当前位置:首页 期刊杂志

初级纤毛与Wnt信号通路相关性研究进展

时间:2024-06-19

张蔓丽,卢彦平,李亚里



初级纤毛与Wnt信号通路相关性研究进展

张蔓丽,卢彦平,李亚里

中国人民解放军总医院妇产科,北京 100853

初级纤毛是一类以微管为基础结构的细胞器,其来源于细胞的母中心粒,锚定在细胞膜并如“天线”般突出细胞表面。作为细胞感受器,初级纤毛从环境中接受各种信号,传导至细胞内引起细胞反应。近期的研究表明,初级纤毛对与胚胎发育密切相关的Wnt信号通路的传导起重要作用。纤毛的损害可造成Wnt信号通路的异常,并引起胚胎中多类脏器一系列的病理改变,导致初级纤毛相关疾病的发生。文章主要阐述了初级纤毛与Wnt/β-catenin、Wnt/PCP通路及初级纤毛相关疾病之间的关系,并对初级纤毛相关疾病的治疗进行了初步探讨。对初级纤毛与Wnt信号通路关系的深入研究将有助于人们对该类疾病的进一步诊断和治疗。

初级纤毛;Wnt信号通路;初级纤毛相关疾病

100多年以来,细胞表面微小的纤毛曾被认为是无用退化的细胞器。然而随着对纤毛超微结构和功能的认识,人们发现纤毛借助信号通路在人类的胚胎发育、疾病发生中发挥着举足轻重的作用。Wnt信号通路是参与胚胎及器官发育的主要信号传导途径之一。纤毛可以通过对Wnt信号通路的调控发挥“小而强大”的作用,纤毛结构与Wnt信号通路的损害与纤毛相关疾病的发生相关。本文对纤毛、初级纤毛相关疾病及Wnt信号通路相关领域的研究进展进行了综述。

1 纤毛的结构和功能

1.1 纤毛的分类与结构

纤毛是一种突出于细胞表面的特殊结构。脊椎动物成体中几乎所有类型的细胞表面都具有纤毛[1],纤毛也广泛存在于各种处于发育阶段的动物胚胎细胞以及体外培养的哺乳动物细胞中[2~4]。根据其结构和运动能力,纤毛分为运动纤毛及初级纤毛(即静纤毛、不动纤毛)。目前,人体中共发现4类纤毛结构[5]。典型的运动纤毛由9组外周微管和1对中央微管构成(即9+2结构)。每个细胞可有多根运动纤毛,执行细胞的运动功能,如黏液的运输、精子细胞和卵细胞的移动等。初级纤毛主要为感觉纤毛,分布于视觉、嗅觉和听觉细胞等。典型的初级纤毛由 9 对外周微管构成,无中央微管(即9+0结构),每个细胞仅有一根初级纤毛[5~8]。以(9+0)初级纤毛为例,其结构从顶端向下分为:毛顶部、纤毛膜、轴丝部、转化区和基体。基体向下以根毛延伸至细胞内部,有些位于高尔基体附近,起锚定作用,向上以基足包埋微管末端,起固定微管作用[7~9]。

1.2 纤毛的组装与解聚

纤毛的形成始于基体。首先,母中心粒(成熟中心粒)转化为基体,然后自基体组装轴丝。根据细胞类型不同,纤毛组装方式分为2种:在上皮细胞(如肺、肾脏),基体先定位并锚定于细胞膜,从膜顶端开始组装纤毛,延伸向细胞外;而在间充质细胞、成纤维细胞及神经元前体细胞中,高尔基体来源的囊泡先接触母中心粒远端附属,随后形成囊泡与之不断融合形成纤毛膜,同时伴随轴丝产生[7]。这一组装过程开始于细胞周期G1期[9]。

