当前位置:首页 期刊杂志

神经嵴发育调控及颅面部遗传基础研究进展

时间:2024-06-19

毛轲,孟子秋,张永彪,3

综 述

神经嵴发育调控及颅面部遗传基础研究进展

毛轲1,孟子秋2,张永彪2,3

1. 北京航空航天大学生物与医学工程学院,北京 100191 2. 北京航空航天大学医学科学与工程学院,北京 100191 3. 工信部大数据精准医疗重点实验室,北京 100191

颅面部赋予脊椎动物无与伦比的进化优势,其由颅神经嵴细胞发育而来的骨、软骨、神经、肌肉等组织组成,使脊椎动物具备了复杂的神经和感官系统。神经嵴细胞是脊椎动物特有的具备迁移性、多能性的细胞类群,它们在增殖、迁移、分化过程中受到多个基因网络的时序调控,从而参与复杂颅面部的形成。同时,颅面部又是一组高度可遗传的表型组合,并具有两个特征:在亲缘后代中的可遗传性及在不同个体间的高度可变性,这两个特征分别提示了颅神经嵴细胞发育调控网络的精准性和可塑性。调控网络内基因适度突变会改变颅神经嵴细胞的增殖和分化从而产生表型可塑性,而有害的遗传突变则将导致畸形产生。本文梳理了对颅面部发育起决定作用的神经嵴细胞的发育过程及基因调控网络,在遗传层面总结了已知的颅面部表型多样性的决定基础和颅面畸形的致病机制,以期为了解颅面部发育过程以及为颅面疾病的防控提供全面认知。

颅面发育;神经嵴细胞;基因调控网络;遗传变异

颅面器官赋予了脊椎动物独特的面部外观,其发育受到复杂且高度协调的基因网络调控。颅面部发育始于原肠胚期,需要多个不同的信号通路及各个胚层协调控制颅面形态生成,其中神经嵴细胞(neural crest cells, NCCs)对颅面发育具有重要贡献[1]。

NCCs是脊椎动物特有的呈集群迁移、具有短暂多能性的细胞类群,它们起源于原肠胚期的神经板边界,从闭合的神经管背侧迁移至胚胎多个部位[2]。NCCs的出现在脊椎动物进化中具有重要意义,它们赋予脊椎动物全新的头部,促进了脊椎动物由被动的滤食行为向主动捕食的生活方式改变,使其辐射和适应地球上大多数生态系统[3]。NCCs从诱导产生到分化可视为由多个连续变化阶段组成,且在每个发展阶段都存在一个核心基因调控网络(gene regulatory network, GRN)。GRN由包含转录因子及信号分子的发育模块组成,它整合了环境信号和细胞内在基因信号,使NCCs在特定的时间和空间受到精细调控,从而分化形成骨、软骨、神经、肌肉等组织结构,产生了颅面部的大部分衍生物[4]。

颅面部是一组高度可遗传的表型组合,面部特征在亲缘后代中表现为可遗传性,然而在不同人群或个体间却呈现高度可变性,其主要归因于遗传因素[5]。通过全基因组关联分析发现与面部形态相关的位点超过300个,它们多富集于神经嵴细胞或胚胎颌面组织的呈激活状态的增强子区。此外,颅面部是脊椎动物中易发生畸形的部位之一,已证实遗传突变是导致先天性颅面畸形的主因[6]。目前已鉴定的遗传变异包括染色体缺失、重复、基因突变等功能性缺失或异常,这些变异在胚胎发育时期影响了神经嵴细胞增殖或迁移[7]。本文总结了参与颅面发育的重要细胞类群——NCCs及其基因调控网络,并对颅面部遗传多样性及颅面致病基因进行了总结。

1 神经嵴细胞

神经嵴于1868年由Wilhelm His Sr.在鸡胚中首次发现,是脊椎动物胚胎发育过程中过渡性结构[8]。神经嵴起源于原肠胚期,在神经板和非神经外胚层交界处形成了神经板边界(neural plate border, NPB),其可隆起成神经褶皱,神经板双侧的神经褶皱互相接近后逐渐融合,形成闭合的神经管(图1A);之后源于神经管背侧的NCCs成群向腹侧迁移[9]。

NCCs是脊椎动物特有的细胞类群,具有很强的迁移潜能和短暂的多能性,可分化形成多种不同类型的细胞,如骨细胞、平滑肌细胞、神经细胞、黑色素细胞等,它们直接或以衍生物形式分布于脊椎动物组织器官中[10]。根据起源,NCCs按照头尾轴的排列顺序分为4个主要亚群:颅、迷走、躯干和骶神经嵴亚群(图1B)。各个亚群的NCCs表现出不同的迁移模式,且其分化能力在开始迁移时已被确定[11]。颅神经嵴细胞(cranial neural crest cells, CNCCs)是参与颅面部发育的重要类群,也是NCCs中唯一参与骨形成的细胞群[12]。CNCCs起源于前中枢神经系统,即前脑、中脑和后脑(图1C),最前部的CNCCs构成额鼻骨,而更多后部的CNCCs迁移至咽弓处,形成颌骨、中耳和颈部的骨骼及软骨(图1D)[12]。CNCCs赋予脊椎动物超级感官系统、复杂神经网络和武装了牙齿的颌骨,使其相对于无脊椎动物拥有了“崭新头部”,在进化中具有重要意义。

图1 神经嵴细胞形成、迁移、分化示意图

A:神经嵴发育模式图。神经嵴细胞起源于神经板边界(绿色),该结构在胚胎原肠胚期位于神经板(蓝色)和非神经外胚层之间(灰色),随着神经管的发育,神经嵴细胞经过上皮间充质转化后形成成熟的神经嵴细胞(绿色),从神经管背侧迁移出。B:神经嵴细胞亚群及分化类型。神经嵴细胞亚群根据其轴向分布依次分为颅、迷走、躯干、骶神经嵴细胞。C:以小鼠E9.5的模式图为例展示神经嵴迁移路线。神经嵴迁移时,胚胎后脑便形成8个菱脑原节(rhombomeres1–8, R1~8);来自前脑、中脑的神经嵴细胞迁入胚胎颅面突起部位,来自菱脑R1和R2的细胞定向迁入第一咽弓(pharyngeal arch 1, PA1),而第二咽弓(PA2)主要是由菱脑R3和R4迁出的细胞形成。D:神经嵴在颅面部分化的组织展示。来自PA1、PA2的神经嵴细胞贡献了颌面部大部分颅面骨骼。

