时间:2024-06-19
一类二阶非线性微分方程解的振动性
[1]AGARWALR P,GRACES R. On the oscillation of certain second order differential equations[J],GeorgianMath.J.,2000(7):201–213.
[2]AYANLARB,TIRYAKI A.Oscillation theorems for nonlinear second order differential equations with damping[J], Acta Math. Hungar., 2000(89):1–13.
[3]WANG Q R. Oscillation criteria for nonlinear second order damped differential equations[J]. ActaMath.Hungar.,2004(102):117–139.
[4]LI W T, AGARWAL R P. Interval Oscillation Criteria related to integral averaging technique for certain nonlinear differential equations[J], J. Math. Anal. Appl., 2000 (245): 171–188.
[5]KONG Q. Interval Criteria of Second order linear ordinary differential equations [J], Math. Anal. Appl., 1999(209):258 - 270.
[6]SUN Y G. New Kamenev type oscillation criteria for second order nonlinear differential equations with damping [J], J. Math. Anal. Appl., 2004, 291(1): 341–351.
[7]KAMENEV I V. An integral criterion for oscillation of linear differential equations of second order [J], Mat. Zametki, 1978 (23): 249–251.
[8]KIRANE M, ROGOVCHENKO Y V. Oscillation results for asecond order damped differential equation with nonmonotonous nonlinearity[J], J. Math. Anal. Appl., 2000 (250): 118–138.
[9]KIRANE M, ROGOVCHENKO Y V. On oscillation of nonlinear second order differential equation with damping term, Appl. Math. Comput., 2001(117):177 – 192.
[10]LI H J, Oscillation criteria for second order linear differential equations[J], J. Math. Anal. Appl., 1995(194): 217–234.
[11]CH G. Philos, Oscillation theorems for linear differential equations of second order [J], Arch. Math. (Basel), 1989(53): 483–492.
[12]ROGOVCHENKO Y V, Oscillation theorems for second-order equations with damping [J], Nonlinear Analysis TMA, 2000 (41):1005–1028.
[13]TIRYAKI A, ZAFER A. Oscillation criteria for second order nonlinear differential equations with damping [J], Turk. J. Math., 2000 (24): 185–196.
[14]庄容坤.一类二阶非线性阻尼方程的振动准则[J],惠州学院学报:自然科学版,2002,22(6):1–8.
【责任编辑:吴跃新】
Oscillations for Second-order Nonlinear Differential Equations
CUI Zhi-qiang
(School of Administration, Huizhou College of Business, Huizhou 516001, Guangdong China)
In this paper, the oscillation behavior of solutions of the second-order nonlinear differential equation is studied. New oscillation criteria are obtained by using the generalized Riccati technique and integralaveraging technique.
nonlinear differential equation; oscillation; generalized Riccati technique; averaging technique
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!