纤毛本身缺乏其组装、维持和分解所需蛋白的合成系统,故需要通过鞭毛内运输系统从细胞内转运所需物质,这是一个由鞭毛内运输蛋白(Intrafla­gellar transport, IFT)介导的沿微管运行的双向物质运输系统。一方面IFT颗粒复合体-B(包括IFT-88、IFT-172等13个IFT蛋白)负责蛋白从细胞内至纤毛的顺向运输,而另一方面IFT-A(有6个IFT蛋白)则负责纤毛至细胞内的逆向运输,即IFT-B复合体携带轴丝生长物质至纤毛顶端,IFT-A复合体将传回物质及信号传导成分转至细胞内。驱动蛋白-Ⅱ家族(脊椎动物中为驱动蛋白家族蛋白3a(Kinesin family member 3a, Kif3a)/Kif3b/非动力亚单位KAP 复合体)和动力马达蛋白作为分子动力参与这一过程,两者分别介导IFT-B和IFT-A。基体和纤毛顶端也参与协调IFT 颗粒运输过程,并控制轴丝的装配、延长和解聚,从而调节纤毛的生长、稳定及重吸收的过程。阻断驱动蛋白Ⅱ或IFT中任何一个蛋白,会导致初级纤毛异常,出现多种发育和细胞信号缺陷,形成纤毛相关疾病[10~12]。

纤毛的分解则可能由一个定位于中心体的蛋白激酶——极光激酶A(Aurora A)发起。研究表明,组蛋白去乙酰化酶6(Histone deacetylase, HDAC6)、Pitchfork蛋白 (Pifo)、驱动蛋白Kinesin-13、驱动蛋白家族成员Kif19A等均参与了纤毛分解过程,具体机制仍需进一步研究[7]。

1.3 纤毛的功能

纤毛曾被认为是哺乳动物进化过程中退化的细胞器。然而研究显示,初级纤毛膜表面存在大量的纤毛特有受体及离子通道,如血小板源性的生长因子受体(Platelet derived growth factor receptor alpha, PDGFR-α)、生长抑素受体、5-羟色胺受体、多囊蛋白(Polycystin, PC)PC1和PC2及Hedgehog(Hh)、Wnt信号通路的组成部件等[13],因此初级纤毛主要被认为是一种感受器[14],感知光、机械能、渗透压、温度及激素等[15]。脊椎动物的嗅觉及光感受器均由初级纤毛生成。在肾脏、肝脏、胰腺、输卵管等细胞中,初级纤毛如同“天线”传导外界环境信号至细胞内,调节胚胎发育及组织的内稳态[13, 14]。一系列的证据表明,初级纤毛也参与了细胞周期的调控,因此缺陷的初级纤毛可能与癌症相关[16,17]。此外,初级纤毛还参与指导细胞增殖分化、细胞极性及神经生长、神经管发育、骨骼发育、胚胎干细胞发育等[15, 18~20]。由于这些作用的发生均依赖纤毛上信号传导通路的存在,说明初级纤毛在信号传导(如Hh、Wnt信号通路及钙信号、PDGFRα信号传导等)方面发挥着关键作用,从而参与人体众多组织和器官的发育及正常生理活动。