2 神经嵴细胞的基因调控网络

2.1 基因调控网络在神经嵴发育过程的概述

NCCs形成到命运决定是一个时序变化的过程,包括:神经嵴诱导、特征化(specification)、上皮间充质转化(epithelial to mesenchymal transition, EMT)、迁移和分化;每一个阶段都存在一个核心基因调控网络[13,14]。研究者使用转录组、表观组学以及动物模型等手段,建立了每个阶段的复杂基因信号网络,由信号分子模块和阶段特异的转录因子组成(图2A)[5,15]。

2.1.1 神经嵴的诱导和特征化

最早的NCCs可追溯到NPB形成时期,对小鼠()、鸡()、爪蟾()的研究表明,在此时期,神经细胞由和标记,非神经外胚层细胞由、和标记,神经嵴边界介于二者之间,在3种主要信号通路BMP、WNT和FGF共同作用驱动神经嵴边界特定基因的表达,包括、、及等转录因子[16]。这些特异的转录因子及信号通路组合成为诱导神经嵴的GRN,并将NCCs与另一种在NPB诱导的具有多能性的前基板区细胞区别开来[4,17]。在神经嵴诱导形成后,神经板会逐渐隆起,最后形成神经管,而NPB内会激活神经嵴特征化模块从而产生NCCs。在神经管开始隆起时,NCCs开始特异性表达一些转录因子,如、、以及等。在脊椎动物中,这种GRN的组成是大致保守的,且以正反馈的形式在基因之间构建网络,如在爪蟾中通过激活及促进NPB的诱导,随后在神经嵴的特征化过程中驱动、、的表达[18,19],而这些基因又是激活下游模块的重要参与者(图2A)。

2.1.2 神经嵴上皮间充质转化

随着神经管形成,神经嵴经历上皮细胞向间充质细胞的转变及分层,然后在整个胚胎中广泛迁移。EMT协调信号转导和转录调控以触发神经嵴发生大的结构变化,包括脱粘、细胞骨架重排、运动性能获得等,但目前的分子基础认识很大程度反映在控制脱粘的效应基因模块。在EMT过程中,神经嵴特征化GRN涉及的转录因子如、、等,它们参与细胞粘附分子钙粘蛋白超家族多个成员的调控。如在鸡胚中,与结合抑制内皮钙粘素的表达,而和促进了间充质钙粘素的表达[20]。此外,EMT过程中神经嵴GRN模块也受细胞外信号调控,在爪蟾中Wnt可直接激活的表达促进EMT[21]。

2.1.3 神经嵴细胞迁移和分化

NCCs经过EMT发育成熟后从神经管背侧迁移离开,迁移的NCCs表达,它作为最早的神经嵴特征基因之一可直接调控众多下游效应因子[22,23]。NCCs在迁移过程中响应接触性抑制以及信号性驱动等信号[24],但控制NCCs何时停止迁移的机制目前还不清楚。研究表明在鸡、小鼠迁移的NCCs中表达,但也受多个基因调控,如为鸡颅神经嵴细胞的活性调节区域,而该区域又受神经嵴表达的、及等转录因子调控[25]。NCCs在迁移过程中维持足够的可塑性,当其迁移至特定区域后在相关信号通路作用下发生分化。如在鸡第一咽弓中,bmp4介导的信号通路有助于表达,进而促进颌骨关节的正确定位[26]。在小鼠胚胎发育中,Fgf8促进NCCs增殖发育[27],并在NCCs空间特性及咽弓前后轴、近远轴极性的建立过程中发挥作用[28]。NCCs可以分化形成30多种细胞类型,在此我们概述了颅神经嵴衍生物中软骨、神经元和黑色素细胞等最具特征的终末分化基因模块。CNCCs具备分化为软骨细胞的潜能,驱动软骨细胞发育的核心调控网络涉及和,直接激活软骨分化标志物和[29,30],此外还发现,介导的TGF-β通路在调节软骨细胞发育中起着至关重要的作用[31]。NCCs分化的自主神经细胞遍布全身,在模式动物等研究基础上构建了简化的分化模块,促进了和的表达,反过来,与一起激活神经元分化基因[32]。此外,直接激活黑色素细胞发育的主要调控因子。与、因子共同作用并促进黑色素合成酶和的表达[33,34](图2A)。

2.2 Hox/Dlx基因家族参与CNCCs位置识别

神经嵴的迁移模式以及在特定位置的身份认定很大程度取决于它们的轴向起源,这赋予了NCCs在后期发育过程中对环境信号的适应性,并最终导致细胞命运的差异。和基因家族在决定CNCCs的前后及近远端模式中发挥着特别重要的作用[35,36]。

图2 神经嵴发育的基因调控网络及位置识别的转录程序:Hox和Dlx

A:神经嵴发育的基因调控网络。简化描绘了脊椎动物神经嵴细胞的GRN,由不同层次组织的信号分子模块和每个阶段的转录因子组成,神经嵴发育包括神经嵴诱导(induction)、特征化(specification)、迁移(migration)以及分化(differentiation)过程,分别对应不同颜色的模块表示,箭头代表调控激活。B:基因在小鼠胚胎咽弓的表达模式。沿胚胎前后轴方向,基因为神经嵴细胞提供了在咽弓内的空间识别信息,小鼠胚胎每个咽弓的不同颜色表示其特定的表达模式。C:基因在小鼠胚胎咽弓的表达模式。沿咽弓背腹侧,基因为颅神经嵴细胞提供空间识别信息,基因在咽弓中由近到远端呈嵌套区域式表达。

