当前位置:首页 期刊杂志

石墨烯基复合材料去除水中重金属研究进展

时间:2024-07-06

滕洪辉,彭雪,高彬

(吉林师范大学环境科学与工程学院,吉林 四平136000)

石墨烯基复合材料去除水中重金属研究进展

滕洪辉,彭雪,高彬

(吉林师范大学环境科学与工程学院,吉林 四平136000)

近几年,石墨烯及其复合材料因其比表面积大、传输电子能力强、结构稳定、可吸附多种污染物,被认为是极具发展潜力的环保新材料,尤其是在重金属分离方面具有明显的优势。本文综述了各类石墨烯材料在水中重金属去除方面的研究现状,对比分析了不同材料对镉、汞、铬、铜、铅、锌和砷离子的去除能力及机理。认为石墨烯复合材料在水中分散情况、活性官能团种类、电子传输能力调控和重复使用性能对重金属离子去除有重要影响。指出控制石墨烯片层聚集、增加亲水性、提高可回收性和制备高灵敏选择性电极将是石墨烯材料修饰改性的研究热点。此外,石墨烯复合材料对一些有机污染物也有良好的吸附能力,制备能够吸附多类别污染物的净水剂也将成为石墨烯复合材料的一个主要研究方向。

石墨烯;复合材料;吸附

水环境中存在的大量重金属严重影响了动植物的正常生长,对生态系统和人类健康构成了极大的威胁。常见的重金属处理方法有化学沉淀法、混凝沉淀法、电解法、离子交换法、吸附法和生物处理法等[1]。

自2004年GEIM小组[2]首次用机械剥离法获得了薄层石墨烯以来,很多科学家都在积极研究石墨烯、氧化石墨烯及其复合材料在各个领域中的应用。近期,有多篇关于石墨烯材料在环境中应用的综述文献[3-14],多以石墨烯光催化降解研究为主,对重金属去除方面较少提及,检测方面更少。但石墨烯具有很多优异性能[3-5],有较大的比表面积和裸露的表面官能团[6],吸附水中重金属方面较其他吸附剂具有更好的效果,而且可回收再利用,展现出诱人的应用前景,因而受到了广泛关注。本文详尽综述了近几年石墨烯及其复合材料在重金属离子吸附去除方面的研究进展,通过对比不同石墨烯基复合材料对重金属的去除能力(表1),讨论不同类型复合材料对几种主要重金属离子的吸附效能、机理,揭示石墨烯基复合材料在重金属去除方面的应用潜力,探究石墨烯基环保新材料改性研究的主要方向,为石墨烯材料在环境中的应用提供参考。

1 去除镉离子

镉离子在饮用水中的标准为5μg/L,自然水体中的标准为1μg/L,而镉污染主要是矿业废水工业镀镉废水或碱性电池漏液,水体中的生物通过食物链对镉进行富集,人们食用这些生物也会危及健康,长期饮用含镉水源会引起痛痛病、软骨症并且严重损伤肾脏[15]。

因此,去除水中镉离子研究被广泛关注。其中,石墨烯基材料表现出很强的去除能力。LI等[16]通过以Ni为催化剂的CVD法制备了三维多孔结构的石墨烯材料(3D-GMOs),孔隙率达到95%,然后以Pt为阳极,3D-GMOs为阴极对镉进行电解沉积吸附,Cd、Pb、Ni、Cu的最大吸附量分别为434mg/g、882mg/g、1683mg/g、3820mg/g。3D-GMOs的密度很高,是交联结构,在吸附过程中可以仍然保持完整;而且它具有较大的比表面积(560m2/g),可以结合更多的重金属离子;另外3D-GMOs的导电性较高,可提高水中沉淀的电解率。但是这种石墨烯的产量和机械强度有限。DENG等[17]采用改进的Hummers法制备的GO用于吸附多种重金属离子,对Cd和Pb最大吸附量分别为42mg/g和149mg/g。ZHAO等[18]采用同样的制备方法,控制得到了层数很少的GO纳米片,对Cd的去除效果明显增强,Cd和Co最大吸附量分别为106.3mg/g和68.2mg/g,腐殖酸对结果有负面影响;而WANG等[19]实验证明,用制备的聚乙烯亚胺改性的磁性多孔氧化硅微球-GO(MMSP-GO)复合材料去除重金属离子时,腐植酸有协同增强效应,Cd和Pb的最大吸附量分别达到167mg/L和333mg/L。为了改善吸附后GO材料分离回收性能,LEI等[20]制备出一种三维结构的氧化石墨烯泡沫材料(GOF),该材料对Cd、Zn、Pb、Fe的最大吸附量分别达到252.5mg/g、326.4mg/g、381.3mg/g、587.6mg/g,用0.2mol/L HCl可以解吸再生,GOF是一种非常有实用前景吸附剂材料,与前面的非均相吸附反应不同。