2 初级纤毛与Wnt信号通路关系

目前,研究初级纤毛的功能主要集中在2条通路,即Hh和Wnt信号通路。对Hh信号通路的研究较为广泛,其在初级纤毛信号传导具有重要作用。但对于Wnt通路的作用尚有争议。Wnt信号通路至少有3种,包括经典的Wnt/β-catenin 通路、Wnt /PCP通路(Planar cell polarity pathway)、Wnt/钙离子(Wnt /Ca2+)通路,其中经典的Wnt/β-catenin和Wnt/PCP通路与初级纤毛的关系尤为重要。研究表明,经典的Wnt/β-catenin 信号通路与初级纤毛有密切联系。(1)Wnt/β-catenin 信号通路中的重要成分糖原合成酶激酶-3β(Glycogen synthase kinase-3β, GSK-3β)和结肠腺瘤样息肉病蛋白(Adenomatous polyposis coli, APC)都定位于初级纤毛上[21,22]。对衣藻()鞭毛的研究指出,GSK-3β可使微管相关蛋白tau磷酸化,从而降低微管形成的稳定性,同时也影响纤毛的顺向运输。抑制GSK3会导致莱茵衣藻()鞭毛变长,从而提示GSK3对鞭毛的组装和维持有一定的调节作用[21];(2)纤毛可以负调控Wnt/β-catenin 信号通路,因此提示纤毛的异常会导致Wnt/β-catenin 通路的激活。多种动物、细胞模型验证了这一点。如在Orpk小鼠(多囊肾小鼠模型)胰腺扩张的腺管及囊肿中,细胞浆的β-catenin水平升高,T细胞因子/淋巴增强因子(T-cell factor/lymphoid enhancing factor, TCF/LEF)表达增 加[23],而纤毛数量和长度都明显下降,这表明在胰腺中初级纤毛参与了Wnt信号通路的调节;将小鼠基因突变后,其关节生长板的软骨细胞不仅出现初级纤毛减少,细胞核内的β-catenin 在转录水平明显升高[24]。Kevin等[22]在破坏了纤毛形成的小鼠胚胎、原代成纤维细胞和胚胎干细胞中均检测到Wnt通路的上调。他们同时敲除了HEK293细胞中与纤毛组装相关的驱动蛋白Kif3a,发现在没有外源Wnt刺激因子情况下HEK293细胞中Wnt通路处于激活状态;(3)研究发现初级纤毛能够使β-catenin定位于基体中,并限制其入核过程,从而抑制Wnt/β-catenin 信号通路[25]。还有报道称利用shRNA技术敲除HEK293T细胞的巴-比二氏综合征(Bardet-Biedl syndrome, BBS)蛋白4或6基因,会增强Wnt3a刺激下TCF/LEF1活性[26]。然而也存在争论:有学者发现在缺失纤毛的动物模型中Wnt/ β-catenin信号通路不受影响[27, 28]。经典Wnt/β-ca­tenin通路与初级纤毛之间的关系究竟如何,值得进一步探究。

与经典Wnt/β-catenin 信号通路相反,PCP通路在纤毛相关疾病中被认为是下调的。PCP通路相关基因有助于细胞表面肌动蛋白actin的富集,后者为中心体/基体的细胞膜锚定功能所必需。在非洲爪蟾()模型中,破坏PCP相关基因和可导致肌动蛋白和纤毛形成能力的丧失[29]。研究发现,PCP通路相关蛋白Inversin(即NPHP2)、Diversin、Vangle-2、Fat4也位于初级纤毛或基体 上[30~33]。Simons等[34]、Schwarz-Romond等[35]认为Inversin (NPHP2)和Diversin均可担当经典和非经典Wnt通路之间分子转换开关的角色,前者通过靶向性降低细胞质中的蓬乱蛋白(Dishevelled, Dvl/Dsh),后者通过刺激JNK信号通路,两者均可抑制经典Wnt/β-catenin 信号通路。Inversin是PCP通路的关键调控蛋白,Inversin基因突变将导致肾囊肿的形成,与纤毛缺失造成的表型类似[36]。而Inversin基因敲除的斑马鱼()会形成肾囊肿,在给予补充Diversin后可以对抗这一现象[35]。在非洲爪蟾多纤毛皮肤细胞中过表达Diversin RNA 将会破坏纤毛基体极性;而敲除内源性Diversin的细胞中,基体的结构异常,极性破坏,细胞纤毛变短或丧失[33]。关于初级纤毛对Wnt信号通路各个分支如何作用?在信号通路中是对哪些关键调控蛋白产生影响?这些作用又是在细胞膜上、胞内、细胞核哪一部位发生的?Wnt/β-catenin 与PCP信号通路之间究竟如何关联?这些疑问均未得到确切的释疑,有必要对此进一步研究。

