of Welding and Joining, 2013, 18(7): 573-580.

[64] von Witzendorff P, Hermsdorf J, Kaierle S, et al. Double pulse laser welding of 6082 aluminum alloys[J]. Science and Technology of Welding and Joining, 2015, 20(1): 42-47.

[65] Nsstrm J, Brueckner F, Kaplan A F H. A near-vertical approach to laser narrow gap multi-layer welding[J]. Optics and Laser Technology, 2020, 121: 105798.

收稿日期: 2022-12-12

駱传万简介: 硕士研究生;主要从事激光焊接机理的研究;2634187248@qq.com。

冯杰才简介: 通信作者,博士,副教授;主要从事激光焊、激光清洗、激光熔覆、激光切割等激光加工技术的研究;已发表论文30余篇;fengjiecai@shu.edu.cn。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!