基因在染色体上串联成簇排列,并沿胚胎体轴表达,从后脑开始一直延续到脊髓,基因参与建立NCCs体轴前后位置的同一性[37,38]。NCCs根据基因的表达与否可分为Hox+NCCs和Hox–NCCs。Hox–NCCs从前脑、中脑及后脑前端迁至面部突起和第一咽弓,分化形成大部分的颅骨、内耳骨、颧骨复合体,以及上下颌[12]。而从后脑迁出的Hox+NCCs可能预先形成对基因的识别,它们分别迁移至胚胎第二、三、四咽弓,对应表达和(图2B)。这些Hox+NCCs可分化成为构成颅颌面的Reichert软骨、颞骨及部分舌骨等[12]。有研究表明,在Hox–NCCs中强制表达基因会破坏颅面骨骼发育,同样,Hox+NCCs也无法取代Hox–NCCs在胚胎发育中的作用[37],如小鼠中Hoxa2功能缺失导致第二咽弓衍生物同源异形转化为第一咽弓衍生的骨骼元素[39]。

基因是包含同源盒结构的转录因子,该基因家族由6个成员组成,编号为Dlx1-6,它们彼此形成双基因簇,在脊椎动物中具体存在形式为、、。该基因家族分布在与基因相同的染色体上,在建立第一二咽弓远近端的NCC分布特征中发挥重要调控作用[40]。在胚胎发生过程中,基因沿第一、二咽弓的近远端呈区域嵌套模式表达,和在大部分咽弓中表达,而和、和表达受限于咽弓远端区域[41,42](图2C)。研究表明,基因在颅颌面发育中调控NCCs的正确迁移和器官形态发生。基因高表达会导致CNCCs黏附成细胞团,在神经管基侧聚集,只有少部分CNCCs迁移至咽弓中[43];在–/–敲除的小鼠模型中发现,基因表达的缺失会使小鼠表现出颅面部缺陷,包括Meckel软骨、下颌骨和颅盖骨等骨骼畸形[44]。

2.3 单细胞层面对CNCCs发育的研究

CNCCs是参与颅面部发育的重要细胞类群,然而从CNCCs到各种细胞类型的命运决定过程仍是该领域亟待解决的热点问题。单细胞技术能够依据细胞内基因表达特征追溯分析细胞身份和细胞命运,在小鼠、人、鸡、斑马鱼()等物种中完成了早期胚胎发育细胞图谱绘制[45~50]。对NCCs的谱系追踪和组学特征的研究有助于人们深入了解该类多能干细胞的命运决定过程以及该类细胞如何赋予脊椎动物强大的进化优势。

基于NCC的基因表达特征有助于解析细胞命运决定过程。Lignel等[51]采用多重单分子荧光原位杂交在鸡胚发育早期检测了35个基因在单细胞水平的表达特征,发现在鸡胚神经管中,早期迁移的NCC可以分为5个亚群。随后由Williams等[52]采用单细胞染色质可及性及转录组学手段在鸡模型中全面揭示了迁移前NCCs的基因表达异质性特征。他们发现在神经嵴迁移前,CNCCs已经形成独立的亚群,并在表观调控水平证实了顺式动态调控过程;这些早期具有异质性的NCCs在随后的发育过程中形成了不同功能的细胞谱系[52]。

单细胞多组学除了揭示NCCs异质性,还是当前研究NCCs命运决定的优势策略。Soldatov等[53]结合单细胞测序及空间转录组技术,对小鼠胚胎期躯干及颅神经嵴细胞比较分析后提出:NCCs命运决定是通过一系列的二元选择达成的。也就是NCCs发育过程中,细胞内存在两个竞争性程序的激活,不同NCCs表现出倾向某一个程序表达,并最终完成命运决定。举例来说,在小鼠中,NCCs从神经管分层后其命运面临初级分叉选择,也就是将感官发育的细胞谱系与其他谱系分离出来,随后又面临自主神经系统与间充质谱系的命运抉择。近期,Fabian等[48]利用单细胞技术通过整合斑马鱼整个生命周期中CNCCs的转录组及染色质可及性数据研究其细胞多样性及谱系进展,发现CNCCs多能性的建立是通过渐进式的空间区域特异性调控来获得的,并揭示了谱系启动的候选转录因子,如在斑马鱼颅面软骨谱系发育中发挥作用。单细胞技术帮助我们在转录组及染色质可及性层面推测NCCs分化状态及基因调控网络,但CNCCs发育过程中产生细胞异质性的过程和外界信号如何影响NCCs命运决定过程尚不清楚。

3 人颅面部的遗传基础及致病基因

3.1 人颅面部的遗传基础

颅面部是一组高度可遗传的表型组合。在个体层面,人类同卵双胞胎以及亲属之间面部相似而非亲属之间呈现较大差异;在群体层面,相同人种内部的颌面部相似度远大于不同人种的相似度,这主要归因于遗传因素[54,55],但目前人类颅面遗传差异的遗传基础认识有限。全基因组关联分析(genome- wide association studies,GWAS)对不同个体的全基因组遗传变异集进行观测性研究,以确定是否有变异与某一性状相关联[56]。目前已有大量研究揭示了和面部特征相关联的基因(表1)[57,58]。

已发表的十多项面部特征GWAS文章主要针对牙齿、耳朵、头发等表型[75~77],但这些研究大多局限于欧洲人群。采用颅面特征点(facial landmarks)获取表型的GWAS研究中,有3个显著位点在2个及以上独立研究中重现:rs11093404()与眦间宽度[61,69]、rs2045323()与鼻子性状[62,73]、rs3827760()与下颌前突,眼角到耳垂长度[62,66]。其他研究还鉴定到的强关联包括:与鼻眼距离[59,60,65,66],与鼻宽[61,62,65],与唇形[57,74]。采用人工智能的面部图像分割获得面部表型的GWAS研究中,鉴定出更多全基因组水平显著关联的位点。基因功能注释发现,90%的位点位于基因间区或内含子区,且相关基因多与软骨、第一二咽弓间充质、面部骨骼和颚骨的发育等相关。ChIP-seq结果发现这些显著关联的位点富集于特定细胞或组织(如NCCs、胚胎颌面组织)的呈激活状态的增强子区,特别是在人NCC细胞系中[5,57]。有趣的是,分析发现同源位点也落入黑猩猩的NCC细胞的高活性增强子区,从而推论这些变异位点可能影响人类的物种特异性和个体面部形态。