3 初级纤毛、纤毛相关疾病与Wnt信号通路

现已确认初级纤毛和Wnt信号通路成分缺失或异常与多种人类疾病有关。有学者将人体先天性基因突变造成初级纤毛结构及功能破坏导致的多种疾病,统称为初级纤毛相关疾病(Ciliopathies)[37, 38]。这类疾病涉及人体多种器官,如肾脏、脑部、四肢、眼部、耳、肝脏、骨骼等,其表型包括多囊肾、肝胆疾病、多指/趾、胼胝体缺失、认知障碍、视网膜退化、后颅窝缺陷、骨骼异常、肥胖等[39]。

初级纤毛相关疾病包括:巴-比二氏综合征 (Bardet-Biedl syndrome, BBS),青少年型消耗性肾病 (Nephronophthisis,NPHP),Senior-Lken 综合征(SLNS),Alstrm 综合征 (ALMS),麦克尔综合征 (Meckel-Gruber syndrome, MKS),Joubert综合征 (JBTS),1型口面指综合征 (Oral-facial-digital syndrome, OFD1),埃利伟氏综合征 (Ellis-van Creveld syndrome, EVC)及先天性利伯氏黑矇(Leber congenital amaurosis, LCA)和多囊肾病(Polycystic kidney disease, PKD)等。随着对初级纤毛的认识,这一疾病的种类还在不断扩增。目前,本文作者统计出的与上述疾病相关基因达115种,这些基因的蛋白产物定位于纤毛上,与初级纤毛相关疾病及Wnt信号通路密切相关。比如:与多囊肾相关的基因蛋白产物PKD1和PKD2位于人和小鼠的肾脏初级纤毛上[40, 41],而初级纤毛相关基因发生突变的小鼠身上纤毛功能异常,过度表达活性β-catenin,并出现多囊肾症状[42, 43];Wnt/PCP通路改变与基因——、或突变造成的小鼠之间表型颇为相似[44];与IFT及纤毛组装相关基因变异的小鼠细胞纤毛变短,并出现一系列发育缺陷。变异的小鼠细胞核中探测到强烈的β-catenin信号,而Wnt通路的靶基因和表达显著上调[45,24];基因和基因分别编码纤毛蛋白MKS1和meckelin (MKS3),这两个基因的突变可以导致纤毛及中心体缺陷,参与神经管等多器官发育障碍发生,从而导致MKS综合征[46],而在MKS3裸鼠模型肾脏组织中经典Wnt通路处于激活状态[47]。

然而初级纤毛相关疾病错综复杂,各种疾病的基因、表型互相重叠、交织,同一基因不同位点突变可以出现不同疾病,而不同的疾病可以有多种表型重叠。比如基因突变可以导致MKS 或 JBTS[48]。MKS、BBS和NPHP都可以有肾脏、肝脏、多趾/指畸形等相同器官病理改变。这表明初级纤毛相关疾病是一类由潜在突变基因的类型、数量、位置而调控的疾病谱。由于基因改变诱发纤毛结构改变而造成初级纤毛相关疾病,或是初级纤毛仅依赖一条或几条通路而发挥作用,似乎不足以完全解释这种复杂性。或许纤毛的缺陷只是细胞内各种机制网络作用失调的表现之一[49]。另有研究显示,纤毛Ift蛋白不仅定位于基体,还可以定位于高尔基体附属器上[50]。这一现象扩大了人们对纤毛及纤毛相关疾病的认识,有助于对发病机理的深层次理解。

4 治疗及展望

很多初级纤毛相关疾病具致死性,其表型在胚胎期就可以出现,轻度的如BBS或NPHP中的一些类型的孩子可以存活,但生活质量差,往往早夭。目前对初级纤毛相关疾病尚无可靠而确切的治疗方法。