ZHANG等[21]用聚丙烯酸改性GO/Fe3O4制备出一种可溶于水的磁性氧化石墨烯纳米复合材料(PAA/GO/Fe3O4),与重金属离子发生均相吸附反应,对Cu2+、Cd2+、Pb2+的最大吸附量达到296.7mg/g、303.4mg/g、316.7mg/g,该材料具有强顺磁性,易于回收。SITKO等[22]用K2Cr2O7为氧化剂制备的GO吸附不同重金属离子,取得了意想不到的效果,Cd2+的最大吸附量达580mg/g,Cu(Ⅱ)、Zn(Ⅱ)和Pb(Ⅱ)的最大吸附量分别达294mg/g、345mg/g、1119mg/g,高于以前报道的吸附剂。相关机理分析表明,重金属离子与GO表面的含氧官能团发生化学络合作用,中和了GO表面核电电性形成了沉淀,改变了GO难以分离回收的不足。与GO相比,RGO的表面含氧官能团较少,去除重金属离子能力偏低,例如ZnS和CdS修饰的石墨烯复合材料对Cd和Pb的最大吸附量仅能达到3.62mg/g和3.10mg/g[23]。但是,对RGO进行表面功能化修饰可以提高重金属去除能力,例如,GAO等[24]采用一步水热法制备的多巴胺修饰RGO对Cd和Pb最大吸附量达到145.48mg/g和336.32mg/g,该材料吸附重金属离子后可以通过改变pH再生。CHENG等[25]在单层石墨烯表面自组装聚合多巴胺(PDA),得到2D结构的产物(PRGO)与碳酸钙复合(PRGO/CaCO3),用于去除水中Pb和Cd离子,最大吸附量分别为365mg/g和210mg/g。ZHANG等[26]制备了聚酰胺修饰的GO复合材料(GO-PAMAMs),对Cd、Pb、Cu、Mn的最大吸附量为253.81mg/g、568.18mg/g、68.68mg/g、18.29mg/g。但是有些修饰改性效果并不理想,例如BHUNIA等[27]制备的还原氧化石墨烯与零价铁和氧化铁的复合材料(rGO-Fe-Fe3O4),镉最大吸附仅为25mg/g;而LEE等[28]制备的花状TiO2修饰GO材料,对Cd、Pb、Zn的最大吸附量为74.4mg/g、68.3mg/g、92.2mg/g;FANG和CHEN[29]制备的纳米级氢氧化物复合三维氧化石墨烯(LDHs+GO)气凝胶材料,Cd2+最大吸附量为95.67mg/g。可见,改性剂的选择至关重要。

表1 不同石墨烯基复合材料去除重金属能力

相关吸附机理研究表明,石墨烯基复合材料表面的官能团对镉离子的吸附有重要影响,能与金属阳离子形成化学键合或络合作用的官能团越多越有利于吸附,另外,石墨烯片层的聚集程度影响很大,表面修饰后减少片层的堆积可以显著提高吸附效果。除了依靠材料自身吸附能力外,辅以电吸附等其他技术手段来提高去除效果也是可行的。

2 去除汞离子

因水俣病而闻名的汞对人身体健康危害巨大,能够破坏中枢神经系统和内分泌系统,引起广泛关注[15],其去除方法主要以活性炭吸附法为主。石墨烯作为一种新型碳材料在去除水中汞离子方面具有不可替代的优势。SREEPRASAD等[30]提出采用廉价河沙负载的方法解决石墨烯材料回收的问题,他们制备了GN/Ag和GN/MnO2两种吸附剂,利用壳聚糖将这两种吸附剂负载到河沙上,用来去除水中汞离子。EDAX测试表明Ag和MnO2的存在增强了复合材料对汞的吸附作用。但最大吸附量仅为10mg/g,远低于其他石墨烯复合材料。SUI等[31]将碳纳米管与石墨烯复合材料(GR-MWCNT)用于去除Hg、Pb、Ag、Cu离子,最大吸附量分别为93.3mg/g、104.9mg/g、64mg/g、33.8mg/g,各离子间存在竞争吸附关系,更重要的是此复合材料对油类、染料等也具有优异的吸附性能。ZHANG等[32]采用磁性的CoFe2O4-RGO去除水中汞和铅离子,最大吸附量为157.9mg/g、299.4mg/g,吸附后可用磁铁分离回收,比BHUNIA等[27]制备的磁性石墨烯复合物(RGO-Fe-Fe3O4)除汞能力强。KYZAS等[33]将磁性壳聚糖掺入GO制得GO/mCS复合材料,用于去除水中Hg2+。与普通壳聚糖和单纯GO相比,GO的复合物质(GO/CS)、GO/mCS的Hg2+去除能力显著提高,最大吸附量达到398mg/g,而且随着温度升高进一步增大,去除机理如图1所示,壳聚糖插入石墨烯层之间后增加了石墨烯层之间的距离,与原有的羧基、羰基等反应产生新的活性吸附位,促进Hg2+与复合材料的氨基官能团发生螯合作用,与羟基等发生还原反应生成Hg0,从而提高了复合材料对汞的吸附能力。但是反应过后GO/mCS的结构发生改变,导致其不易回收,无法重复利用。

