时间:2024-07-28
史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊
(1.青海师范大学地理科学学院,西宁 810008; 2.青海省气象科学研究所,西宁 810008; 3.青海省自然地理与环境过程重点实验室,西宁 810008; 4.青藏高原地表过程与生态保育教育部重点实验室,西宁 810008; 5.青海省防灾减灾重点实验室,西宁 810008;6.高原科学与可探突发展研究院,西宁 810008)
青海柴达木盆地作为我国枸杞的新兴种植区,近年来因枸杞种植规模的无序扩大以及市场开拓不足致使供需失衡严重,已显现出枸杞价格持续低迷和田间消极管理引发减产等问题,而实现枸杞种植面积监测与有序调控是保障枸杞市场平稳、持续发展的关键手段[1-2]。与传统地面调查方法相比,遥感技术具备宏观、经济和高效等优势,已广泛应用于作物的分类、种植结构提取和种植面积监测等方面[3]。
作物遥感识别与分类是获取农业土地利用信息的基础,近年来采用遥感观测资料进行作物分类的研究较多,其大致可分为2大类[4-5]: 一种为选用作物生长关键期内的单时相影像进行作物分类; 另一种为选用作物生长期内的多时相影像,经过构建时序的植被指数进行作物分类。受我国作物种植结构复杂性和作物光谱相似性影响,在采用单时相影像开展作物分类时,存在“最佳识别期”不易选取以及易出现“同谱异物,同物异谱”的问题,限制了该方法的分类精度[6]。而在同一区域内因不同作物的生长周期普遍存在差异,采用多时相影像能够获取光谱与物候特征信息,具备获取更佳作物分类精度的潜力[7]。在该方法应用初期以采用具有高时间分辨率的MODIS数据为主,并对全球广泛种植的大宗作物开展了遥感监测[8-10],但因MODIS数据空间分辨率较低,且在种植结构复杂的中小规模种植区易出现大量混合像元,致使分类精度难以提升[11-12]。伴随遥感技术的发展,近年来涌现出利用多时相的Landsat7/8[13-15]、GF-1[16-17]和Sentinel-2[18-21]等中高空间分辨率的影像对香梨、葵花、苜蓿等特色经济作物进行提取的案例。通过对比上述研究发现,时序高分影像数据能获得丰富的作物冠层光谱、纹理和物候等特征信息,提高了作物识别的准确性,但也面临如单一数据源易存在关键物候期影像缺失,采用决策树和神经网络等分类器存在分类特征利用不充分等问题[22-23]。针对上述问题,多源数据应用能较好地解决关键时相数据的缺失,并且已有研究对Landsat8 OLI,Landsat7 ETM+和Sentinel-2A MSI等传感器,进行了波段特性对比以及数据间差异消除方法的构建[24-25],能为多源数据综合提供方法参考,但同时尝试引入具有更强学习与泛化能力的分类器可能是提升作物分类精度的关键[23,26]。任何单一的强分类器都有其自身的优势与不足,集成学习(ensemble learning)方法能综合运用各分类器的优势,以提高分类精度,这也是当前研究的热点方向[27]。集成学习依照个体学习器的形成方式可划分为串行或并行的序列化,前者典型代表为提升法(boosting),而后者的代表是自举汇聚法(bootstrap aggregating,bagging)和随机森林(random forest,RF),其中RF对多维特征和数据噪声具有更强的鲁棒性,已广泛应用于作物分类并取得较好效果[28-29],而采用boosting算法进行作物分类鲜有尝试。
本文以柴达木盆地典型枸杞种植基地诺木洪农场为研究区,选取Landsat8 OLI和GF-1 WFV影像构建作物生长期内时序植被指数数据,并采用轻量级梯度提升机(light gradient boosting machine,LightGBM)、梯度提升决策树(gradient boosting decision tree, GBDT)、极端梯度提升(extreme gradient boosting,XGBoost)、RF、支持向量机(support vector machine,SVM)和多层感知分类器(multilayer perceptron classifier,MLPC)共6种分类器,旨在探讨集成学习方法在开展枸杞种植区分类时的适应性。