颅面部形态具有多维性和复杂性,对已发现的颅面部相关基因进行功能富集分析(https://maa­yanlab.cloud/Enrichr/),筛选到-value 0.01的36个WikiPathway。对显著富集的通路内的蛋白进行蛋白互作分析(https://string-db.org/)(图3),结果显示蛋白互作显著富集于神经嵴分化(=7.22E-13)。综上所述,影响颅面形态的遗传因素和神经嵴细胞发育密切相关,提示颅面疾病也与神经嵴细胞发育密不可分[78]。

表1 与颅面特征关联的基因

3.2 先天颅面畸形及致病基因

先天性颅面畸形是一类出生缺陷疾患,该类疾病由遗传突变或胚胎发育异常导致先天性颅骨、眼眶、颧骨、上下颌骨畸形及面部软组织缺损,常见的有先天性唇/腭裂、半侧颜面短小畸形、颅缝早闭、Treacher Collins综合征等[79,80]。本文以先天颅面畸形中最高发的唇/腭裂、半侧颜面短小畸形为例,梳理其相关风险致病基因及可能的致病机制。

唇/腭裂(OMIM: 225060)是新生儿中较常见的先天颌面部畸形,发病率接近1/700[81]。唇裂可发生于单侧、双侧或中间,当上腭包含一个通向鼻子的裂隙便形成了腭裂。该疾病影响患者外观、语言,甚至造成阻塞性呼吸等问题,严重影响患者身心健康。研究发现,染色体异常、单基因突变,遗传和环境因素交互均可导致该畸形的产生。较为明确的致病基因为、、,他们分别与X连锁的腭裂、唇裂/腭外胚层发育不良综合征、范德沃尔综合征相关。此外,揭示的风险基因包括、、、、、、、和[82]。上述基因导致疾病发生的致病机制仍然未知,因此对唇和腭的发育基础及调控网络的研究成为基础研究热点。人胚胎期的第一咽弓和额鼻突参与了上唇、腭顶和下颌的发育,这些组织被外胚层上皮细胞覆盖,其核心为NCCs来源的间充质。当NCCs或外胚层上皮细胞调控机制被扰乱即可导致唇/腭裂,如参与NCCs调控的转录因子、、发生突变,在人、小鼠和斑马鱼中会产生腭裂[83,84]。

图3 人颅面部关联基因的蛋白互作网络

将目前研究发现的397个基因在enrichR上进行功能分析,以-value为0.01进行筛选,发现有76个基因在36个WikiPathway上显著富集。将这些筛选基因通过STRING数据库比对分析,以combined score > 0.7作为筛选蛋白互作的条件,将筛选到的蛋白互作网络数据导入Cytoscape软件,通过CytoNCA中介数中心性(betweenness centrality,BC)分析蛋白相互作用网络中的核心基因,BC数值通过表示蛋白的圆框大小呈现,BC值越高,其在蛋白互作中越重要。神经嵴分化相关的蛋白用橙色圆框表示。

半侧颜面短小畸形(OMIM:164210)为发病率仅次于唇/腭裂的颅面畸形,也称为第一二鳃弓综合征,临床表型主要为颌面部不对称发育,伴有外耳和中耳表型异常、上颌和/或下颌发育畸形、颌面部软组织发育不全等,其发病率介于1/3500~1/6500之间[85]。半侧颜面短小畸形多为散发病例,可能与母体孕期状态、海拔低氧环境、致畸剂等相关[86~88],但越来越多的证据提示遗传因素为发病的主因。Zhang等[89]通过对来自中国的939位患者的GWAS分析发现,与半侧颜面短小畸形显著相关的潜在致病基因多与颅神经嵴发育相关,包括、、、、、、、、、、。另外,染色体缺失或重复也会导致该疾病发生,包括1p22.2-p31.2缺失、5p15缺失、14q23.1重复等[90-92]。14q为一重要的致病区域,其包含一个与神经嵴发生密切相关的转录因子,其参与调控前脑、眼、耳的形成[93],且敲除小鼠表现为严重的颌面畸形[94]。类似在染色体缺失或重复区间内还发现、、和等基因[95],多与NCCs的发育调控相关。此外,、、、基因中发生错义突变或无义突变时,也会导致该疾病发生,这些基因功能缺失会破坏NCCs的增殖或迁移,并导致第一、二咽弓的发育异常[96~99]。综上所述,先天性颅面畸形的产生与NCCs密切相关,在发育过程中当调控网络异常或周围环境改变影响NCCs的正常功能时,则可能导致先天性颅面疾病的发生。

4 结语与展望

颅面发育精妙且复杂,需要各个胚层相互协作完成,其中神经嵴细胞在颅面发育过程中发挥着重要作用,也是脊椎动物区别于无脊椎动物的一个关键特征。神经嵴发育是个迅速、精准调控的过程,虽然通过模式动物及组学分析构建了NCCs发育过程中的GRN,但在NCCs持续变化的过程中,GRN中关键转录因子和基因模块是否存在新的组合,GRN在NCCs迁移不同位置的实时变化特征,GRN是否存在表观修饰以及基因突变对于GRN的影响等问题仍有待研究。单细胞组学技术有利于NCCs的GRN趋于完善,它可以通过追踪多个发育时间点的单细胞谱系,并结合单个细胞的胚胎时空转录特征,在时空上辨识各个细胞类群的谱系变化和组学特征,可用于对GRN的深入解析[100]。

颅面部的身份标志特征,能够折射出年龄、性格、身体健康状态等,解析其遗传基础对于颅面复杂性状的认知以及先天疾病的探索具有重要意义。遗传变异会使颅面部结构在正常范围内发生改变,但也会导致颅面异常的产生。颅面畸形多为新生儿先天疾患,了解颅面畸形产生的遗传基础,可将致病基因筛查应用于产前诊断,有利于控制颅面畸形患病风险,帮助医生进行医学诊断。随着生命科学的发展,人们对颅面遗传认知会更加深刻,可为颅面疾病防治提供更多策略,而对颅面部发育具有关键贡献的神经嵴细胞可以作为重点研究目标。另一方面,对神经嵴细胞可塑性及其命运调控基因网络的研究为细胞重编程和干细胞操作策略提供了线索。

[1] Kuratani S. Craniofacial development and the evolution of the vertebrates: the old problems on a new back­ground., 2005, 22(1): 1–19.