GAO等[34]不用壳聚糖而是采用热沉淀吸附的方法将氧化石墨烯包覆在石英砂上形成类似的核壳结构,为了提高吸附能力对石墨烯进行了重氮化修饰,在氧化石墨烯片层中引入了巯基基团,使得这种石墨烯复合材料对汞吸附能力达到180mg/g以上。GAO等[34]发现重氮化改性受氧化石墨烯片上的苯环C—C间和—SH基团sp2晶格杂化的影响,不用化学还原氧化石墨烯依然能够进行重氮化修饰,而且氧化石墨烯具有富电子的sp2域结构,相对于还原后的氧化石墨烯更容易嫁接一些官能团,有利于对其进行各种复杂的修饰改性。这一发现为石墨烯复合材料制备提供了新的思路。

CHANDRA等[35]采用简便的化学方法制备了吡咯与氧化石墨烯的复合材料(ppy-RGO)。与上述几种石墨烯复合材料相比,这种复合材料显示出对水中Hg2+较高的选择性和去除能力,吸附能力可达到980mg/g。研究表明,吡咯单体沿着石墨烯片层聚合生长,显著地增加了ppy-RGO材料的比表面积,暴露出更多的活性吸附位;另外,在pH<5溶液中,吡咯N的独立电子对易与Hg2+配位形成稳定的复合物,增加了对Hg2+的选择性,展现出非常好的应用前景。

3 去除铬离子

铬离子在水中因价态不同而毒性不同。对于人类来说Cr(Ⅵ)的毒性强,易被人体吸收积累,是致癌物质,而对于鱼类来说Cr(Ⅲ)毒性更大,一般铬的污染源主要有铬矿石加工、金属表面处理、皮革鞣制、印染等。

据报道,石墨烯及氧化石墨烯对重金属离子有很强的吸附能力,但是分离回收困难,为解决该问题,LIU[36]和BHUNIA[37]等采用Fe3O4修饰方法制备出具有顺磁性的复合材料,这种复合材料吸附Cr(Ⅵ)后容易从水中分离,但是磁性粒子在酸性环境下流失严重。FAN等[38]用β-环糊精包覆磁性粒子以减少流失,得到的材料(MCGN)对铬离子的去除效果很好,去除能力达到120mg/g。而LI等[39]用磁性壳聚糖、环糊精修饰GO,制备出磁性、多孔结构的复合材料(CCGO),材料环境稳定性进一步提高,Cr(Ⅵ)的最大吸附量为67.66mg/g,可多次重复利用。为了获得更好的吸附能力,LI等[40]将离子液体注入磁性壳聚糖氧化石墨烯复合材料中(MCGO-IL),Cr(Ⅵ)的吸附能力增加到145.35mg/g。DINDA等[41]制备一种具有光活化功能的2,6-二氨基吡啶-RGO复合材料(DAP-RGO),对Cr(Ⅵ)吸附能力极强(qmax>1000mg/g),紫外光活化可使吸附能力提高15%以上,这是一种新颖的、非常有应用前景的光活化吸附剂。