诺木洪农场位于柴达木盆地都兰县境内,生态环境十分纯净,是全国规模较大的枸杞种植基地,被誉为“中国枸杞之乡”。农场地理坐标E96°15′~96°35′,N36°20′~36°30′,海拔为2 745~2 790 m,总面积约200 km2,诺木洪农场及周边枸杞种植区分布状况见图1。农场属高原大陆性气候,辐射强,昼夜温差大,气候干燥,年平均气温约5 ℃,降雨量约51 mm,而蒸发量在2 200 mm以上。农场地处冲洪积扇前缘的细土平原带,土壤肥沃并被大量开垦进行枸杞种植,南部为山前荒漠戈壁,而北部为沼泽地,诺木洪河为柴达木流域内第六大河流,由南至北穿过农场为其生产生活提供充足水源[30]。
图1 枸杞种植区分布
2.1.1 影像数据与预处理
为构建具备高时间分辨率的时序数据集,选取研究区内作物生长阶段4—11月份内的6景Landsat8 OLI影像和3景GF-1 WFV影像,其中Landsat8 OLI影像在谷歌地球引擎(Google Earth Engine,GEE)平台下载(https: //code.earthengine.google.com),空间分辨率30 m,重访周期16 d,GF-1 WFV数据在中国资源卫星应用中心下载(http: //www.cresda.com/),空间分辨率为16 m,波段数为4,重访周期为2 d。数据详情如表1所示。
表1 影像数据列表
①OLI为陆地成像仪(多光谱),WFV为多光谱宽幅相机。
GF-1 WFV数据利用ENVI5.5软件进行预处理,以邻近时期的Landsat8 OLI数据和30 m DEM数据为参考,选用自动采集控制点的正射校正工具(RPC orthorectification using reference image, RPC)进行校正,并将GF-1 WFV进行辐射定标和FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)大气校正。Landsat8 OLI数据在GEE平台中可直接获取地表反射率数据,但仍需在GEE平台中通过编写脚本使用多通道掩模算法(C function of mask, CFMask)对影像中的云、阴影和雪进行处理[31]。最后将预处理后的GF-1 WFV和Landsat8 OLI影像空间分辨率重采样为30 m,并将投影统一转换为Albers等面积投影。
2.1.2 实地野外调查数据
为获取准确且均匀分布的地面样点调查数据,用于分类器的训练和精度验证,按1 km×1 km格网将研究区划分为264个单元,于2017年9月在诺木洪农场开展实地调查,通过随机选取格网以及参考调查地点的可通达性,共对101个格网开展地面调查,期间利用GPS对主要地物类型进行定位并拍照,使用ASD FieldSpec 4型地物光谱仪获取枸杞作物的冠层光谱。因研究区内分布大范围的沼泽地和荒漠戈壁致使部分格网单元无法开展实地调查,因而利用GF-1影像通过目视判识获取该格网内的地物类型信息。最终通过调查将研究区待分类对象划分为幼龄期枸杞地、壮龄期枸杞地、行道树、城镇、沼泽地、戈壁滩和公路共7种类型,并获得各类地物样点共1 378个,样点分布见图2。
图2 研究区样点分布
2.1.3 物候期观测数据
2016—2018年在诺木洪农场选取试验田开展作物物候观测,观测地枸杞树龄为5 a左右,图3展示了枸杞树的生长周期,一般枸杞树从5月上旬开始进入萌芽期,5月下旬进入春梢生长期,6月下旬进入开花盛期,7月上旬—9月下旬进入果熟期,期间枸杞树不断开花结果,当地果农一般开展2~3茬摘果,10月初进入落叶始期,至11月初果树开始进入休眠期。