利用药物抑制环磷酸腺苷(Cyclic adenosine monophosphate, cAMP)和哺乳动物雷帕霉素靶蛋白(Mammalian target of rapamycin, mTOR)来降低细胞增殖及细胞内液体分泌,延缓了PKD的进展[51, 52]。在敲除小鼠模型上使用丙戊酸、胍那苄和半胱天冬酶12抑制剂复合物可以维持其光感受能 力[53]。药物治疗的靶点多与信号通路相关,鉴于纤毛相关疾病与多种信号通路之间的密切关系,将来或可选择影响信号通路的药物来达到改善初级纤毛相关疾病症状的目的。

基因治疗带来了希望。目前主要是利用基因送递去对抗因目的基因失效产生的初级纤毛相关疾病。第一例基因治疗的活体案例是在ORPK小鼠上实施的。这种小鼠的基因变异造成鼻腔嗅觉感觉神经元的纤毛异常,因此嗅觉丧失。将构建有基因的腺病毒载体连续感染小鼠,发现其嗅觉部分恢复,从而证明了基因治疗的可行性[54]。

然而药物和基因治疗仍处于探索阶段,治疗具有不确切性。考虑到初级纤毛相关疾病中不少病例属于单基因病,因此利用植入前遗传学诊断(Preimplantation genetic diagnosis, PGD)可规避具有致病基因的受精卵。本院曾收治一对连续4次妊娠Meckel综合征胎儿的夫妇,发现了其致病基因的纯合突变c.1645C>T,2012年3月通过PGD技术帮助这对夫妇顺利产下了一健康男婴,这是目前发表的第一篇关于Meckel综合征的植入前基因诊断的报道[55]。

综上所述,对纤毛功能、致病基因、相关信号通路的深入研究,将有助于对初级纤毛相关疾病的认识,以期在未来利用分子遗传学诊断、基因治疗及影响信号通路等各种手段防治纤毛相关疾病。

[1] Wheatley DN, Wang AM, Strugnell GE. Expression of primary cilia in mammalian cells., 1996, 20(1): 73–81.

[2] Mao ZG, Streets AJ, Ong ACM. Thiazolidinediones inhibit MDCK cyst growth through disrupting oriented cell division and apicobasal polarity, 2011, 300(6): F1375–F1384.

[3] Alieva IB, Gorgidze LA, Komarova YA, Chernobelskaya OA, Vorobjev IA. Experimental model for studying the primary cilia in tissue culture cells, 1999, 12(6): 895–905.

[4] Fan SL, Hurd TW, Liu CJ, Straight SW, Weimbs T, Hurd EA, Domino SE, Margolis B. Polarity proteins control ciliogenesis via kinesin motor interactions, 2004, 14(16): 1451–1461.

[5] Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies., 2007, 8(11): 880–893.

[6] Tobin JL, Beales PL. The nonmotile ciliopathies., 2009, 11(6): 386–402.

[7] Kim S, Dynlacht BD. Assembling a primary cilium.2013, 25(4): 506–511.

[8] Seeley ES, Nachury MV. The perennial organelle: assembly and disassembly of the primary cilium, 2010, 123(Pt 4): 511–518.

[9] Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease., 2009, 111(3): 39–53.

[10] Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis., 2007, 129(6): 1201–1213.

[11] Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling., 2008, 85: 23–61.

[12] Cole DG, Snell WJ. SnapShot: Intraflagellar transport, 2009, 137(4): 784–784 e1.

[13] Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease., 2007, 8(2): 97–109.

[14] Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle., 2003, 15(1): 105–110.

[15] Bloodgood RA. Sensory reception is an attribute of both primary cilia and motile cilia, 2010, 123(Pt 4): 505–509.

[16] Mans DA, Voest EE, Giles RH. All along the watchtower: is the cilium a tumor suppressor organelle?, 2008, 1786(2): 114–125.

[17] Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair., 2008, 85: 261–301.

[18] Louvi A, Grove EA. Cilia in the CNS: the quiet organelle claims center stage., 2011, 69(6): 1046–1060.

[19] Malone AM, Anderson CT, Stearns T, Jacobs CR. Primary cilia in bone, 2007, 7(4): 301.