为了深入研究磁选分离回收方法,科学家们制备出了多种Fe-GO/GN复合材料,如在水中可分散的磁铁矿-RGO复合材料、GN基多功能氧化铁纳米薄片等,都可以去除水体中的Cr(Ⅵ),还可同时去除三价和五价的砷离子[42-43]。使用纳米级零价铁离子修饰GN薄片可进一步提升对Cr(Ⅵ)的去除效果,该复合物的比表面积较大,水溶性高于单纯的GN,吸附后容易与水体分离[44]。上述方法都是针对自然水体中的铬离子,GOLLAVELLI等[45]以GO和二茂铁为原料,设计了一个免溶剂快速的一步合成方法,制备出强磁性石墨烯复合材料(SMG),磁性达到50emu/g。可去除饮用水中铬、砷、铅等重金属离子,具有生物相容性和很好的再循环性能。而LI等[46]认为纯铁纳米颗粒很容易被氧化,尤其在酸性环境中不容易保存,而且将氧化铁颗粒直接与GO复合通常是通过铁盐的还原或磁性纳米颗粒结合在GO表面,氧化铁在吸附过程中很容易被滤掉[47]。所以该小组先让Fe3O4与SiO2结合后,再与GO复合为Fe3O4/SiO2-GO,制备过程中没有高温高压条件,操作简单。Fe3O4/SiO2-GO对Cr(Ⅲ)的吸附时间很短,少于5min,并且通过永久磁铁可加快其在水样中的分散,但其吸附能力不是很强,最大吸附量仅为Cr(Ⅲ) 4.7mg/g。另一种GO-PAMAM复合材料对Cr(Ⅲ)的去除效果也不甚理想(qmax=4.1mg/g)[11],与磁性材料复合相比,双层氢氧化物复合的石墨烯材料(GR-MgAl-LDH)水中Cr(Ⅵ)去除能力更强(qmax=172.55mg/g),但分离回收困难,限制了其实际应用。YUAN等[48]通过构建三维结构来进一步提高磁性氧化石墨烯材料的吸附能力,他们制备的烟氧化石墨烯泡沫-Fe3O4三维结构纳米复合材料对Cr(Ⅵ)最大吸附量达到了258.6mg/g,有非常好的应用前景。

图1 GO、GO/CS和GO/mCS与Hg(II)相互作用示意图

4 去除其他重金属离子

铜和锌是人体所必需的微量元素,但过量摄入也会产生危害。铅的主要毒性效应是导致贫血、神经机能失调和肾损伤等。砷是自然界广泛存在的元素,三价砷对人体的毒害作用非常大,如今随着人类活动,水环境中砷的含量急剧上升。应尽量控制这些有毒离子在环境中的分布,寻找高效吸附剂是一个有效的办法。

近几年,GO吸附重金属研究逐渐增多,LIU等[49]用GO去除水中Au(III)、Pd(II)和Pt(IV),最大吸附量分别为108.34mg/g、80.78mg/g、71.38mg/g,用硫脲和盐酸混合稀溶液能够获得较好的解吸再生效果。但GO表面有很多含氧基团,可与水中的重金属结合,在水中的分散性很好,难以收集。所以CHEN等[50]制备了GO与壳聚糖的复合水凝胶(GO-CS),实验证明,该水凝胶对水中的Cu2+和Pb2+有吸附作用,吸附能力分别为70mg/g和90mg/g。在pH为5.1环境时,对Cu2+有最佳吸附,Pb2+的最适pH为4.9,离子很容易扩散进入水凝胶中,且GO-CS水凝胶通过过滤很容易在水中被收集,是环境友好型材料。LEI等[20]制备了三维独立结构的GO泡沫,用于吸附Pb2+、Fe3+和Zn2+等重金属离子。其比表面积巨大,达到578.4m2/g,吸附Pb2+、Fe3+和Zn2+的能力分别达到381.3mg/g、587.6mg/g和326.4mg/g,效果很好,而普通的GO对Zn2+的去除能力为246mg/g[51]。LI等[16]制备的三维石墨烯(3D-GMOs)也可以去除Pb2+,20min后的吸附能力达到3820mg/g,这是较其他吸附剂极高的水平,而且3D-GMOs对Pb2+和Ni2+的吸附效果也很好,吸附能力分别达到882mg/g和1683mg/g。LIU小组[52]制备了磺化的磁性GN材料,用于去除水中Cu2+,但是吸附效果低于3D-GMOs 对Cu2+的吸附。