[2] Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest., 2020, 147(20): dev193888.

[3] Martik ML, Bronner ME. Riding the crest to get a head: neural crest evolution in vertebrates., 2021, 22: 616–626.

[4] Hovland AS, Rothstein M, Simoes-Costa M. Network architecture and regulatory logic in neural crest development., 2020, 12(2): e1468.

[5] White JD, Indencleef K, Naqvi S, Eller RJ, Hoskens H, Roosenboom J, Lee MK, Li J, Mohammed J, Richmond S, Quillen EE, Norton HL, Feingold E, Swigut T, Marazita ML, Peeters H, Hens G, Shaffer JR, Wysocka J, Walsh S, Weinberg SM, Shriver MD, Claes P. Insights into the genetic architecture of the human face., 2021, 53(1): 45–53.

[6] Schmetz A, Amiel J, Wieczorek D. Genetics of cranio­facial malformations., 2021, 26(6): 101290.

[7] Siismets EM, Hatch NE. Cranial neural crest cells and their role in the pathogenesis of craniofacial anomalies and coronal craniosynostosis., 2020, 8(3): 18.

[8] Hörstadius S. The Neural Crest: Its Properties and Derivatives in the Light of Experimental Research. New York: Oxford University Press, 1950.

[9] Bae C-J, Saint-Jeannet J-P. Induction and specification of neural crest cells., 2014: 27–49.

[10] Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ. Neurocristopathies: new insights 150 years after the neural crest discovery., 2018: 444.

[11] Rothstein M, Bhattacharya D, Simoes-Costa M. The molecular basis of neural crest axial identity., 2018, 444(Suppl 1): S170–S180.

[12] Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone., 2020, 137: 115409.

[13] Le Douarin NM, Dupin E. The “beginnings” of the neural crest., 2018, 444(Suppl 1): S3–S13.

[14] Szabó A, Mayor R. Mechanisms of neural crest migration., 2018, 52: 43–63.

[15] Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network., 2010, 26: 581–603.

[16] Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., 2014, 386(2): 461–472.

[17] Groves AK, LaBonne C. Setting appropriate boundaries: fate, patterning and competence at the neural plate border., 2014, 389(1): 2–12.

[18] Martik ML, Bronner ME. Regulatory logic underlying diversification of the neural crest., 2017, 33(10): 715–727.

[19] de Crozé N, Maczkowiak F, Monsoro-Burq AH. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network., 2011, 108(1): 155–160.

[20] Ferronha T, Rabadán MA, Gil-Guiñon E, Le Dréau G, de Torres C, Martí E. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells., 2013, 33(7): 2773–2783.

[21] Hutchins EJ, Bronner ME. Draxin acts as a molecular rheostat of canonical Wnt signaling to control cranial neural crest EMT., 2018, 217(10): 3683–3697.

[22] Kelsh RN. Sorting out Sox10 functions in neural crest development., 2006, 28(8): 788–798.

[23] Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration., 2013, 379(1): 92–106.

[24] Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R. Contact inhibition of locomotion in vivo controls neural crest directional migration., 2008, 456(7224): 957–961.

[25] Betancur P, Bronner-Fraser M, Sauka-Spengler T. Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest., 2010, 107(8): 3570–3575.

[26] Wilson J, Tucker AS. Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint., 2004, 266(1): 138–150.

[27] Creuzet S, Schuler B, Couly G, Le Douarin NM. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development., 2004, 101(14): 4843–4847.

[28] Mossahebi-Mohammadi M, Quan MY, Zhang JS, Li XK. FGF signaling pathway: a key regulator of stem cell pluripotency., 2020, 8: 79.

[29] Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super- enhancers to drive chondrogenesis., 2015, 43(17):8183–8203.

[30] Oh CD, Lu Y, Liang SD, Mori-Akiyama Y, Chen D, de Crombrugghe B, Yasuda H. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters., 2014, 9(9): e107577.

[31] Wang WG, Song B, Anbarchian T, Shirazyan A, Sadik JE, Lyons KM. Smad2 and Smad3 regulate chondrocyte proliferation and differentiation in the growth plate., 2016, 12(10): e1006352.

[32] Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish., 2016, 134: 97–138.

[33] Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, Pavan WJ. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase., 2001, 237(2): 245–257.

[34] Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ, Williams T, Cornell RA. TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF., 2017, 13(3): e1006636.

[35] Trainor PA, Krumlauf R. Hox genes, neural crest cells and branchial arch patterning., 2001, 13(6): 698–705.

[36] Panganiban G, Rubenstein JL. Developmental functions of the Distal-less/Dlx homeobox genes., 2002, 129(19): 4371–4386.

[37] Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development., 2010, 137(16): 2605–2621.

[38] Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R. A distinct Hox code for the branchial region of the vertebrate head., 1991, 353(6347): 861–864.

[39] Santagati F, Minoux M, Ren SY, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis., 2005, 132(22): 4927– 4936.

[40] Depew MJ, Simpson CA, Morasso M, Rubenstein JLR. Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development., 2005, 207(5): 501–561.

[41] Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development., 2002, 16(9): 1089–1101.

[42] Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, Presley R, Pedersen RA, Rubenstein JL. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches., 1997, 185(2): 165–184.

[43] Dai JW, Kuang Y, Fang B, Gong H, Lu SY, Mou ZF, Sun H, Dong YF, Lu JT, Zhang WB, Zhang JF, Wang ZG, Wang XD, Shen GF. The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differen­tiation of cranial neural crest stem cells., 2013, 34(8): 1898–1910.