图3 枸杞作物物候期
植被指数能增强光学遥感影像中的植被信息,并被广泛用于描述生物物理特性的变化[32]。其中归一化植被指数(normalized difference vegetation index, NDVI)是监测植被覆盖度和生长状况的最佳指数,但受计算方法的影响容易在高植被覆盖区产生饱和,而增强植被指数(enhanced vegetation index,EVI)加入了土壤背景调节参数和大气修正参数,能弥补NDVI指数的不足[33]。使用植被指数进行作物物候期监测时,如对地面植被类型及覆盖度状况不了解,一般应综合选取NDVI和EVI指数互为补充[33],2种植被指数的计算公式分别为:
(1)
(2)
式中:ρNIR,ρRed和ρBlue分别为近红外、红光波段和蓝光波段的反射率值;L,C1和C2分别为土壤背景调节参数、大气校正红光参数和大气校正蓝光参数,其中L=1,C1=6,C2=7.5。
受云雾和水汽因素影响,利用Landsat8 OLI和GF-1 WFV影像构建的NDVI/EVI时间序列数据会夹杂大的波动和噪声,需进行平滑和去噪[34],本文使用SG(Savitzky-Golay)滤波[18],其计算公式为:
(3)
在Visual Studio Code软件中使用sklearn (Scikit-learn),LightGBM和XGBoost等第三方库,实现了LightGBM,GBDT,XGBoost,RF,SVM和MLPC分类器搭建。当前集成学习是机器学习领域的研究热点,它具有准确性高、速度快、参数少等优点,已在叶绿素反演和森林地上生物量估算等方面开展了应用[35-36],其中LightGBM,GBDT和XGBoost均是在Boosting集成学习方式基础上的改进算法,但在基分类器、列采样方式、决策树生长策略、残差拟合方法和并行策略等方面存在差异[37]; RF是以决策树作为基分类器,并采用bagging方式进行集成的,能够处理高维数据,并且无需大训练样本、反复的模型训练和参数调整便能获取较好的分类精度[37]; SVM和MLPC是典型的非参数化机器学习方法,相比传统的参数化方法具有较强的学习及泛化能力,适用于土地利用、作物分类和参量反演等场景[38]。
使用sklearn库中的样本分割方法,按照2∶8将样本集随机划分为测试集和训练集。同时分类器训练时超参数的设定对于模型分类效果影响十分关键,一般在参数集合较大时采用随机格网搜索法能够高效选定候选超参数,文中设定10折交叉验证和10次重复来评估超参数值的所有可能组合。通过实验LightGBM的boosting类型设定为GBDT,并对学习率、最大叶子节点数、树深度和子模型树设定值范围并进行寻优; GBDT和RF均对学习率、树节点分裂最小样本数、树终节点最少样本数、树深度和子模型树参数进行寻优; XGBoost中设定类别数为7,对树深度、学习率和损失函数进行寻优; SVM的核函数设定为径向基函数,并对惩罚系数进行寻优; MLPC对隐含层树及节点数、激活函数、权重优化器和学习率进行寻优。
精度评价主要从像素尺度出发通过构建混淆矩阵,计算总体分类精度(overall accuracy,OA)、制图精度(producer accuracy,PA)、用户精度(user accuracy,UA)和Kappa系数进行分类精度评价[39]。
利用sklearn中的元转换器并与LightGBM,GBDT,XGBoost和RF分类器的特征重要性评分方法配合,用于评估不同时相NDVI/EVI特征在作物分类中的重要性。而SVM和MLPC分类器缺乏特征重要性评分能力,利用单变量特征选择通过对单变量的统计测试来抉择较好的分类特征。