LEE小组[28]制备了GO与TiO2的复合材料(GO-TiO2),用于去除Pb2+,吸附平衡时,吸附能力达到56mg/g。JABEEN等[53]研究表明,纳米零价铁与石墨烯复合(G-nZVI)材料比nZVI吸附Pb2+能力更强。HAO等[54]将SiO2与GN复合成为纳米材料,用于去除水中Pb2+,其吸附能力达到113.6mg/g。LUO等[55]将低聚体(PAS)插入GO片层间,一方面阻止GO片层的聚集,使得重金属离子更容易进入片层内,另外引入大量氨基官能团,增加吸附活性位,可将吸附Pb2+能力提高到312.5mg/g。可见,适当聚合物的插入可以提高吸附能力(887.98mg/g[56],1000mg/g[57])。EDTA可与多种重金属络合,MADADRANG等[58]将其固定在GO表层用于吸附Pb离子,最大吸附量达到525mg/g,EDTA-GO吸附后用HCl再生可以重复使用。DONG等[59]利用具有超强黏附能力的聚乙烯多巴胺(PD)与氧化石墨烯结合,形成一种有效吸附水中重金属的材料PD-GO。PD-GO可吸附Pb2+和Cu2+等离子,吸附能力分别为53.6mg/g和24.4mg/g,不是很高,但其对染料的吸附能力可达到2.1g/g。而单纯的GO对Cu2+的吸附能力为46.6mg/g[54],还有文献达到117.5mg/g[60]。可见聚乙烯多巴胺对氧化石墨烯吸附Cu2+的能力有一定的限制。但是聚乙烯吡咯烷酮可以显著提高RGO吸附Cu2+的能力(1689mg/g)[61],三乙醇胺修饰的GO(TEA-GO)也因含氮官能团的加入,表现为多分子层吸附状态,展现出极强的Cu2+吸附能力[62]。制备的纳米Fe3O4-G磁性材料Cu2+最大吸附量为207.9mg/g[63]。

对于水体中砷离子的去除,有学者制备了氧化石墨烯与氢氧化铁的复合材料,当As(V)的初始浓度为19.32mg/L时,最佳条件下的去除率可达到100%[64]。还有报道称将针状氧化铁与石墨烯复合在一起,用于去除As(V),当初始浓度为71.8mg/L时,该吸附剂的去除率达到97%[43]。而朝木尔乐格等[65]研究了铁与石墨烯复合的材料中铁的形态对吸附As(III)的影响,分别制备了石墨烯负载磁铁矿(M-RGO)、石墨烯负载赤铁矿(H-RGO)和石墨烯负载零价铁复合物(N-RGO)。经过吸附实验和动力学热力学分析得知,N-RGO对As(III)的吸附效果最好,达到85.5mg/g的吸附量,M-RGO次之,为71.9mg/g,H-RGO为46.3mg/g。研究者还测试了NO2-和NO3

-等离子对吸附过程的干扰,发现离子对N-RGO的影响不大,对M-RGO和H-RGO的吸附过程影响较大,因为与N-RGO相比离子更易与M-RGO和H-RGO的吸附位点结合,与水中As(III)发生了竞争,所以N-RGO是比较优秀的吸附剂。GUPTA等[66]进一步研究了磁性氧化石墨烯(M-RGO)同时去除三价和五价砷的效果,证明他们采用低温原位方法制备的M-RGO可同时去除三价和五价砷,去除效率近乎100%,砷残余浓度小于1×10–3μg/mL,应用前景广阔。

5 结语与展望

(1)与传统吸附材料相比,石墨烯基复合材料的比表面积很大,结构稳定,有利于增加重金属离子与吸附剂的接触面积,在去除水体中重金属方面展现出极大的应用潜力。文献已报道的去除机理可分为两类:一类是利用复合的低价元素充当还原剂,将重金属还原吸附到复合材料表面;另一类是利用材料表面自有或引入的羟基、巯基等官能团与水样中重金属离子发生络合、配位等作用,形成稳定的产物从而净化水体。

(2)近几年人们采用水凝胶技术和磁性材料掺杂等方法提高了石墨烯材料的亲水性和可分离回收性,但是石墨烯基复合材料在实际应用前还有几个科学技术问题需要解决:一是石墨烯的片层结构在水体中易堆积,阻碍了活性吸附位点与重金属离子的作用;二是在可分离回收性和提高材料亲水性之间找到平衡点,开展重复使用性方面研究,避免二次环境污染;三是不同重金属离子之间的竞争吸附,常见离子对重金属吸附的抑制和促进作用机制;四是廉价、规模化、环境友好的石墨烯复合材料制备技术开发等。

(3)目前功能多元化已成为了净水材料研发领域的一大趋势,石墨烯基复合材料有望成为一种多功能化的水质净化新材料。通过对比分析可以发现,很多石墨烯基复合材料不但能够吸附多种重金属,而且能够同时吸附染料等有机污染物;另外,在石墨烯基光催化剂制备和应用方面也有大量的综述文献报道;此外,研究者们还发现,在吸附过程中对碳材料吸附剂增加光照,会增加吸附剂的细胞毒性,从而起到抑菌、杀菌的作用,石墨烯基复合材料这些特点有利于对含有复杂污染物水体的净化,为增加石墨烯基复合材料的净水效果拓宽了思路和研究方向。

[1] 徐卫河. 山药中痕量汞、砷的分析方法[J]. 化工进展,2010,29(3):559-562. XU W H. Determination of trace arsenic and mercury in yarm[J]. Chemical Industry and Engineering Progress,2010,29(3):559-562.