[44] Shimizu M, Narboux-Nême N, Gitton Y, de Lombares C, Fontaine A, Alfama G, Kitazawa T, Kawamura Y, Heude E, Marshall L, Higashiyama H, Wada Y, Kurihara Y, Kurihara H, Levi G. Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells., 2018, 8(1): 14975.

[45] Keuls RA, Parchem RJ. Single-Cell Multiomic appro­aches reveal diverse labeling of the nervous system by common Cre-drivers., 2021, 15: 648570.

[46] Cao JY, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression., 2020, 370(6518): eaba7721.

[47] Zhang K, Hocker JD, Miller M, Hou XM, Chiou J, Poirion OB, Qiu YJ, Li YE, Gaulton KJ, Wang A, Preissl S, Ren B. A single-cell atlas of chromatin accessibility in the human genome., 2021, 184(24): 5985–6001. e5919.

[48] Fabian P, Tseng K-C, Thiruppathy M, Arata C, Chen H-J, Smeeton J, Nelson N, Crump JG. Lifelong single-cell profiling of cranial neural crest diversification in zebrafish., 2022, 13(1): 13.

[49] Tatarakis D, Cang ZX, Wu XJ, Sharma PP, Karikomi M, MacLean AL, Nie Q, Schilling TF. Single-cell transc­riptomic analysis of zebrafish cranial neural crest reveals spatiotemporal regulation of lineage decisions during development., 2021, 37(12): 110140.

[50] Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution., 2018, 360(6392): eaar5780.

[51] Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by spatial genomic analysis., 2017, 8(1): 1830.

[52] Williams RM, Candido-Ferreira I, Repapi E, Gavriou­chkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the global neural crest gene regulatory network in vivo., 2019, 51(2): 255–276.e257.

[53] Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian XY, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. Spatiotemporal structure of cell fate decisions in murine neural crest., 2019, 364(6444): eaas9536.

[54] Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape of the genetic contribution to human traits and disease., 2018, 19(2): 110–124.

[55] Gratten J, Wray NR, Keller MC, Visscher PM. Large- scale genomics unveils the genetic architecture of psy­chiatric disorders., 2014, 17(6): 782–790.

[56] Chang M, He L, Cai L. An overview of genome-wide association studies., 2018, 1754: 97–108.

[57] Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, Lee MK, Zaidi A, Mattern BC, Liebowitz C, Pearson L, González T, Leslie EJ, Carlson JC, Orlova E, Suetens P, Vandermeulen D, Feingold E, Marazita ML, Shaffer JR, Wysocka J, Shriver MD, Weinberg SM. Genome-wide mapping of global-to-local genetic effects on human facial shape., 2018, 50(3): 414–423.

[58] White JD, Ortega-Castrillon A, Matthews H, Zaidi AA, Ekrami O, Snyders J, Fan Y, Penington T, Van Dongen S, Shriver MD, Claes P. MeshMonk: open-source large- scale intensive 3D phenotyping., 2019, 9(1): 6085.

[59] Liu F, van der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, Wollstein A, Lao O, de Bruijne M, Ikram MA, van der Lugt A, Rivadeneira F, Uitterlinden AG, Hofman A, Niessen WJ, Homuth G, de Zubicaray G, McMahon KL, Thompson PM, Daboul A, Puls R, Hegenscheid K, Bevan L, Pausova Z, Medland SE, Montgomery GW, Wright MJ, Wicking C, Boehringer S, Spector TD, Paus T, Martin NG, Biffar R, Kayser M. A genome-wide association study identifies five loci influencing facial morphology in Europeans., 2012, 8(9): e1002932.

[60] Paternoster L, Zhurov AI, Toma AM, Kemp JP, St Pourcain B, Timpson NJ, McMahon G, McArdle W, Ring SM, Smith GD, Richmond S, Evans DM. Genome- wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position., 2012, 90(3): 478–485.

[61] Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, Cunningham ML, Hecht JT, Kau CH, Nidey NL, Moreno LM, Wehby GL, Murray JC, Laurie CA, Laurie CC, Cole J, Ferrara T, Santorico S, Klein O, Mio W, Feingold E, Hallgrimsson B, Spritz RA, Marazita ML, Weinberg SM. Genome-wide association study reveals multiple loci influencing normal human facial morphology., 2016, 12(8): e1006149.

[62] Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña- Alonzo V, Jaramillo C, Arias W, Lozano RB, Pérez GM, Gómez-Valdés J, Villamil-Ramírez H, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Cheeseman M, Rosique J, Bedoya G, Rothhammer F, Headon D, González-José R, Balding D, Ruiz-Linares A. A genome- wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation., 2016; 7: 11616.

[63] Qiao L, Yang YJ, Fu PC, Hu SL, Zhou H, Peng SN, Tan JZ, Lu Y, Lou HY, Lu DS, Wu SJ, Guo J, Jin L, Guan YQ, Wang SJ, Xu SH, Tang K. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction., 2018, 45(8): 419–432.

[64] Cha S, Lim JE, Park AY, Do JH, Lee SW, Shin C, Cho NH, Kang JO, Nam JM, Kim JS, Woo KM, Lee SH, Kim JY, Oh B. Identification of five novel genetic loci related to facial morphology by genome-wide association studies., 2018, 19(1): 481.

[65] Xiong ZY, Dankova G, Howe LJ, Lee MK, Hysi PG, de Jong MA, Zhu G, Adhikari K, Li D, Li Y, Pan B, Feingold E, Marazita ML, Shaffer JR, McAloney K, Xu SH, Jin L, Wang SJ, de Vrij FM, Lendemeijer B, Richmond S, Zhurov A, Lewis S, Sharp GC, Paternoster L, Thompson H, Gonzalez-Jose R, Bortolini MC, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Uitterlinden AG, Ikram MA, Wolvius E, Kushner SA, Nijsten TE, Palstra RT, Boehringer S, Medland SE, Tang K, Ruiz-Linares A, Martin NG, Spector TD, Stergiakouli E, Weinberg SM, Liu F, Kayser M, International Visible Trait Genetics C. Novel genetic loci affecting facial shape variation in humans., 2019, 8: e49898.