采用SG方法逐像元重建了时序NDVI/EVI图像,并利用地面调查样点提取了研究区内7种地物类型的平均时序NDVI/EVI曲线(图4),经过分析重建后的NDVI/EVI曲线更加平滑,消除了“锯齿”和“毛刺”等噪声,表明SG方法具有较好的滤波和特征保持能力; 壮龄/幼龄期枸杞在不同生长阶段,其NDVI/EVI曲线表现的物候特征变化趋势较为接近,但增减幅度存在差异,如壮龄期与幼龄期枸杞在休眠期NDVI/EVI值均为最低,5月上旬—中旬枸杞由芽开放期转至展叶盛期,该阶段NDVI/EVI曲线上升趋势迟缓,5月下旬—6月下旬,枸杞由春梢开始生长至春梢开花盛期,该阶段NDVI/EVI曲线均呈快速增长,但壮龄期枸杞增幅较大,7月中旬—8月中旬为夏果形成与成熟期,该阶段枸杞NDVI/EVI曲线均达到峰值并保持稳定,其中壮龄期枸杞峰值高于幼龄期。9月中旬—下旬枸杞由秋果成熟盛期逐渐过渡至落叶始期,枸杞NDVI/EVI曲线逐渐开始降低。而到11月上旬,枸杞进入落叶盛期,枸杞NDVI/EVI曲线持续快速下降,伴随气温骤降以及降雪过程的来临,枸杞进入休眠期。研究区内行道树和沼泽地植被NDVI/EVI曲线也均表现出明显的物候特征,其中在田间道路两旁种植的行道树主要以挺直高大的新疆杨为主,生长期内NDVI/EVI值均高于枸杞等其他植被类型,而沼泽地植被的NDVI/EVI值也略高于幼龄期枸杞; 研究区内公路、城镇和戈壁滩非植被类型的NDVI/EVI值均低于0.2,并且无明显峰谷特征。
(a) NDVI曲线 (b) EVI曲线
图4 NDVI和EVI曲线
对比分析时序NDVI/EVI曲线对于枸杞等不同植被类型间的区分程度发现,因NDVI和EVI指数的计算公式导致同一类型的时序NDVI曲线值较EVI值整体偏高[19]。7种类型的时序NDVI/EVI曲线特征均存在差异,但是壮龄期枸杞与行道树在时序EVI曲线中的差异更加明显,并主要表现在枸杞生长期后期(8月下旬—11月上旬)。为定量分析NDVI/EVI指数在枸杞作物不同生长期内表现的差异性,选取壮龄期枸杞的NDVI/EVI时序曲线,并计算枸杞下一生长期与当前时期NDVI/EVI指数的增加或减少幅度,结果如图5所示,分析发现在枸杞芽开放期至开花盛期(5月11日—6月28日,生长初期),EVI与NDVI指数增幅呈快速上升趋势,而后在枸杞夏果形成至成熟盛期(7月14日—8月2日,生长中期),EVI与NDVI指数增幅降低其数值达到生长期内最大,在枸杞秋果形成至落叶盛期(8月14日—11月3日,生长中后期),EVI和NDVI指数降幅逐渐呈上升趋势。总体而言,EVI指数曲线相较于NDVI指数曲线在枸杞物候期的前期和中期增幅均较大,两者差异并不明显,而在中后期EVI指数曲线的降低幅度明显高于NDVI指数曲线,两者差异逐渐显现。
图5 NDVI及EVI指数增加与减少幅度
3.3.1 分类结果
利用NDVI/EVI时序数据采用6种分类器进行枸杞种植区分类,结果如图6及图7所示,在12种分类结果中各地物类型的细节展现总体较好,其中幼龄期枸杞种植区连片分布在农场南部,多为新开垦的枸杞幼苗种植区,壮龄期枸杞分布在农场大部地区,并被行道树分割呈现规则的棋盘状分布,上述3种类型边界提取完整且准确。沼泽地主要分布在农场的北部,南部为广阔的戈壁滩,而城镇主要散落分布在枸杞种植区内,上述4种类型在部分分类结果中出现了相互混淆。对农场南部国道G109的提取存在间断并易出现碎斑,其原因为道路宽度较窄采用30 m空间分辨率影像对其识别能力存在不足。
(a) LightGBM分类结果(b) GBDT分类结果
(c) XGBoost分类结果(d) RF分类结果
(e) SVM分类结果(f) MLPC分类结果
图6 基于NDVI时序数据的分类结果
(a) LightGBM分类结果(b) GBDT分类结果
(c) XGBoost分类结果(d) RF分类结果
(e) SVM分类结果(f) MLPC分类结果
图7 基于EVI时序数据的分类结果
3.3.2 精度评价