[2] NOVOSOLOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.

[3] ZHU M C,HE Q L,SHAO L,et al. An overview of the engineered graphene nanostructures and nanocomposites[J]. RSC Advances,2013,3:22790-22824.

[4] LU M,LI J,YANG X,et al. Applications of graphene-based materials in environmental protection and detection[J]. Chinese Science Bull,2013,58(22):2698-2710.

[5] KEMP K C,SEEMA H,SALEH M,et al. Environmental applications using graphene composites: water remediation and gas adsorption[J]. Nanoscale,2013,5(8):3149-3171.

[6] KYZAS G Z,DELIYANNI E A,MATIS K A. Graphene oxide and its application as an adsorbent for wastewater treatment[J]. Journal of Chemical Technology and Biotechnology,2014,89(2):196-205.

[7] CHANG H,WU H. Graphene-based nanocomposites: preparation,functionalization,and energy and environmental applications[J]. Energy and Environmental Science,2013,6(12):3483-3507.

[8] CHANG J,ZHOU G,CHRISTENSEN E R,et al. Graphene-based sensors for detection of heavy metals in water: a review[J]. Analytical and Bioanalytical Chemistry,2014,406(16):3957-3975.

[9] TANG W W,ZENG G M,GONG J L,et al. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials:a review[J]. Science of The Total Environment,2014,468/467/469:1014-1027.

[10] PAN L,LIU X,SUN Z,et al. Nanophotocatalystsviamicrowave-assisted solution-phase synthesis for efficient photocatalysis[J]. Journal of Materials Chemistry A,2013,1(29):8299-8326.

[11] YUAN Y,ZHANG G,LI Y,et al. Poly(amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions[J]. Polymer Chemistry,2013,4(6):2164-2167.

[12] CHOWDHURY S,BALASUBRAMANIAN R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater[J]. Advances in Colloid and Interface Science,2014,204:35-56.

[13] UPADHYAY R K,SOIN N,ROY S S. Role of graphene/metal oxide composites as photocatalysts,adsorbents and disinfectants in water treatment: a review[J]. RSC Advance,2014,4(8):3823-3851.

[14] YU C,GUO Y,LIU H,et al. Ultrasensitive and selective sensing of heavy metal ions with modified graphene[J]. Chemical Communications,2013,49(58):6492-6494.

[15] ANIRUDHAN T S,SREEKUMARI S S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons[J]. Environmental Science,2011,23:1989-1998.

[16] LI W,GAO S,WU L,et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions[J]. Scientific Reports,2013,3(7):120.

[17] DENG D,JIANG X,YANG L,et al. Organic solvent-free cloud point extraction-like methodology using aggregation of graphene oxide[J]. Analytical Chemistry,2014,86(1):758-765.

[18] ZHAO G,LI J,REN X,et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science and Technology,2011,45(24):10454-10462.

[19] WANG Y,LIANG S,CHEN B,et al. Synergistic removal of Pb(Ⅱ),Cd(Ⅱ) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites[J]. Plos One,2013,8(6):e65634.

[20] LEI Y,CHEN F,LUO Y,et al. Synthesis of three-dimensional graphene oxide foam for the removal of heavy metal ions[J]. Chemical Physics Letters,2014,593:122-127.

[21] ZHANG W,SHI X,ZHANG Y,et al. Synthesis of water-solublemagnetic graphene nanocomposites for recyclable removal of heavy metal ions[J]. Journal of Materials Chemistry A,2013,1(5):1745-1753.

[22] SITKO R,TUREK E,ZAWISZA B,et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Transactions,2013,42(16):5682-5689.

[23] SAHOO A K,SRIVASTAVA S K,RAUL P K,et al. Graphene nanocomposites of CdS and ZnS in effective water purification[J]. Journal of Nanoparticle Research,2014,16(7):1-17.

[24] GAO H,SUN Y,ZHOU J,et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification[J]. ACS Applied Materials and Interfaces,2013,5(2):425-432.

[25] CHENG C,LI S,ZHAO J,et al. Biomimetic assembly of polydopamine-layer on graphene: mechanisms,versatile 2D and 3D architectures and pollutant disposal[J]. Chemical Engineering Journal,2013,228:468-481.