[66] Li Y, Zhao WT, Li D, Tao XM, Xiong ZY, Liu J, Zhang W, Ji AQ, Tang K, Liu F, Li C. EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population., 2019, 138(6): 681–689.

[67] Wu W, Zhai GY, Xu ZJ, Hou B, Liu DH, Liu TY, Liu W, Ren F. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese., 2019, 138(6): 601–611.

[68] Bonfante B, Faux P, Navarro N, Mendoza-Revilla J, Dubied M, Montillot C, Wentworth E, Poloni L, Varón-González C, Jones P, Xiong ZY, Fuentes-Guajardo M, Palmal S, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo- Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Liu F, Weinberg SM, Shaffer JR, Stergiakouli E, Howe LJ, Hysi PG, Spector TD, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Thauvin-Robinet C, Faivre L, Costedoat C, Balding D, Cox T, Kayser M, Duplomb L, Yalcin B, Cotney J, Adhikari K, Ruiz-Linares A. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation., 2021, 7(6): eabc6160.

[69] Lee MK, Shaffer JR, Leslie EJ, Orlova E, Carlson JC, Feingold E, Marazita ML, Weinberg SM. Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2., 2017, 12(4): e0176566.

[70] Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influ­ences on 42 human traits., 2016, 48(7): 709–717.

[71] Cole JB, Manyama M, Kimwaga E, Mathayo J, Larson JR, Liberton DK, Lukowiak K, Ferrara TM, Riccardi SL, Li M, Mio W, Prochazkova M, Williams T, Li H, Jones KL, Klein OD, Santorico SA, Hallgrimsson B, Spritz RA. Genomewide association study of African children identifies association of SCHIP1 and PDE8A with facial size and shape., 2016, 12(8): e1006174.

[72] Crouch DJM, Winney B, Koppen WP, Christmas WJ, Hutnik K, Day T, Meena D, Boumertit A, Hysi P, Nessa A, Spector TD, Kittler J, Bodmer WF. Genetics of the human face: Identification of large-effect single gene variants., 2018, 115(4): E676–E685.

[73] Huang Y, Li D, Qiao L, Liu Y, Peng QQ, Wu SJ, Zhang MF, Yang YJ, Tan JZ, Xu SH, Jin L, Wang SJ, Tang K, Grünewald S. A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese., 2021, 48(3): 198–207.

[74] Zhang MF, Wu SJ, Du SY, Qian W, Chen JY, Qiao L, Yang YJ, Tan JZ, Yuan ZY, Peng QQ, Liu Y, Navarro N, Tang K, Ruiz-Linares A, Wang JC, Claes P, Jin L, Li JR, Wang SJ. Genetic variants underlying differences in facial morphology in East Asian and European populations., 2022, 54(4): 403–411.

[75] Park JH, Yamaguchi T, Watanabe C, Kawaguchi A, Haneji K, Takeda M, Kim YI, Tomoyasu Y, Watanabe M, Oota H, Hanihara T, Ishida H, Maki K, Park SB, Kimura R. Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits., 2012, 57(8): 508–514.

[76] Adhikari K, Reales G, Smith AJP, Konka E, Palmen J, Quinto-Sanchez M, Acuña-Alonzo V, Jaramillo C, Arias W, Fuentes M, Pizarro M, Barquera Lozano R, Macín Pérez G, Gómez-Valdés J, Villamil-Ramírez H, Hune­meier T, Ramallo V, Silva de Cerqueira CC, Hurtado M, Villegas V, Granja V, Gallo C, Poletti G, Schuler-Faccini L, Salzano FM, Bortolini MC, Canizales-Quinteros S, Rothhammer F, Bedoya G, Calderón R, Rosique J, Cheeseman M, Bhutta MF, Humphries SE, Gonzalez- José R, Headon D, Balding D, Ruiz-Linares A. A genome-wide association study identifies multiple loci for variation in human ear morphology., 2015, 6: 7500.

[77] Morgan MD, Pairo-Castineira E, Rawlik K, Canela- Xandri O, Rees J, Sims D, Tenesa A, Jackson IJ. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability., 2018, 9(1): 5271.

[78] Jordan B. [Genes for faces]., 2021, 37(3): 300–303.

[79] Twigg SRF, Wilkie AOM. New insights into craniofacial malformations., 2015, 24(R1): R50–R59.

[80] Bartzela TN, Carels C, Maltha JC. Update on 13 syndro­mes affecting craniofacial and dental structures., 2017, 8: 1038.

[81] Ye XQ, Ahmed MK. Genetic factors responsible for cleft lip and palate. In: Fayyaz GQ, ed. Surgical Atlas of Cleft Palate and Palatal Fistulae. Singapore: Springer Singa­pore, 2020: 1–14.

[82] Askarian S, Gholami M, Khalili-Tanha G, Tehrani NC, Joudi M, Khazaei M, Ferns GA, Hassanian SM, Avan A, Joodi M. The genetic factors contributing to the risk of cleft lip-cleft palate and their clinical utility., 2022: doi: 10.1007/s10006-10022- 01052–10003.

[83] Atukorala ADS, Ratnayake RK. Cellular and molecular mechanisms in the development of a cleft lip and/or cleft palate; insights from zebrafish (Danio rerio)., 2021, 304(8): 1650–1660.

[84] Li J, Rodriguez G, Han X, Janečková E, Kahng S, Song B, Chai Y. Regulatory mechanisms of doft palate development and malformations., 2019, 98(9): 959–967.

[85] Brandstetter KA, Patel KG. Craniofacial microsomia., 2016, 24(4): 495–515.

[86] Werler MM, Sheehan JE, Hayes C, Mitchell AA, Mulliken JB. Vasoactive exposures, vascular events, and hemifacial microsomia., 2004, 70(6): 389–395.

[87] Poswillo D. Hemorrhage in development of the face., 1975, 11(7): 61–81.