对12种分类结果进行精度验证与对比,结果如图8及图9所示,分析表明以LightGBM+EVI的OA最高达到91.67%,Kappa系数为0.90,其对幼龄期枸杞和壮龄期枸杞的PA分别为91.0%和98.0%,而MLPC+EVI的OA最低为83.33%,Kappa系数为0.81,但对幼龄期枸杞和壮龄期枸杞的PA也分别达到82.0%和89.0%,表明上述6种分类器与2种分类数据组合均能实现枸杞种植区的准确提取。文中分类结果按分类精度由高至低依次为: LightGBM+EVI,GBDT+EVI,XGBoost+EVI/GBDT+NDVI,LightGBM+NDVI,XGBoost+NDVI,RF+EVI,RF+NDVI,SVM+EVI,MLPC+NDVI,SVM+NDVI和MLPC+EVI。基于6种分类器对采用NDVI/EVI时序数据下的平均分类精度进行对比分析, LightGBM和GBDT的平均OA均为90.40%,Kappa系数均为0.89,而分类效果最差的MLPC,其平均OA也达到84.06%,Kappa系数为0.82,表明6种分类器对枸杞种植区及其他地物类型均有较强区分能力,按照分类器精度由高至低依次为: LightGBM/GBDT,XGBoost,RF,SVM和MLPC。对研究区不同地物类型的精度进行分析,在12种分类结果中幼龄期枸杞的平均PA为91.08%,壮龄期枸杞的平均PA为94.17%,表明选用的分类器均能实现枸杞种植区的精准提取,通过混淆矩阵分析也存在壮龄期枸杞种植区易于与沼泽地和行道树类型发生混淆,而幼龄期枸杞易于与戈壁滩产生错分。研究区内行道树、公路、戈壁滩和沼泽地的平均PA也较高,分别达到了86.58%,88.25%,85.00%和85.42%,而6种分类器对城镇的提取效果普遍不佳,平均PA仅为79%,农场城镇规模较小且散落分布,并且其图像特征也与公路、戈壁滩类型较为接近,当影像空间分辨率不足以及分类器区分能力较差时易发生上述类型边界提取模糊和错分现象。比照NDVI和EVI这2种时序数据的分类效果,在同一分类器下,使用EVI时序数据的OA将高出1.09~2.54个百分点,同时在对壮龄期枸杞、行道树和沼泽地等类型进行提取时,采用EVI时序数据的PA较采用NDVI时序数据时的PA平均高1.70个百分点。
(a) 基于时序NDVI的分类器制图精度(b) 基于时序EVI的分类器制图精度
(c) 基于时序NDVI的分类器用户精度(d) 基于时序EVI的分类器用户精度
(a) 6种分类器总体分类精度(b) 6种分类器Kappa系数
通过模型特征重要性评分方法分析了不同时相NDVI/EVI数据对于分类的贡献程度,并对优选后的部分时相特征进行分类和精度验证,结果见图10,其中NDVI-OA与NDVI-Kappa分别为分类器特征选取前模型的OA和Kappa系数,NDVI-OA-S与NDVI-Kappa-S分别为分类器特征选取后模型的OA和Kappa系数,分析发现GBDT+EVI,XGBoost+NDVI,SVM+NDVI,SVM+EVI和RF+EVI共5种分类器与数据组合方式下,优选5~6个关键时相的NDVI/EVI数据能获得与采用全部时相NDVI/EVI数据相同的分类精度,并且GBDT+EVI和XGBoost+NDVI在选取6个特征后的OA均达到89.85%,Kappa系数为0.88,对幼龄期枸杞和壮龄期枸杞的PA分别为94.0%和96.0%,表明通过特征优选能在保证分类精度的同时进一步降低数据冗余。LightGBM通过特征重要性评估能够选择更少的时相特征,但对比特征优选前后的OA下降了3~8个百分点。
(a) 特征选取前后总体分类精度(b) 特征选取前后Kappa系数
ofmodelsbeforeandaftertheselectionoftemporalfeatures
对分类器选取的时相次数进行统计分析(图11),其中6月下旬和9月下旬时相被选取次数最多,该时段分别处于枸杞开花盛期和枸杞秋果成熟盛期,应为枸杞种植区分类的关键时相。同时通过对比NDVI和EVI这2种数据源的时相特征选取分布规律,针对EVI数据选取的特征时相集中分布在6—9月,而NDVI时序数据选取的时相特征集中分布在5—8月。