[26] ZHANG F,WANG B,HE S,et al. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions[J]. Journal of Chemical Engineering Data,2014,59(5):1719-1726.

[27] BHUNIA P,KIM G,BAIK C,et al. A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption[J]. Chemical Commununications,2012,48(79):9888-9890.

[28] LEE Y C,Yang J W. Self-assembled flower-like TiO2on exfoliated graphite oxide for heavy metal removal[J]. Journal of Industrial and Engineering Chemistry Rearchs,2012,18(3):1178-1185.

[29] FANG Q,CHEN B. Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification[J]. Journal of Materials Chemistry A,2014,2(23):8941-8951.

[30] SREEPRASAD T S,MALIYEKKAL S M,LISHA K P,et al. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification[J]. Journal of Hazardous Materials,2011,186(1):921-931.

[31] SUI Z,MENG Q,ZHANG X,et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J]. Journal of Materials Chemistry,2012,22(18):8767-8771.

[32] ZHANG Y,YAN L,XU W,et al. Adsorption of Pb(II) and Hg(II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide[J]. Journal of Molecular Liquids,2014,191:177-182.

[33] KYZAS G Z,TRAVLOU N A,DELIYANNI E A. The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions[J]. Colloids and Surfaces B: Biointerfaces,2014,113:467-476.

[34] GAO W,MAJUMDER M,ALEMANY L B,et al. Engineered graphite oxide materials for application in water purification[J]. ACS Applied Materials and Interfaces,2011,3(6):1821-1826.

[35] CHANDRA V,KIM K S. Highly selective adsorption of Hg2+by a polypyrrole-reduced graphene oxide composite[J]. Chemical Communications,2011,47(13):3942-3944.

[36] LIU M,WEN T,WU X,et al. Synthesis of porous Fe3O4hollow microspheres/graphene oxide composite for Cr(Ⅵ) removal[J]. Dalton Transactions,2013,42(41):14710-14717.

[37] BHUNIA P,KIM G,BAIK C,et al. A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption[J]. Chemical Communications,2012,48:9888-9890.

[38] FAN L,LUO C,SUN M,et al. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal[J]. Journal of Materials Chemistry,2012,22(47):24577-24583.

[39] LI L,FAN L,SUN M,et al. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. Colloids and Surfaces B: Biointerfaces,2013,107:76-83.

[40] LI L,LUO C,LI X,et al. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment[J]. International of Journal Biological Macromolecules,2014,66:172-178.

[41] DINDA D,GUPTA A,SAHA S K. Removal of toxic Cr(Ⅵ) by UV-active functionalized graphene oxide for water purification[J]. Journal of Materials and Chemistry A,2013,1(37):11221-11228.

[42] CHANDRA V,PARK J,CHUN Y,et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano,2010,4(7):3979-3986.

[43] KOO H Y,LEE H J,GO H A,et al. Graphene-based multifunctional iron oxide nanosheets with tunable properties[J]. Chemistry,2011,17(4):1214-1219.

[44] JABEEN H,CHANDRA V,JUNG S,et al. Enhanced Cr(Ⅵ) removal using iron nanoparticle decorated graphene[J]. Nanoscale,2011,3:3583-3585.

[45] GOLLAVELLI G,CHANG C C,LING Y C. Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control[J]. ACS Sustainable Chemistry and Engineering,2013,1(5):462-472.

[46] LI H,CHI Z,LI J. Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(Ⅲ) removal[J]. Desalination and Water Treatment,2013,52(10/11/12):1937-1946.

[47] HE F,FAN J,MA D,et al. The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding[J]. Carbon,2010,48:3139-3144.

[48] YUAN X,WANG Y,WANG J,et al. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(Ⅵ) removal[J]. Chemical Engineering Journal,2013,221:204-213.

[49] LIU L,LIU S,ZHANG Q,et al. Adsorption of Au(Ⅲ),Pd(Ⅱ),and Pt(Ⅳ) from aqueous solution onto graphene oxide[J]. Journal of Chemical Engineering Data,2013,58(2):209-216.

[50] CHEN Y,CHEN L,BAI H,et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A,2013,1(6):1992-2001.

[51] WANG H,YUAN X,WU Y,et al. Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution[J]. Applied Surface Science,2013,279:432-440.

[52] HU X,LIU Y,WANG H,et al. Removal of Cu(Ⅱ) ions from aqueous solution using sulfonated magnetic graphene oxide composite[J]. Separation and Purificaton Technology,2013,108:189-195.