[88] Wang R, Martínez-Frías ML, Graham JM, Jr. Infants of diabetic mothers are at increased risk for the oculo- auriculo-vertebral sequence: a case-based and case- control approach., 2002, 141(5): 611–617.

[89] Zhang YB, Hu JT, Zhang J, Zhou X, Li X, Gu CH, Liu T, Xie YC, Liu JQ, Gu ML, Wang PP, Wu TT, Qian J, Wang Y, Dong XQ, Yu J, Zhang QG. Genome-wide association study identifies multiple susceptibility loci for cranio­facial microsomia., 2016, 7: 10605.

[90] Callier P, Faivre L, Thauvin-Robinet C, Marle N, Mosca AL, D'Athis P, Guy J, Masurel-Paulet A, Joly L, Guiraud S, Teyssier JR, Huet F, Mugneret F. Array-CGH in a series of 30 patients with mental retardation, dysmorphic features, and congenital malformations detected an interstitial 1p22.2-p31.1 deletion in a patient with features overlapping the Goldenhar syndrome., 2008, 146a(16): 2109–2115.

[91] Ala-Mello S, Siggberg L, Knuutila S, von Koskull H, Taskinen M, Peippo M. Further evidence for a relationship between the 5p15 chromosome region and the oculoauriculovertebral anomaly., 2008, 146A(19): 2490–2494.

[92] Zielinski D, Markus B, Sheikh M, Gymrek M, Chu C, Zaks M, Srinivasan B, Hoffman JD, Aizenbud D, Erlich Y. OTX2 duplication is implicated in hemifacial microsomia., 2014, 9(5): e96788.

[93] Ballesta-Martínez MJ, López-González V, Dulcet LA, Rodríguez-Santiago B, Garcia-Miñaúr S, Guillen- Navarro E. Autosomal dominant oculoauriculovertebral spectrum and 14q23.1 microduplication., 2013, 161A(8): 2030–2035.

[94] Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head., 1995, 9(21): 2646–2658.

[95] Bragagnolo S, Colovati MES, Souza MZ, Dantas AG, de Soares MFF, Melaragno MI, Perez AB. Clinical and cytogenomic findings in OAV spectrum., 2018, 176(3): 638–648.

[96] Chen XJ, Xu F, Liu FT, Aung ZM, Chen W, Han WQ, Yang XX, Zhang Y, Chai G, Zhang RH. Whole-exome sequencing for monozygotic twins discordant for hemifacial microsomia., 2018, 46(5): 802–807.

[97] Lopez E, Berenguer M, Tingaud-Sequeira A, Marlin S, Toutain A, Denoyelle F, Picard A, Charron S, Mathieu G, de Belvalet H, Arveiler B, Babin PJ, Lacombe D, Rooryck C. Mutations in MYT1, encoding the myelin transcription factor 1, are a rare cause of OAVS., 2016, 53(11): 752–760.

[98] Wang YB, Ping L, Luan XD, Chen YS, Fan XM, Li LY, Liu YP, Wang P, Zhang SY, Zhang B, Chen XW. A mutation in, encoding von willebrand factor a domain-containing protein 1, is associated with hemi­facial microsomia., 2020, 8: 571004.

[99] Timberlake AT, Griffin C, Heike CL, Hing AV, Cunningham ML, Chitayat D, Davis MR, Doust SJ, Drake AF, Duenas-Roque MM, Goldblatt J, Gustafson JA, Hurtado-Villa P, Johns A, Karp N, Laing NG, Magee L, University of Washington Center for Mendelian Gen­o­mics, Mullegama SV, Pachajoa H, Porras-Hurtado GL, Schnur RE, Slee J, Singer SL, Staffenberg DA, Timms AE, Wise CA, Zarante I, Saint-Jeannet J-P, Luquetti DV. Haploinsufficiency of SF3B2 causes craniofacial mic­rosomia., 2021, 12(1): 4680.

[100] Magaletta ME, Lobo M, Kernfeld EM, Aliee H, Huey JD, Parsons TJ, Theis FJ, Maehr R. Integration of single-cell transcriptomes and chromatin landscapes reveals regula­tory programs driving pharyngeal organ development., 2022, 13(1): 457.

Progress on the regulation of neural crest and the genetics in craniofacial development

Ke Mao1, Ziqiu Meng2, Yongbiao Zhang2,3

The craniofacial features endow vertebrates with unparalleled evolutionary advantages. The craniofacial is composed of bone, cartilage, nerves, and connective tissues mainly developed from cranial neural crest cells (cNCCs). These tissues form complex organs which enable vertebrates to have powerful neural and sensory systems. NCCs are groups of migratory and pluripotent cells that are specific to vertebrates. The specification, premigration and migration, proliferation, and fate determination of the NCCs are precisely and sequentially controlled by gene regulatory networks, to ensure the ordered and accurate development of the craniofacial region. The craniofacial region represents a combined set of highly heritable phenotypes, which could be illustrated by the inherited facial features between relatives but perceptible differences among non-relatives. Such phenomena are termed heredity and variation, which are in accordance with the precision and plasticity of cNCCs gene regulatory network, respectively. Evidence has shown that genetic variations within the regulatory network alter the proliferation and differentiation of NCCs within a tolerable range, while deleterious mutations will lead to craniofacial malformations. In this review, we first summarize the development procedure of NCCs and their gene regulatory networks and then provide an overview on the genetic basis of the facial morphology and malformations. This review will benefit the understanding of craniofacial development and the prevention of craniofacial diseases.

craniofacial development; cranial neural crest cells; gene regulatory network; genetic variation

2022-06-28;

2022-08-29;

2022-09-26

国家自然科学基金项目(编号:31671312,82171844,81970898)资助[Supported by the National Natural Science Foundation of China (Nos. 31671312, 82171844, 81970898)]

毛轲,在读博士研究生,研究方向:生物与医学工程。E-mail: maocyy@126.com

张永彪,博士,副研究员,研究方向:生物信息学。E-mail: zhangyongbiao@buaa.edu.cn

10.16288/j.yczz.22-221

(责任编委: 阎言)

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!