(a) NDVI(b) EVI
图11 时序NDVI/EVI的时相选择次数统计
中高分辨率遥感数据为作物识别提供了丰富数据源,同时蓬勃发展的集成学习方法将推动作物识别精度的提升。首先,文中综合GF-1 WFV和Landsat8 OLI数据进行互补以获取时序较为完整的植被指数数据,前期宋军伟等[40]已对上述2种卫星的反射率数据进行对比,表明其对应波段均存在显著相关,并且对典型地物类型的可分离性也十分接近。本文在此研究基础上进一步对其计算的植被指数进行差异分析,具体是采用相同目标区域的同日过境数据,并对比分析了影像预处理前后2种数据提取的NDVI/EVI相关程度(图12),结果表明经影像预处理后提取的GF-1 NDVI/EVI与Landsat8 NDVI/EVI间的相关性被大幅提高,其决定系数由0.73~0.74上升至0.97~0.98,表明上述2种传感器的植被指数具有较高的一致性,并且在数据互补使用过程中开展辐射定标、大气校正、几何精纠正和异常值剔除等影像预处理能够提高数据间的一致性,而在后续研究中可通过建立GF-1和Landsat8卫星对应波段间的转换关系以更好地消除数据源间的差异; 同时,为获取准确且灵敏的植被指数,选用同类研究中普遍使用的NDVI和EVI指数,通过对比发现EVI指数在枸杞生育期的中后期更为灵敏,并与行道树等高覆盖植被类型间的时序曲线差异更明显,这与白燕英等[14]认为在生育期高峰期和高植被覆盖下EVI指数更加灵敏的结论较为一致。并且为进一步分析NDVI和EVI这2种时序数据对作物分类精度的影响,采用6种分类器进行评估,结果表明在同一分类器下使用EVI时序数据的分类精度普遍高出1.09~2.54个百分点,EVI指数用于作物分类具有更好的区分性; 最后,选用LightGBM,GBDT,XGBoost,RF,SVM和MLPC 6种分类器和NDVI/EVI这2种时序数据开展枸杞种植区分类,各分类器的平均OA分别为90.4%,90.4%,89.31%,86.96%,85.14%和84.06%。表明4种集成学习分类器相较于SVM和MLPC分类器,可获取更高的作物识别精度。目前,集成学习已在土地利用[41]、叶绿素反演[35]和地上生物量估算[36]方面进行应用并获得较好精度,而本研究则表明LightGBM,GBDT,XGBoost和RF分类器在枸杞作物分类中也具有较好适用性。
(a) 预处理前NDVI点密度 (b) 预处理后NDVI点密度
(c) 预处理前EVI点密度 (d) 预处理后EVI点密度
综合应用Landsat8 OLI和GF-1 WFV影像,构建作物生育期内时序NDVI/EVI数据,并采用6种分类器对枸杞种植区进行分类,主要结论如下:
1)LightGBM,GBDT,XGBoost和RF集成学习分类器在枸杞种植区分类中能够获得更高精度,6种分类器精度由高至低依次为: LightGBM/GBDT,XGBoost,RF,SVM和MLPC,在分类结果中以LightGBM+EVI的OA值最高达到91.67%,Kappa值为0.90,其对幼龄期枸杞和壮龄期枸杞的PA值均达到91%以上。
2)时序NDVI/EVI数据均能较好区分枸杞作物以及种植区内其他地物类型,但EVI指数在枸杞作物生长中后期更为灵敏,并在相同分类器下使用EVI时序数据能够获得更好的枸杞制图精度。
3)选用GBDT,XGBoost和RF分类器的特征重要性评分方法进行NDVI/EVI数据分类时相特征优选后,能够保证在分类精度不损失的同时降低数据冗余提高分类效率。
4)文中仅选用单一年份的4—11月影像构建时序植被指数数据,而在后期研究中应考虑使用多年份的时序数据以进一步提高分类结果的可靠性。
我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自各大过期杂志,内容仅供学习参考,不准确地方联系删除处理!