[20] Kiprilov EN, Awan A, Desprat R, Velho M, Clement CA, Byskov AG, Andersen CY, Satir P, Bouhassira EE, Christensen ST, Hirsch RE. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery., 2008, 180(5): 897–904.

[21] WilsonNF, Lefebvre PA. Regulation of flagellar assembly by glycogen synthase kinase 3 in, 2004, 3(5): 1307–1319.

[22] Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms, 2008, 10(1): 70–76.

[23] Cano DA, Murcia NS, Pazour GJ, Hebrok M. Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization., 2004, 131(14): 3457–3467.

[24] Chang CF, Serra R. Ift88 regulates Hedgehog signaling,expression, and β-catenin activity in post-natal growth plate., 2013, 31(3): 350–356.

[25] Lancaster MA, Schroth J, Gleeson JG. Subcellular spatial regulation of canonical Wnt signalling at the primary ci­lium, 2011, 13(6): 700–707.

[26] Gerdes JM, Liu YF, Zaghloul NA, Leitch CC, Lawson SS, Kato M, Beachy PA, Beales PL, DeMartino GN, Fisher S, Badano JL, Katsanis N. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response, 2007, 39(11): 1350–1360.

[27] Huang P, Schier AF. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia, 2009, 136(18): 3089–3098.

[28] Ocbina PJ, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo, 2009, 4(8): 6839.

[29] Park TJ, Haigo SL, Wallingford JB. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling., 2006, 38(3): 303–311.

[30] Morgan D, Eley L, Sayer J, Strachan T, Yates LM, Craighead AS, Goodship JA. Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle, 2002, 11(26): 3345–3350.

[31] Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates, 2005, 37(10): 1135–1140.

[32] Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease., 2008, 40(8): 1010–1015.

[33] Yasunaga T, Itoh K, Sokol SY. Regulation of basal body and ciliary functions by Diversin., 2011, 128(7–10): 376–386.

[34] Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Krönig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G. Inversin, the gene product mutated in nephronophthisis type Ⅱ, functions as a molecular switch between Wnt signaling pathways, 2005, 37(5): 537–543.

[35] Schwarz-Romond T, Asbrand C, Bakkers J, Kühl M, Schaeffer HJ, Huelsken J, Behrens J, Hammerschmidt M, Birchmeier W. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the β-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling, 2002, 16(16): 2073–2084.

[36] Otto EA, Schermer B, Obara T, O'Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F. Mutations inencoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination, 2003, 34(4): 413–420.

[37] Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders., 2006, 7: 125–148.

[38] Novarino G, Akizu N, Gleeson JG. Modeling human disease in humans: the ciliopathies, 2011, 147(1): 70–79.

[39] Ko HW. The primary cilium as a multiple cellular signaling scaffold in development and disease, 2012, 45(8): 427–432.

[40] Yoder BK, Hou XY, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia, 2002, 13(10): 2508–2516.

[41] Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease., 2002, 12(11): 378–380.

[42] Kim I, Ding TB, Fu YL, Li CX, Cui L, Li A, Lian PW, Liang D, Wang DW, Guo CY, Ma J, Zhao P, Coffey RJ, Zhan QM, Wu GQ. Conditional mutation ofcauses cystogenesis and upregulates β-Catenin., 2009, 20(12): 2556–2569.

[43] Saadi-Kheddouci S, Berrebi D, Romagnolo B, Cluzeaud F, Peuchmaur M, Kahn A, Vandewalle A, Perret C. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene., 2001, 20(42): 5972–5981.

[44] Klein TJ, Mlodzik M. Planar cell polarization: an emerging model points in the right direction., 2005, 21: 155–176.

[45] Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK. The oak ridge polycystic kidney mouse: modeling ciliopathies of mice and men., 2008, 237(8): 1960–1971.

[46] Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N, Attie-Bitach T, Afford SC, Copp AJ, Kelly DA, Gull K, Johnson CA. The Meckel-Gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation, 2007, 16(2): 173–186.