[53] JABEEN H,KEMP K C,CHANDRA V. Synthesis of nano zerovalent iron nanoparticles-graphene composite for the treatment of lead contaminated water[J]. Journal of Environmental Management,2013,130:429-435.

[54] HAO L,SONG H,ZHANG L,et al. SiO2/graphene composite for highly selective adsorption of Pb(Ⅱ) ion[J]. Journal of Colloid and Interface Science,2012,369(1):381-387.

[55] LUO S,XU X,ZHOU G,et al. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(Ⅱ) from wastewater[J]. Journal of Hazardous Materials,2014,274:145-155.

[56] MUSICO Y L F,SANTOS C M,DALIDA M L P,et al. Improved removal of lead (Ⅱ) from water using a polymer-based graphene oxide nanocomposite[J]. Journal of Materials Chemistry A,2013,1(11):3789-3796.

[57] YANG Y,XIE Y,PANG L,et al. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(Ⅱ) and methylene blue[J]. Langmuir,2013,29(34):10727-10736.

[58] MADANDARG C J,KIM H Y,GAO G,et al. Adsorption behavior of EDTA-graphene oxide for Pb(Ⅱ) removal[J]. ACS Applied Materials Interfaces,2012,4(3):1186-1193.

[59] DONG Z,WANG D,LIU X,et al. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity[J]. Journal of Materials Chemistry A,2014,2(14):5034-5040.

[60] WU W,YANG Y,ZHOU H,et al. Highly efficient removal of Cu(Ⅱ) from aqueous solution by using graphene oxide[J]. Water Air and Soil Pollution,2012,224(1):1372-1379.

[61] GU Y,SUN Y,ZHANG Y,et al. Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism[J]. Nano-Micro Letters,2014,6(1):80-87.

[62] LIU G,GUI S,ZHOU H,et al. A strong adsorbent for Cu2+:graphene oxide modified with triethanolamine[J]. Dalton Transactions,2014,43(19):6977-6980.

[63] WU H X,WU J W,NIU Z G,et al.In situgrowth of monodispersed Fe3O4nanoparticles on graphene for the removal of heavy metals and aromatic compounds[J]. Water Science and Technology,2013,68(11):2351-2358.

[64] ZHANG K,DWIVEDI V,CHI C,et al. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water[J]. Journal of Hazardous Materials,2010,182(1/2/3):162-168.

[65] 朝木尔乐格,冯流,霍艳霞. 基于石墨烯载体的铁基材料制备及除砷性能比较[J]. 环境科学,2013,34(10):3927-3932. CHAOMUERLEGE,GENG L,HUO Y X. Comparison of as removal performance by graphene/iron-based material[J]. Environmental Science,2013,34(10):3927-3932.

[66] GUPTA V K,YOLA M L,ATAR N,et al. A novel sensitive Cu(Ⅱ) and Cd(Ⅱ) nanosensor platform: graphene oxide terminatedp-aminophenyl modified glassy carbon surface[J]. Electrochimica Acta,2013,112:541-548.

Removal of heavy metals from water by graphene composites

TENG Honghui,PENG Xue,GAO Bin
(College of Environmental Science and Engineering,Jilin Normal University,Siping 136000,Jilin,China)

In recent years,graphene and its composites are considered new promising environmental protection materials,because they have large specific surface area,strong transmission electron ability and stable structure which renders them ability to adsorb more kinds of pollutants than other materials,especially for heavy metals. The current researches of the removal of heavy metals from the water by graphene materials are reviewed in this paper. The removal ability and mechanism of cadmium,mercury,chromium,copper,lead,zinc and arsenic ions by graphene materials are analyzed. The results show that the dispersion of graphene materials in water,the type of reactive functional groups,control of electronic transmission and the reuse performance of graphene composites have significant effects on the removal of heavy metal ions. We also point out that controlling graphene layers aggregation,increasing the hydrophilicity,improving the recycle ability and preparing high sensitive selective electrode will be hot topics of graphene materials modified researches. In addition,graphene composites also have good adsorption capacity for some organic pollutants,so the preparation of graphene composites as purifiers for many pollutants will become one of the main research directions of graphene composites.

graphene;composites;adsorption

X703

:A

:1000–6613(2017)02–0602–09

10.16085/j.issn.1000-6613.2017.02.028

2016-05-09;修改稿日期:2016-09-13。

吉林省教育厅“十三五”科学技术研究项目(吉教科合字[2016]第156号)。

及联系人:滕洪辉(1978—),男,博士,副教授,研究方向为纳米材料制备及应用、污染物控制与资源化利用。E-mail:tenghonghui@jlnu.edu.cn。

免责声明

我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!