[47] Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG, Czarnecki PG, Sussman CR, Harris PC. The Meckel syndrome protein meckelin () is a key regulator of cilia function but is not required for tissue planar polarity., 2013, 22(10): 2024–2040.

[48] Delous M, Baala L, Salomon R, Laclef C, Vierkotten J, Tory K, Golzio C, Lacoste T, Besse L, Ozilou C, Moutkine I, Hellman NE, Anselme I, Silbermann F, Vesque C, Gerhardt C, Rattenberry E, Wolf MT, Gubler MC, Martinovic J, Encha-Razavi F, Boddaert N, Gonzales M, Macher MA, Nivet H, Champion G, Berthélémé JP, Niaudet P, McDonald F, Hildebrandt F, Johnson CA, Vekemans M, Antignac C, Rüther U, Schneider-Maunoury S, Attié-Bitach T, Saunier S. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome., 2007, 39(7): 875–881.

[49] Sang LY, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen XH, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways., 2011, 145(4): 513–528.

[50] Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly., 2006, 17(9): 3781–3792.

[51] Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu ZH, Somlo S, Crews CM. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease., 2007, 104(11): 4389–4394.

[52] Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease., 2006, 103(14): 5466–5471.

[53] Mockel A, Obringer C, Hakvoort TB, Seeliger M, Lamers WH, Stoetzel C, Dollfus H, Marion V. Pharmacological modulation of the retinal unfolded protein response in Bardet-Biedl syndrome reduces apoptosis and preserves light detection ability., 2012, 287(44): 37483–37494.

[54] McIntyre JC, Davis EE, Joiner A, Williams CL, Tsai IC, Jenkins PM, McEwen DP, Zhang L, Escobado J, Thomas S, Szymanska K, Johnson CA, Beales PL, Green ED, Mullikin JC, NISC Comparative Sequencing Program, Sabo A, Muzny DM, Gibbs RA, Attié-Bitach T, Yoder BK, Reed RR, Katsanis N, Martens JR. Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model., 2012, 18(9): 1423–1428.

[55] Lu YP, Peng HM, Jin ZG, Cheng J, Wang SF, Ma MY, Lu Y, Han DY, Yao YQ, Li YL, Yuan HJ. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3)., 2013, 8(9): e73245.

(责任编委: 杨晓)

Correlation between primary cilium and Wnt signaling pathway

Manli Zhang, Yanping Lu, Yali Li

Primary cilium is a microtubule-based organelle,which develops from the mother centriole of the centrosome. It is an antenna-like structure that anchors at the cell membrance, protruding from the cell surface. Primary cilium acts as a sensory organelle that receives different kinds of signals from the environment and transmits signals to cells to elicit cellular responses. Recent studies have revealed that primary cilium play an important role in transmitting Wnt signaling, which is critical for embryonic development. Dysfunction of primary cilium deregulates Wnt signaling, causing a series of pathological changes in different organs of the embryo, resulting in ciliopathies. In this review, we summarize correlation among primary cilium,Wnt/β-catenin signaling,Wnt/PCP signaling and ciliopathies. Current therapies in ciliopathies are also discussed. Highlights on these researches will encourage the development of Wnt-associated diagnostic tools and therapy for ciliopathies.

primary cilium;Wnt signaling; ciliopathies

2014-07-28;

2014-12-05

解放军总医院科研扶持基金项目资助

张蔓丽,博士研究生,主治医师,研究方向:遗传疾病的分子诊断及产前诊断。E-mail:zhangmanli1982@126.com

卢彦平,博士,副教授,主任医师,研究方向:遗传疾病的分子诊断及产前诊断。E-mail: luyp301@163.com李亚里,教授,博士生导师,主任医师,研究方向:产前诊断及子宫内膜异位症发病机理。E-mail: li_yali@hotmail.com

10.16288/j.yczz.14-252

2015-1-5 10:51:23

http://www.cnki.net/kcms/detail/11.1913.R.20150105.1051.002.html

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!